
PyHEP.dev 2023

Marcel Rieger
1 Introduction

● PostDoc at Hamburg University (UHH) working with CMS

● Physics projects and interests

■ Observation of production and decays (PhD @ RWTH)

■ Search for production, combination (research fellow @ CERN)

■ combination in CMS, combination CMS + ATLAS (PostDoc @ UHH)

■ BSM interpretations, BSM, heavy resonances, DM, 2HDM (ongoing)
■ Differentiable limit extraction & assumption-free ML optimization (ongoing)

● CMS projects and roles

■ 2020-2023: CMS ML group, coordinator for production deployment
▻ Integration of TensorFlow into core software
▻ Ahead-of-time compilation of ML graphs
▻ Automated performance measurement (time & memory) of models

■ Since 2023: CMS CAT (Common Analysis Tools), coordinator for workflow orchestration & preservation
▻ Definition of common meta data format for all CMS analyses
▻ Development of tools & support for automating analyses end-to-end

▻ Automation of NanoAOD production for users

tt̄H H → bb̄
HH → bb̄τ+τ− HH

HH + H HH
HH

Production

• Deliver production-level training and inference for CMS ML algorithms

• Develop and maintain of ML training and inference workflows for CMS
(including external frameworks like Tensorflow, Pytorch and MXNet)

• Work closely with CMS framework experts, liason to the CMS framework and
software/computing groups.

• Help with development of training facilities 
 — including hardware access —  
to satisfy the needs of as many collaborators  
as possible

9

Mia Liu & Marcel Rieger 
cms-conveners-ml-production@cern.ch

Mia Marcel
 marcel.rieger@cern.ch

 riga

mailto:marcel.rieger@cern.ch
mailto:marcel.rieger@cern.ch
mailto:marcel.rieger@cern.ch
mailto:marcel.rieger@cern.ch
mailto:marcel.rieger@cern.ch
mailto:marcel.rieger@cern.ch
mailto:marcel.rieger@cern.ch
mailto:marcel.rieger@cern.ch
mailto:marcel.rieger@cern.ch
mailto:marcel.rieger@cern.ch
https://github.com/riga

PyHEP.dev 2023

Marcel Rieger
2 Personal projects (1)

●

■ Python package for defining numbers, subject to one or multiple uncertainties
(single file, no dependencies, all Python versions)

■ Automatic gaussian error propagation (eager autograd)
■ Support for arrays, rounding according to PDG rules, neat formatting, export to HEPData format, ...

●

■ Pythonic class collection to structure meta data for LHC experiments
■ Relational structure covering

▻ Production campaigns, datasets
▻ Physics processes, cross sections, uncertainties
▻ Variables, categories, channels, ...

■ Seed project for CMS-wide meta data format

≈

Treat "stat" errors
as uncorrelated

https://colab.research.google.com/github/riga/scinum/blob/master/example.ipynb
https://colab.research.google.com/github/riga/scinum/blob/master/example.ipynb
https://colab.research.google.com/github/riga/scinum/blob/master/example.ipynb
https://colab.research.google.com/github/riga/scinum/blob/master/example.ipynb
https://colab.research.google.com/github/riga/scinum/blob/master/example.ipynb
https://colab.research.google.com/github/riga/scinum/blob/master/example.ipynb
https://colab.research.google.com/github/riga/scinum/blob/master/example.ipynb
https://colab.research.google.com/github/riga/scinum/blob/master/example.ipynb
https://colab.research.google.com/github/riga/scinum/blob/master/example.ipynb
https://colab.research.google.com/github/riga/scinum/blob/master/example.ipynb
https://colab.research.google.com/github/riga/order/blob/master/examples/intro.ipynb
https://colab.research.google.com/github/riga/order/blob/master/examples/intro.ipynb
https://colab.research.google.com/github/riga/order/blob/master/examples/intro.ipynb
https://colab.research.google.com/github/riga/order/blob/master/examples/intro.ipynb
https://colab.research.google.com/github/riga/order/blob/master/examples/intro.ipynb
https://colab.research.google.com/github/riga/order/blob/master/examples/intro.ipynb
https://colab.research.google.com/github/riga/order/blob/master/examples/intro.ipynb
https://colab.research.google.com/github/riga/order/blob/master/examples/intro.ipynb
https://colab.research.google.com/github/riga/order/blob/master/examples/intro.ipynb
https://colab.research.google.com/github/riga/order/blob/master/examples/intro.ipynb
https://github.com/riga/scinum
https://github.com/riga/order

PyHEP.dev 2023

Marcel Rieger
3 Personal projects (2)

●

■ Python package for creating large & scalable task pipelines
■ Development started at Spotify, now fully open source
■ Extremely lightweight & flexible core, can be explained in 5 minutes

■ Enables macroscopic workflows, connecting all parts of an analysis

▻ Not just heavy lifting from (nano) input files to n-dim. histograms
▻ No constraint on language (popen), data formats, ...

●

■ Extension on-top of luigi, providing scale-out of HEP infrastructure

■ Full decoupling of

▻ run locations (local, various batch systems, WLCG)

▻ storage locations (local, all WLCG protocols, cloud)

▻ environments (subshells, docker/singularity, venv, conda)

■ Everything executable by a single command

■ Experiment-agnostic, O(120-150) users, most used analysis workflow system at CMS

❗ Provides a daily working environment,
not just a tool to automate an analysis after the fact

Run
location

Storage
location

Software
environment

Code

https://github.com/spotify/luigi
https://github.com/riga/law

PyHEP.dev 2023

Marcel Rieger
4 Macroscopic task graph (1)

Work of a B.Sc. student
after 2 weeks ❗

PyHEP.dev 2023
Marcel Rieger

5 Triggers: CLI, scripting and notebooks

● CLI
> law run Reconstruction --dataset ttbar --workflow htcondor

■ Full auto-completion of tasks and parameters

● Scripting
■ Mix task completeness checks, job execution

& input/output retrieval with custom scripts

■ Easy interface to existing tasks for prototyping

● Notebooks

https://mybinder.org/v2/gh/riga/law/master?filepath=examples/loremipsum/index.ipynb
https://mybinder.org/v2/gh/riga/law/master?filepath=examples/loremipsum/index.ipynb
https://mybinder.org/v2/gh/riga/law/master?filepath=examples/loremipsum/index.ipynb
https://mybinder.org/v2/gh/riga/law/master?filepath=examples/loremipsum/index.ipynb
https://mybinder.org/v2/gh/riga/law/master?filepath=examples/loremipsum/index.ipynb
https://mybinder.org/v2/gh/riga/law/master?filepath=examples/loremipsum/index.ipynb
https://mybinder.org/v2/gh/riga/law/master?filepath=examples/loremipsum/index.ipynb
https://mybinder.org/v2/gh/riga/law/master?filepath=examples/loremipsum/index.ipynb
https://mybinder.org/v2/gh/riga/law/master?filepath=examples/loremipsum/index.ipynb
https://mybinder.org/v2/gh/riga/law/master?filepath=examples/loremipsum/index.ipynb

PyHEP.dev 2023

Marcel Rieger
6 My goals for today

● Making the Analysis Grand Challenge (AGC) even more realistic
■ Machine learning training
■ k-fold cross validation, creates realistic points in the analysis where per-event information is needed
■ More complex statistical model
■ Plotting with systematic shifts, pre-fit and post-fit
■ ...

Backup

PyHEP.dev 2023
Marcel Rieger

8 Orchestration software stack

law
luigi analysis workflow

workflow engine layer for HEP & scale-out
(experiment independent)

"framework" analysis
(originally by Spotify) (experiment independent*)

* soon

law & luigi

PyHEP.dev 2023
Marcel Rieger

10

● Python package for building complex pipelines

● Development started at Spotify, now open-source
and community-driven

1. Workloads defined as Task classes that
can require other Tasks

2. Tasks produce output Targets

3. Parameters customize tasks & control
runtime behavior

● Web UI with two-way messaging (task → UI, UI →

task), automatic error handling, task history
browser, collaborative features, command line
interface, …

Building blocks

github.com/spotify/luigi

https://github.com/spotify/luigi

PyHEP.dev 2023
Marcel Rieger

11 make-like execution system

● Luigi’s execution model is make-like

1. Create dependency tree for triggered task
2. Determine tasks to actually run:
－ Walk through tree (top-down)
－ For each path, stop if all output

targets of a task exist*

● Only processes what is really necessary

● Scalable through simple structure

● Error handling & automatic re-scheduling

triggered task

required task

dependency

* in this case, the task is considered complete

PyHEP.dev 2023
Marcel Rieger

12 Luigi in a nutshell

 > python reco.py Reconstruction --dataset ttbar

PyHEP.dev 2023
Marcel Rieger

12 Luigi in a nutshell

 > python reco.py Reconstruction --dataset ttbar

luigi's local file target:
 - path: string
 - exists(): bool
 - remove()
 - open(): fd
 - ...

Encoding parameters into
output target path

Parameter object on class-level

string on instance-level

PyHEP.dev 2023
Marcel Rieger

13 Example dependency trees

Work of a B.Sc. student
after 2 weeks ❗

PyHEP.dev 2023
Marcel Rieger

14 Law

● law: extension on top of luigi (i.e. it does not replace luigi)

● Software design follows 3 primary goals:

1. Experiment-agnostic core (in fact, not even related to physics)

2. Scalability on HEP infrastructure (but not limited to it)

3. Decoupling of run locations, storage locations & software environments
▻ Not constrained to specific resources
▻ All components interchangeable

● Toolbox to follow an analysis design pattern

■ No constraint on language or data structures
→ Not a framework

● Most used workflow system for analyses in CMS

■ O(20) analyses, O(60-80) people
■ Used at all german CMS sites
■ Central CMS groups, e.g. HIG, TAU, BTV

law
luigi analysis workflow

Analysis

Run
location

Storage
location

Software
environment

Code

PyHEP.dev 2023
Marcel Rieger

15 Law features (1)

1. Job submission

■ Idea: submission built into tasks, no need to write extra code

■ Currently supported job systems: HTCondor, LSF, gLite, ARC, Slurm (+ CRAB ∼next month)

■ Mandatory features such as automatic resubmission, flexible task ↔ job matching,

job files fully configurable at submission time, internal job staging when queues are saturated, ...

■ From the htcondor_at_cern example:

lxplus129:law_test > law run CreateChars --workflow htcondor
INFO: [pid 30564] Worker Worker(host=lxplus129.cern.ch, username=mrieger) running
 CreateChars(branch=-1, start_branch=0, end_branch=26, version=v1)
going to submit 26 htcondor job(s)
submitted 1/26 job(s)
submitted 26/26 job(s)
14:35:40: all: 26, pending: 26 (+26), running: 0 (+0), finished: 0 (+0), retry: 0 (+0), failed: 0 (+0)
...
14:37:10: all: 26, pending: 0 (+0), running: 26 (+26), finished: 0 (+0), retry: 0 (+0), failed: 0 (+0)
14:37:40: all: 26, pending: 0 (+0), running: 10 (-16), finished: 16 (+16), retry: 0 (+0), failed: 0 (+0)
14:38:10: all: 26, pending: 0 (+0), running: 0 (+0), finished: 26 (+10), retry: 0 (+0), failed: 0 (+0)
INFO: [pid 30564] Worker Worker(host=lxplus129.cern.ch, username=mrieger) done!

lxplus129:law_test >

law
luigi analysis workflow

local

htcondor

local

https://github.com/riga/law/tree/master/examples/htcondor_at_cern

PyHEP.dev 2023
Marcel Rieger

16 Law features (2)

2. Remote targets

■ Idea: work with remote files as if they were local

■ Remote targets built on top of GFAL2 Python bindings
▻ Supports all WLCG protocols (XRootD, WebDAV, GridFTP, dCache, SRM, ...) + DropBox
▻ API identical to local targets

❗ Actual remote interface interchangeable (GFAL2 is just a good default, fsspec integration easily possible)

■ Mandatory features: automatic retries, local caching (backup), configurable protocols, round-robin, ...

“FileSystem” configuration

● Base path prefixed to all
paths using this “fs”

● Configurable per file
operation (stat, listdir, ...)

● Protected against removal
of parent directories

law
luigi analysis workflow

PyHEP.dev 2023
Marcel Rieger

16 Law features (2)

2. Remote targets

■ Idea: work with remote files as if they were local

■ Remote targets built on top of GFAL2 Python bindings
▻ Supports all WLCG protocols (XRootD, WebDAV, GridFTP, dCache, SRM, ...) + DropBox
▻ API identical to local targets

❗ Actual remote interface interchangeable (GFAL2 is just a good default, fsspec integration easily possible)

■ Mandatory features: automatic retries, local caching (backup), configurable protocols, round-robin, ...

“FileSystem” configuration

● Base path prefixed to all
paths using this “fs”

● Configurable per file
operation (stat, listdir, ...)

● Protected against removal
of parent directories

Conveniently reading remote files

law
luigi analysis workflow

PyHEP.dev 2023
Marcel Rieger

16 Law features (2)

2. Remote targets

■ Idea: work with remote files as if they were local

■ Remote targets built on top of GFAL2 Python bindings
▻ Supports all WLCG protocols (XRootD, WebDAV, GridFTP, dCache, SRM, ...) + DropBox
▻ API identical to local targets

❗ Actual remote interface interchangeable (GFAL2 is just a good default, fsspec integration easily possible)

■ Mandatory features: automatic retries, local caching (backup), configurable protocols, round-robin, ...

“FileSystem” configuration

● Base path prefixed to all
paths using this “fs”

● Configurable per file
operation (stat, listdir, ...)

● Protected against removal
of parent directories

Conveniently reading remote files

law
luigi analysis workflow

PyHEP.dev 2023
Marcel Rieger

16 Law features (2)

2. Remote targets

■ Idea: work with remote files as if they were local

■ Remote targets built on top of GFAL2 Python bindings
▻ Supports all WLCG protocols (XRootD, WebDAV, GridFTP, dCache, SRM, ...) + DropBox
▻ API identical to local targets

❗ Actual remote interface interchangeable (GFAL2 is just a good default, fsspec integration easily possible)

■ Mandatory features: automatic retries, local caching (backup), configurable protocols, round-robin, ...

“FileSystem” configuration

● Base path prefixed to all
paths using this “fs”

● Configurable per file
operation (stat, listdir, ...)

● Protected against removal
of parent directories

Conveniently reading remote files

law
luigi analysis workflow

PyHEP.dev 2023
Marcel Rieger

16 Law features (2)

2. Remote targets

■ Idea: work with remote files as if they were local

■ Remote targets built on top of GFAL2 Python bindings
▻ Supports all WLCG protocols (XRootD, WebDAV, GridFTP, dCache, SRM, ...) + DropBox
▻ API identical to local targets

❗ Actual remote interface interchangeable (GFAL2 is just a good default, fsspec integration easily possible)

■ Mandatory features: automatic retries, local caching (backup), configurable protocols, round-robin, ...

“FileSystem” configuration

● Base path prefixed to all
paths using this “fs”

● Configurable per file
operation (stat, listdir, ...)

● Protected against removal
of parent directories

Conveniently reading remote files

law
luigi analysis workflow

PyHEP.dev 2023
Marcel Rieger

17 Law features (3)

3. Environment sandboxing

■ Diverging software requirements between typical workloads
is a great feature / challenge / problem

■ Introduce sandboxing:
▻ Run entire task in different environment

■ Existing sandbox implementations:
▻ Sub-shell with init file
▻ Virtual envs
▻ Docker images
▻ Singularity images

docker::imgA

docker::imgB

shell::myEnv.sh

singularity::cc7

law
luigi analysis workflow

PyHEP.dev 2023
Marcel Rieger

18 Law in action

 > python reco.py Reconstruction --dataset ttbar

☐ luigi task
☐ law task
☐ Run on HTCondor
☐ Store on EOS
☐ Run in docker

✔

Example ☞

https://github.com/riga/law/tree/master/examples/htcondor_at_cern

PyHEP.dev 2023
Marcel Rieger

18 Law in action

 > python reco.py Reconstruction --dataset ttbar > law run Reconstruction --dataset ttbar

☐ luigi task
☐ law task
☐ Run on HTCondor
☐ Store on EOS
☐ Run in docker

✔

✔

Example ☞

https://github.com/riga/law/tree/master/examples/htcondor_at_cern

PyHEP.dev 2023
Marcel Rieger

18 Law in action

 > python reco.py Reconstruction --dataset ttbar > law run Reconstruction --dataset ttbar > law run Reconstruction --dataset ttbar --workflow htcondor

☐ luigi task
☐ law task
☐ Run on HTCondor
☐ Store on EOS
☐ Run in docker

✔

✔

✔

Example ☞

https://github.com/riga/law/tree/master/examples/htcondor_at_cern

PyHEP.dev 2023
Marcel Rieger

18 Law in action

 > python reco.py Reconstruction --dataset ttbar > law run Reconstruction --dataset ttbar > law run Reconstruction --dataset ttbar --workflow htcondor

☐ luigi task
☐ law task
☐ Run on HTCondor
☐ Store on EOS
☐ Run in docker

✔

✔

✔

✔

Example ☞

https://github.com/riga/law/tree/master/examples/htcondor_at_cern

PyHEP.dev 2023
Marcel Rieger

18 Law in action

 > python reco.py Reconstruction --dataset ttbar > law run Reconstruction --dataset ttbar > law run Reconstruction --dataset ttbar --workflow htcondor

☐ luigi task
☐ law task
☐ Run on HTCondor
☐ Store on EOS
☐ Run in docker

✔

✔

✔

✔

✔

Example ☞

https://github.com/riga/law/tree/master/examples/htcondor_at_cern

