
# Neutrinos in dense astrophysical environments



Shashank Shalgar NBIA and DARK, University of Copenhagen



18/12/2023



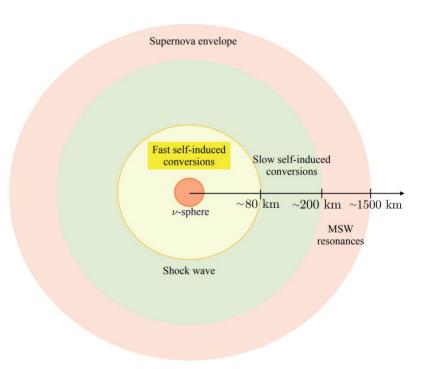
Neutrinos in dense astrophysical environments

(Shashank Shalgar)



# Outline

- Introduction: Why should we care about neutrino flavor transformations in dense astrophysical environments?
- Coherent forward scattering (refraction).
- Quantum kinetic equations
- Progress in numerical solution.
- Challenges and future directions.
- Conclusions

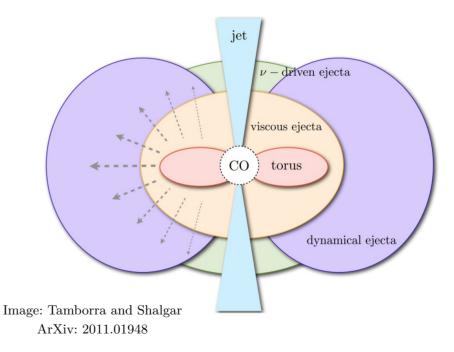

19 12





#### Neutrino flavor evolution in supernovae

- In deep interior, neutrinos are trapped. (Energy  $\sim O(10)$  MeV.)
- As they slowly escape the core, the neutrinos change flavor as they emerge.
- The neutrino flavor evolution depends on the medium through which they travel.








## Neutrino flavor evolution in Neutron Star Mergers

- Neutron star mergers are known to be sites of *r*-process nucleosynthesis.
- Electron neutrinos and antineutrinos convert protons to neutrons and vice-versa affecting *r*-process nucleosynthesis rates.
- Understanding neutrino flavor evolution in neutron star mergers is crucial.









## Role of flavor evolution

• Neutrino energy deposition in core-collapse supernova. This is one of the mechanism by which stalled shock can be revived.

• Neutrino flavor evolution can also affect the rate of nucleosynthesis by changing neutrons to protons and vice versa.

$$\nu_e + n \to p + e^-$$
  
 $\bar{\nu}_e + p \to n + e^+$ 





#### Neutrino oscillations

Schrodinger equation

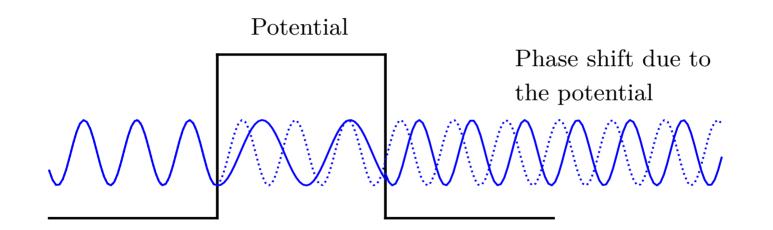
Heisenberg equation

 $i\frac{d\psi(t)}{dt} = H\psi(t)$ 

$$i\frac{d\rho(t)}{dt} = [H,\rho(t)]$$

$$\psi = \begin{pmatrix} \langle x | \nu_{\alpha} \rangle \\ \langle x | \nu_{\beta} \rangle \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix} \iff \rho = \begin{pmatrix} aa^* & ab^* \\ a^*b & bb^* \end{pmatrix}$$






Neutrinos in dense astrophysical environments

(Shashank Shalgar)



#### Coherent forward scattering of neutrinos







Neutrinos in dense astrophysical environments

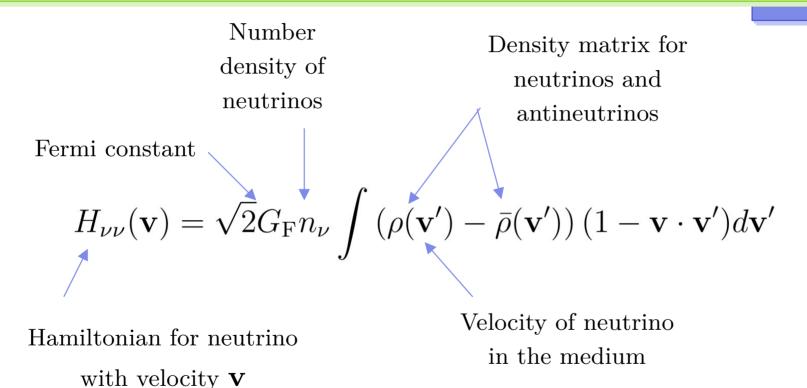
(Shashank Shalgar)



#### Matter Hamiltonian

$$H = \frac{\Delta m^2}{4E} \begin{pmatrix} -\cos 2\theta_{\rm V} & \sin 2\theta_{\rm V} \\ \sin 2\theta_{\rm V} & \cos 2\theta_{\rm V} \end{pmatrix} + \begin{pmatrix} \sqrt{2}G_{\rm F}n_e - \sqrt{2}G_{\rm F}\frac{n_n}{2} & 0 \\ 0 & -\sqrt{2}G_{\rm F}\frac{n_n}{2} \end{pmatrix}$$
$$\bar{H} = -\frac{\Delta m^2}{4E} \begin{pmatrix} -\cos 2\theta_{\rm V} & \sin 2\theta_{\rm V} \\ \sin 2\theta_{\rm V} & \cos 2\theta_{\rm V} \end{pmatrix} + \begin{pmatrix} \sqrt{2}G_{\rm F}n_e - \sqrt{2}G_{\rm F}\frac{n_n}{2} & 0 \\ 0 & -\sqrt{2}G_{\rm F}\frac{n_n}{2} \end{pmatrix}$$

Changed aumount torm


Neutral current term adds a common phase



Neutrinos in dense astrophysical environments (Shashank Shalgar)



#### Hamiltonian of neutrino self-interactions



18/12/2023



Neutrinos in dense astrophysical environments (Shashank Shalgar)



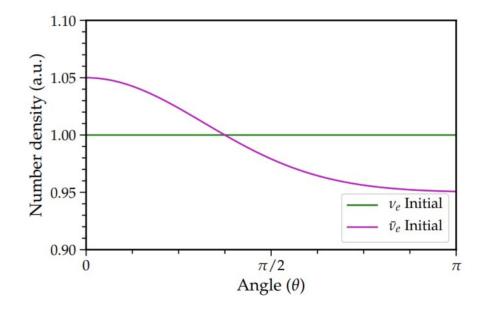
#### Slow Vs Fast collective flavor evolution

• Both have same equations of motion, but different initial angular distributions.

• Slow collective flavor evolution. Requires non-zero vacuum frequency for significant flavor evolution.

• Fast flavor evolution requires crossing in the angular distribution of electron neutrinos and electron anti-neutrinos (ELN-crossing).







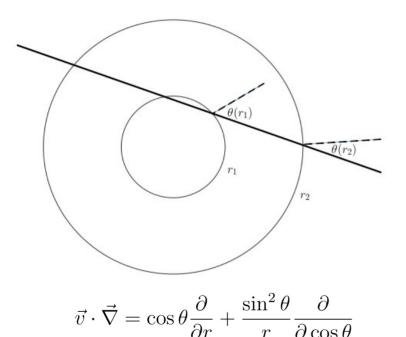

#### Fast flavor evolution

- Electron lepton number crossing essential for fast flavor evolution.
- No upper limit on the number density of neutrinos.

For a review see Tamborra and Shalgar ArXiv: 2011.01948








Neutrinos in dense astrophysical environments

(Shashank Shalgar)



### Equations of motion: The spherical geometry.



- At each point neutrino can be absorbed, emitted or change momentum.
- Equations that governs this dynamics along with flavor evolution are called Quantum kinetic equations.





Neutrinos in dense astrophysical environments (Shashank Shalgar)



### Quantum kinetic equations

Does not depend on Advection neutrinos number density  $\left(\frac{\partial\rho(\cos\theta, r, t)}{\partial t} + \vec{v}\cdot\vec{\nabla}\rho(\cos\theta, r, t)\right) = \mathcal{C}_{\text{emission}} - \mathcal{C}_{\text{absorb}}\rho(\cos\theta, r, t)$ +  $\int_{-1}^{1} C_{\text{dir-ch}} \rho(\cos \theta', r, t) d\cos \theta' - \int_{-1}^{1} C_{\text{dir-ch}} \rho(\cos \theta, r, t) d\cos \theta'$  $- i[H(\cos\theta, r, t), \rho(\cos\theta, r, t)]$ Flavor evolution





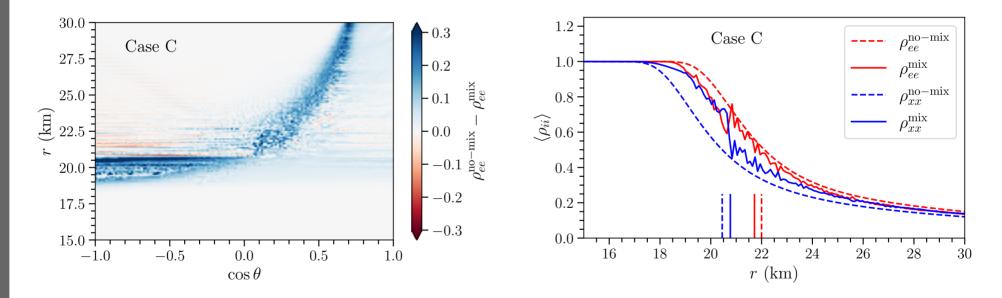

(Shashank Shalgar)



## Distributions in absence of flavor evolution

- Depends on the collision strength as a function of radius (due to variation in density, temperature, etc.)
- Depends on the flavor.
- Depends on energy.






Neutrinos in dense astrophysical environments

(Shashank Shalgar)



#### Effect of flavor evolution



#### Shalgar and Tamborra Arxiv:2206.00676 & 2207.04058





Neutrinos in dense astrophysical environments

(Shashank Shalgar)



#### Limitations and challenges

- We have assumed spherical symmetry until now.
- But we know that neutrino self-interactions lead to spontaneous breaking of symmetry. This includes the breaking of axial and spherical symmetry. (See Duan and Shalgar arXiv:1412.7097)
- For each dimension we need O(100)-O(1000) bins. Which means for the 7dimensional problem.. We need to solve at least 10<sup>12</sup> coupled nonlinear equations with time as an independent variable.







### Future directions and open questions

Numerical challenges:

- Discretization of partial differential equations implies that we need to solve billions of coupled nonlinear differential equations.
- We need better formulation and numerical techniques to make progress.







## Conceptual issues

• In which domain are the quantum kinetic equations valid?

• An important question that has gained a lot of attention recently is the possibility of quantum entanglement due to neutrino self-interactions.







# Multiparticle effects (Quantum entanglement)

- Almost all the studies of multiparticle effects rely on investigation flavor evolution of stationary neutrinos in a box; a closed system.
- This is not what happens in astrophysical systems.
- Two neutrinos will encounter each other and probably never meet each other again.
- One cannot gain any insight into the validity of quantum kinetic equations by studying a few stationary particles in a box.

See Shalgar and Tamborra arXiv:2304.13050







# Conclusions

- Despite immense progress in recent years, challenges remain in understanding neutrino flavor evolution in dense astrophysical environments.
- The challenges remain on two fronts:

1) Understanding the limitations of the formalism used to derive the Quantum Kinetic equations.

- 2) Numerical challenges to solve an extremely nonlinear set equations.





