Hyper-Kamiokande Oscillation Physics

Tom Dealtry for the Hyper-Kamiokande collaboration

NuPhys2023

December 19th, 2023

Towards Hyper-Kamiokande

	Kamiokande	Super-K	Hyper-K
Operation	1983–1995	1996–	2027–
Mass (fiducial)	4.5 (0.68) kton	50 (22.5) kton	258 (187) kton
	Contraction of the second seco		

- Building on decades of expertise
- Fiducial mass increase $> \times 8$, relative to Super-K
- ${\sim}20k$ improved 20" PMTs with ${\sim}{\times}2$ photo detection efficiency, relative to Super-K PMTs
- \bullet Addition of ${\sim}1k$ fine-grained "mPMTs", enhancing reconstruction & providing cross-calibration with 20" PMTs

Hyper-Kamiokande ν_{μ} & $\overline{\nu}_{\mu}$ beam

295 km

Tom Dealtry (Lancaster University)

Hyper-Kamiokande Oscillation Physics

December 19th, 2023 3 / 35

~1 km

Hyper-Kamiokande u_{μ} & $\overline{\nu}_{\mu}$ beam

- New Intermediate Water Cherenkov Detector (IWCD)
- Upgraded off-axis near detector (ND280-upgrade)
- 20 times more stats at far detector than T2K, in 10 HK-years
 - J-PARC beam upgraded to 1.3 MW
 - New 188 kt fiducial far detector

ND280-upgrade

- Upgrade to T2Ks magnetised off-axis near detector @ 280 m
- Increased efficiency for
 - Low-momentum tracks
 - High-angle tracks
- First parts of the upgrade are currently taking data!

Intermediate water Cherenkov detector (IWCD)

- $\bullet\,$ Water Cherenkov detector @ ${\sim}1\,{\rm km}$
 - Brand new detector & facility for the Hyper-K era
- Novel off-axis angle spanning method allows
 - Creation of narrow beam for cross-section analyses
 - Reconstruction of the oscillated flux

Neutrino oscillation open questions

JHEP 09 (2020) 178 NuFIT 5.2 (2022)	Beam	Atmospheric	Solar
$\delta_{CP}\sim 200^\circ$	✓	О	X
$ heta_{13}\sim 9^\circ$	\checkmark	О	X
$ heta_{23}\sim49^\circ$	\checkmark	\checkmark	X
$\pm\Delta m^2_{32}\sim 2.5 imes 10^{-3}{ m eV}^2$	\checkmark	1	X
Mass orderding	О	\checkmark	X
$ heta_{12}\sim 33^\circ$	X	×	\checkmark
$+\Delta m^2_{21}\sim 7.4 imes 10^{-5}{ m eV^2}$	X	×	\checkmark

- Drives sensitivityO Enhances sensitivity
- X Negligible sensitivity

- Is there CP violation? Does sin $\delta_{CP} = 0$?
- Is θ_{23} maximal (= 45°)? If not, which octant (< or > 45°)?
- Which mass ordering? $\Delta m_{32}^2 < \text{or} > 0$?

Neutrino oscillation open questions

JHEP 09 (2020) 178 NuFIT 5.2 (2022)	Beam	Atmospheric	Solar
$\delta_{CP}\sim 200^\circ$	✓	О	X
$ heta_{13}\sim9^\circ$	\checkmark	О	X
$ heta_{23}\sim49^\circ$	\checkmark	1	X
$\pm\Delta m^2_{32}\sim 2.5 imes 10^{-3}{ m eV}^2$	\checkmark	1	×
Mass orderding	Ο	\checkmark	X
$ heta_{12}\sim 33^\circ$	X	×	\checkmark
$+\Delta m^2_{21}\sim 7.4 imes 10^{-5}{ m eV^2}$	X	×	\checkmark

- Drives sensitivity
- O Enhances sensitivity
- **X** Negligible sensitivity

- Is there CP violation? Does sin $\delta_{CP} = 0$?
- Is θ_{23} maximal (= 45°)? If not, which octant (< or > 45°)?
- Which mass ordering? $\Delta m_{32}^2 < \text{or} > 0$?

Beam-only sensitivities

Hyper-K neutrino beam analysis method

- Using T2K analysis method
 - Super-K MC scaled to Hyper-K exposure

$\nu_e \& \overline{\nu}_e$ appearance probabilities

- Hyper-K ν & $\bar{\nu}$ beam flux peaks ${\sim}0.6\,{\rm GeV}$
- 0 $\delta_{CP} = -90^{\circ} (-\pi/2)$
 - ν_e appearance enhanced; $\overline{\nu}_e$ appearance suppressed
- Unknown mass ordering (solid vs dashed) complicates δ_{CP} measurement
 - Beam-only sensitivities we show today are for known normal ordering
 - ▶ Will also show how Hyper-K can use atmospheric data to exclude incorrect MO

1-ring event samples

ν -mode beam

Expected event rate @ 10 years (2.7E22 POT),						
$ u: ar{ u} = 1:3, \ { extsf{0}} \ \delta_{CP} = 0$						
$ u$ -mode beam, 1-ring μ -like	\sim 8800					
$ar{ u}$ -mode beam, 1-ring μ -like	~ 12000					
u-mode beam, 1-ring <i>e</i> -like + 0 decay <i>e</i>	~ 2100					
$\bar{ u}$ -mode beam, 1-ring <i>e</i> -like + 0 decay <i>e</i>	${\sim}1800$					
u-mode beam, 1-ring <i>e</i> -like + 1 decay <i>e</i>	\sim 300					

1-ring event samples

ν -mode beam

Systematics

- $\bullet\,$ Hyper-K has high statistics \to must work to reduce systematics as much as possible
- Going to show sensitivities
 - We have a range of systematics scenarios
- T2K 2020 systematics
 - Where we are now
- Improved systematics
 - ▶ Where we want to be with ND280-upgrade, IWCD, & increased statistics
 - ▶ Produced by scaling T2K systematics based on ND280-upgrade/IWCD sensitivity

Statistics only

Ideal case of no systematics

	μ -like		<i>e</i> -like				
Error model	u-mode	$\bar{\nu}$ -mode	u-mode	$ar{ u}$ -mode	u-mode	$\nu/\bar{\nu}$ modes	
			0 d.e.	0 d.e.	1 d.e.	0 d.e.	
T2K 2020	3.0%	4.0%	4.7%	5.9%	14.1%	4.6%	
Improved	1.2%	1.1%	2.1%	2.2%	5.2%	2.0%	

Total percentage error on sample event rates:

Systematics

- $\bullet\,$ Hyper-K has high statistics \to must work to reduce systematics as much as possible
- Going to show sensitivities
 - We have a range of systematics scenarios
- T2K 2020 systematics
 - Where we are now
- Improved systematics
 - ▶ Where we want to be with ND280-upgrade, IWCD, & increased statistics
 - ▶ Produced by scaling T2K systematics based on ND280-upgrade/IWCD sensitivity
- Statistics only
 - Ideal case of no systematics

	μ -like		<i>e</i> -like				
Error model	ν -mode	$\bar{\nu}$ -mode	u-mode	$ar{ u}$ -mode	u-mode	$\nu/\bar{ u}$ modes	
			0 d.e.	0 d.e.	1 d.e.	0 d.e.	
T2K 2020	3.0%	4.0%	4.7%	5.9%	14.1%	4.6%	
Improved	1.2%	1.1%	2.1%	2.2%	5.2%	2.0%	

Total percentage error on sample event rates:

Systematics

- $\bullet\,$ Hyper-K has high statistics \to must work to reduce systematics as much as possible
- Going to show sensitivities
 - We have a range of systematics scenarios
- T2K 2020 systematics
 - Where we are now
- Improved systematics
 - ▶ Where we want to be with ND280-upgrade, IWCD, & increased statistics
 - ▶ Produced by scaling T2K systematics based on ND280-upgrade/IWCD sensitivity

Statistics only

Ideal case of no systematics

	μ-I	ike	<i>e</i> -like				
Error model	u-mode	$\bar{\nu}$ -mode	u-mode	$\bar{ u}$ -mode	u-mode	$\nu/\bar{\nu}$ modes	
			0 d.e.	0 d.e.	1 d.e.	0 d.e.	
T2K 2020	3.0%	4.0%	4.7%	5.9%	14.1%	4.6%	
Improved	1.2%	1.1%	2.1%	2.2%	5.2%	2.0%	

Total percentage error on sample event rates:

$\sin \delta_{CP} \neq 0$ sensitivity

• For a true value of δ_{CP} , how much can we exclude CP conservation? ($\delta_{CP} = 0, \pm \pi$)

Hyper-K preliminary True normal ordering (known), 10 years $(2.7 \times 10^{22} \text{ POT } 1:3 \text{ v:}\overline{v})$ $\sin^2\theta_{13}$ =0.0218±0.0007, $\sin^2\theta_{23}$ =0.528, Δm^2_{32} =2.509×10⁻³eV²/c⁴

$\sin \delta_{CP} \neq 0$ sensitivity

• For a true value of δ_{CP} , how much can we exclude CP conservation? ($\delta_{CP} = 0, \pm \pi$)

Hyper-K preliminary True normal ordering (known), 10 years $(2.7 \times 10^{22} \text{ POT } 1:3 \text{ v:}\overline{v})$ $\sin^2\theta_{13}=0.0218\pm0.0007$, $\sin^2\theta_{23}=0.528$, $\Delta m^2_{32}=2.509\times 10^{-3} \text{eV}^2/\text{c}^4$ With "Improved systematics"

• Exclude CP conservation for 62% of true δ_{CP} values @ 5 σ

$\sin \delta_{CP} \neq 0$ sensitivity vs time

• What % of true values of δ_{CP} where we can exclude CP conservation, as a function of time?

$\sin \delta_{CP} \neq 0$ sensitivity vs time

• What % of true values of δ_{CP} where we can exclude CP conservation, as a function of time?

$\sin \delta_{CP} \neq 0$ sensitivity vs time

• What % of true values of δ_{CP} where we can exclude CP conservation, as a function of time?

With "Improved systematics"

- 50% in <2 years @ 3σ
- 50% in \sim 5 years @ 5σ

δ_{CP} resolution sensitivity

• How accurately can we measure the value of δ_{CP} , as a function of true δ_{CP} ?

Hyper-K preliminary

True normal ordering (known), HK 10 Years (2.7×10²² POT 1:3 v \overline{v}) sin² θ_{13} =0.0218±0.0007, sin² θ_{23} =0.528, Δm_{32}^2 =2.509×10⁻³eV²/c⁴

δ_{CP} resolution sensitivity

• How accurately can we measure the value of δ_{CP} , as a function of true δ_{CP} ?

Hyper-K preliminary

True normal ordering (known), HK 10 Years (2.7×10²² POT 1:3 v:v) $\sin^2\theta_{12}=0.0218\pm0.0007$, $\sin^2\theta_{22}=0.528$, $\Delta m_{32}^2=2.509\times10^{-3}eV^2/c^4$

With "Improved systematics $(\nu_e/\overline{\nu}_e \text{ xsec. error } 2.7\%)$ "

• 20.2° for true
$$\delta_{CP}=-\pi/2=-90^\circ$$

• 6.3° for true
$$\delta_{CP} = 0$$

Resolution sensitivity of other parameters

Resolution sensitivity of other parameters

Resolution sensitivity of other parameters

$\sin^2(\theta_{23}) = 0.5$ exclusion sensitivity

• For a true value of $\sin^2(\theta_{23})$, how much can we exclude $\sin^2(\theta_{23}) = 0.5$?

$\sin^2(\theta_{23}) = 0.5$ exclusion sensitivity

• For a true value of $\sin^2(\theta_{23})$, how much can we exclude $\sin^2(\theta_{23}) = 0.5$?

With "Improved systematics"

• 3σ exclusion outside the range of true $\sin^2(\theta_{23})$ [0.475, 0.545]

Beam + atmospheric sensitivities

Atmospheric neutrino oscillations

 $u_{\rm e}$ flux (relative to no oscillations) - 1 versus true neutrino energy @ cos $heta_{
m zenith}=0.8$

- Mass ordering creates resonance in ν_e or $\overline{\nu}_e$ multi-GeV events
- θ_{23} octant sets magnitude of the resonance
- δ_{CP} sets scale/direction of ${\sim}1~{
 m GeV}$ interference

Mass ordering sensitivity

- Atmospheric neutrinos have longer baseline & higher energies than beam neutrinos (in general)
 - ightarrow Enhances matter effect ($\propto E_{
 u}n_e$)
 - $\rightarrow\,$ Increased sensitivity to mass ordering
 - $\rightarrow\,$ Exclude incorrect mass ordering at ${\sim}4\text{--}6\sigma$ in 10 years
 - ★ Depending on true value of $\sin^2(\theta_{23})$

Based on older HK analysis

• For a true value of δ_{CP} , how much can we exclude CP conservation? ($\delta_{CP} = 0, \pm \pi$)

Based on 2020 HK analysis

• For a true value of δ_{CP} , how much can we exclude CP conservation? ($\delta_{CP} = 0, \pm \pi$)

- Solid blue/black lines show case where mass ordering is known
 - Addition of atmospherics enhances sensitivity slightly

Based on 2020 HK analysis

• For a true value of δ_{CP} , how much can we exclude CP conservation? ($\delta_{CP} = 0, \pm \pi$)

- Dashed blue/black lines show case where mass ordering is unknown
 - Addition of atmospherics gives massive improvement

Based on 2020 HK analysis

Summary

- After 10 years of beam data & improving on T2K-2020 error model based on sensitivity of ND280-upgrade & IWCD, we see
 - CP conservation exclusion for 62% of true δ_{CP} @ 5σ
 - δ_{CP} precision of 20.2° @ $\delta_{CP} = -\pi/2$), 6.3° @ $\delta_{CP} = 0$
 - Enhancement of precision on sin²(θ₂₃), Δm²₃₂, sin²(θ₁₃), with HK data only (& reactor constraint), relative to current global fits
 - $\sin^2(\theta_{23}) = 0.5$ exclusion @ 3σ for true $\sin^2(\theta_{23})$ outside the range [0.475, 0.545]
- Adding atmospheric neutrino data, we see
 - Enhancement to CP conservation exclusion, whether the mass ordering is known or unknown
 - ▶ Can exclude incorrect mass ordering at ~4–6 σ (depending on true $\sin^2(\theta_{23})$)
- Ultimately, we will use solar data & measure solar parameters
 - Unitarity test of the PMNS matrix in a single experiment
- Hyper-Kamiokande has a wider, rich physics program including measurements of
 - Proton decay
 - Supernova burst, and diffuse supernova neutrino background

Bonus sensitivities

- Wrong $\sin^2(\theta_{23})$ octant exclusion (beam only)
- $\sin^2(\theta_{23})$ mirror point exclusion (beam only)
- sin $\delta_{CP} \neq$ 0 sensitivity with unknown mass ordering (atmospherics + beam)

Far detector samples

9 Systematic errors

10 Hyper-Kamiokande physics program

Bonus sensitivities

- Wrong $\sin^2(\theta_{23})$ octant exclusion (beam only)
- $\sin^2(\theta_{23})$ mirror point exclusion (beam only)
- sin $\delta_{CP} \neq$ 0 sensitivity with unknown mass ordering (atmospherics + beam)

Far detector samples

9 Systematic errors

In Hyper-Kamiokande physics program

Wrong octant exclusion sensitivity

• For a true value of $\sin^2(\theta_{23})$, how much can we exclude all values of $\sin^2(\theta_{23})$ in the other (wrong) octant?

Mirror point exclusion sensitivity

• For a true value of $\sin^2(\theta_{23})$, how much can we exclude its mirror point (flipped about $\sin^2(\theta_{23}) = 0.5$)?

• For a true value of δ_{CP} , how much can we exclude CP conservation? ($\delta_{CP} = 0, \pm \pi$)

• Changing from true normal to true inverted MO flips the half of true- δ_{CP} -space where unknown MO has greatest effect

Based on 2020 HK analysis

7 Bonus sensitivities

- Wrong $\sin^2(\theta_{23})$ octant exclusion (beam only)
- $\sin^2(\theta_{23})$ mirror point exclusion (beam only)
- sin $\delta_{CP} \neq 0$ sensitivity with unknown mass ordering (atmospherics + beam)

8 Far detector samples

9 Systematic errors

ID Hyper-Kamiokande physics program

	beam $ u_{\mu}$	beam ν_e	beam $ar{ u}_{\mu}$	beam $\bar{\nu}_e$	$ u_{\mu} \rightarrow \nu_{e} $	$\bar{ u}_{\mu} ightarrow \bar{ u}_{e}$	Total
$ u$ -mode, 1-ring μ -like	8355.42	8.36	478.01	0.68	2.61	0.01	8845.08
$ar{ u}$ -mode, 1-ring μ -like	4255.94	6.02	7759.91	4.74	0.18	0.39	12027.20
ν-mode, 1-ring <i>e</i> -like	143.91	294.27	5.29	11.97	2007.51	11.74	2474.69
+ 0 decay e							
$\bar{\nu}$ -mode, 1-ring <i>e</i> -like	59.10	130.13	96.28	234.83	229.21	793.17	1542.72
+ 0 decay e							
ν -mode, 1-ring <i>e</i> -like	13.96	40.19	0.64	0.32	255.29	0.23	310.64
$+ 1 \operatorname{decay} e$							

@ $\delta_{CP}=\text{-}1.601$

1-ring μ -like event samples

${\sim}8800 \text{ events}$

~ 12000 events

ν -mode beam

${\sim}300 \text{ events}$

7 Bonus sensitivities

- Wrong $\sin^2(\theta_{23})$ octant exclusion (beam only)
- $\sin^2(\theta_{23})$ mirror point exclusion (beam only)
- sin $\delta_{CP} \neq 0$ sensitivity with unknown mass ordering (atmospherics + beam)

Far detector samples

Systematic errors

10 Hyper-Kamiokande physics program

Flux Uses external data to tune model

• e.g. NA61/SHINE thin-target hadron-production data

Cross section Uses external data to tune model

- e.g. MINER ν A, MiniBooNE, ..., ν -nucleus scattering data
- Uses NEUT 5.4.0

Final state interactions & secondary interactions Uses external data to tune model

• e.g. π -nucleus scattering data

SK detector Uses Super-K atmospheric neutrino data

• Flux & Cross-section uncertainties reduced by fit to near-detector data Eur. Phys. J. C 83, 782 (2023)

- Statistical error on Hyper-K atmospheric samples will reduce
 - Hyper-K fiducial volume = $8.4 \times \text{Super-K}$
- Statistical error at ND280 will reduce
 - \blacktriangleright ND280-upgrade increases fiducial mass by ${\sim}30\%$
 - More running with a higher power beam
- New detectors will produce better results
 - SFGD has increased nucleon tracking efficiency
 - ★ Get a handle on final state interactions
 - ★ Select $\bar{\nu} + H$ events
 - IWCD has excellent ν_e/ν_μ separation
 - $\star\,$ Measure ν_e & $\overline{\nu}_e$ cross sections to a few %

Systematic uncertainties

	μ -like		<i>e</i> -like			
T2K 2020 syst.	ν -mode	$\bar{\nu}$ -mode	ν -mode	$\bar{\nu}$ -mode	ν -mode	$\nu/\bar{\nu}$
			0 d.e.	0 d.e.	1 d.e.	0 d.e.
ND constrained						
Flux+cross section	2.1%	3.4%	3.6%	4.3%	4.9%	4.4%
Not ND constrained						
Cross section	0.5%	2.6%	3.0%	3.7%	2.7%	4.1%
Detector	2.1%	1.9%	3.1%	3.9%	13.2%	1.1%
All	3.0%	4.0%	4.7%	5.9%	14.1%	4.6%
Improved syst.						
ND constrained						
Flux+cross section	0.9%	0.9%	1.8%	1.6%	1.8%	1.9%
Not ND constrained						
Cross section	0.4%	0.4%	1.6%	1.4%	1.6%	1.9%
Detector	0.8%	0.7%	1.1%	1.5%	4.9%	0.4%
All	1.2%	1.1%	2.1%	2.2%	5.2%	2.0%

Total percentage error on sample event rates

7 Bonus sensitivities

- Wrong $\sin^2(\theta_{23})$ octant exclusion (beam only)
- $\sin^2(\theta_{23})$ mirror point exclusion (beam only)
- sin $\delta_{CP} \neq 0$ sensitivity with unknown mass ordering (atmospherics + beam)

8 Far detector samples

9 Systematic errors

10 Hyper-Kamiokande physics program

Hyper-Kamiokande physics

Tom Dealtry (Lancaster University)

 ν CP violation

Solar ν

Hyper-Kamiokande Oscillation Physics

December 19th, 2023 50 / 35