High-energy neutrino astronomy lime

+E\$+ Xavier Rodrigues NuPhys2023 NuPhys2023 $\longrightarrow 1 \rightarrow UHECR$ Schamo King's College, London, UK $1 \rightarrow UHECR$ Schamo **December 18 2023**

mal acceleration

- 7

Modeling active black holes

TXS 0506+056

Modeling active black holes

TXS 0506+056

Modeling active black holes

Astrophysical Multiwavelength and MultiMessenger Computation Software

> Coming out this week as open source software!

This Friday, look in the arXiv for Klinger, Rudolph, Rodrigues et al

What is a hadronic signature?

Sahakyan+ MNRAS 519 (2022)₆

What is a hadronic signature?

Steady neutrino emission from a star-forming galaxy (4.5 σ)

IceCube Collaboration, Science 378, 2022

The future is looking bright in neutrinos

IceCube Gen2

KM3NeT

The future is looking bright in neutrinos

XR+ 2023 (A&A, forthcoming)

Gen2 will start probing steady-state emission from the active black hole population...

The future is looking bright in neutrinos

Backup slides

Credit: Bill Saxton, NRAO/A

Modeling active galaxies

Spectra of IceCube Neutrino Candidate Sources (SIN)

Ongoing collaboration with

P. Padovani

M. Karl

- P. Giommi
- M. Wolf
- S. Paiano
- C. Bellenghi
- R. Falomo

```
10<sup>17</sup> E. Resconi
M. Petropoulou
F. Oikonomou
```

What about the ultra-high energies?

Assuming AGN are accelerators

Rodrigues, Heinze, Palladino, van Vliet and Winter, PRL 126 (2021)

Track histogram

Cascade histogram

Naab+ ICRC 2023

From sources to samples

XR, Paliya, Garrappa, Omeliukh, Franckowiak & Winter (arXiv:2307.13024)

From sources to samples

XR, Paliya, Garrappa, Omeliukh, Franckowiak & Winter (arXiv:2307.13024)

Predicted diffuse flux

XR, Paliya, Garrappa, Omeliukh, Franckowiak & Winter (arXiv:2307.13024)

(arXiv:2307.13024, submitted to A&A)

Required cosmic-ray power compared to the Eddington luminosity

Rodrigues, Paliya, Garrappa, Omeliukh, Franckowiak and Winter (arXiv:2307.13024, submitted to A&A)

All model results available online: <u>github.com/xrod/lephad-blazars</u>

Rodrigues, Paliya, Garrappa, Omeliukh, Franckowiak and Winter (arXiv:2307.13024, submitted to A&A)

Rodrigues, Paliya, Garrappa, Omeliukh, Franckowiak and Winter (arXiv:2307.13024, submitted to A&A)

23

×

0

×

rays?

Rodrigues, Garrappa, Gao, Paliya, Franckowiak and ²⁵Winter, ApJ 912 (2021)

Will we find IceCube blazars in MeV gamma rays?

What about the ultra-high energies?

CRs and neutrinos from the entire blazar ponulation

 ν production efficiency

XR, Fedynitch, Gao, Boncioli, Winter, ApJ 854

Blazars as accelerators of PeV cosmic rays

Palladino, XR, Gao & Winter, ApJ 871 **Diffuse neutrino flux**

Baryonic loading