Neutrinos and gravitational waves

Matthias Vereecken

UCLouvain

Why are we interested in this?

Gravitational waves

Movement of matter

<u>Neutrinos</u>

Interaction of matter (inside object or with environment)

Complementary information

Power of multi-messenger astronomy: GW170817

But... no neutrinos seen

Advantage over EM

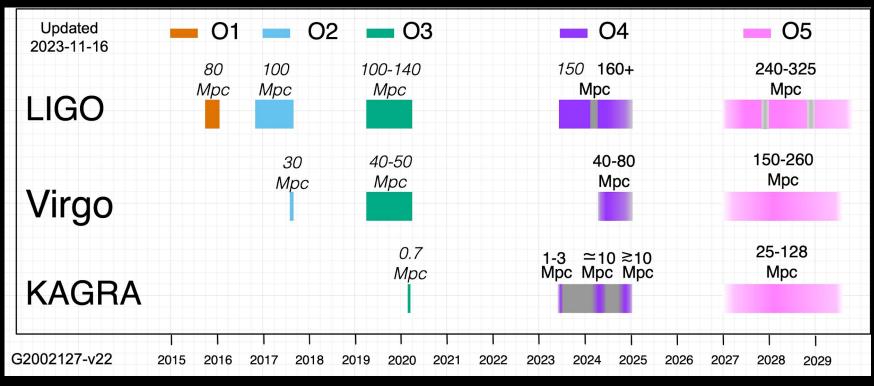
Escape environment

Sources of gravitational waves + neutrinos

Binary neutron star (+NSBH)

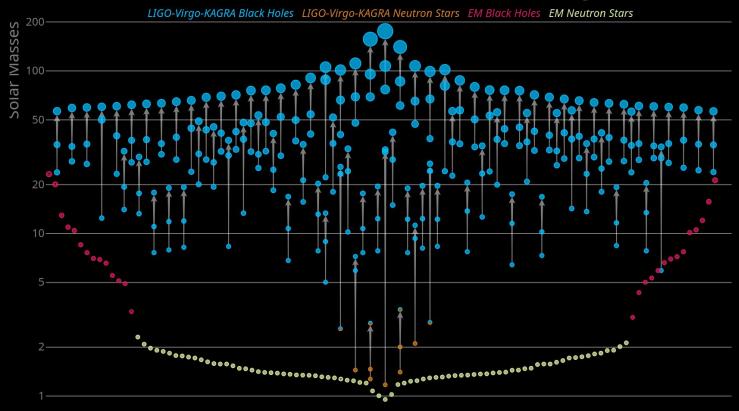
Binary black holes

Supernovae

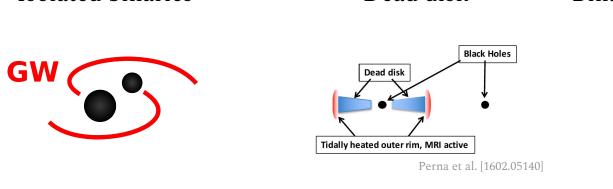

Accretion of matter onto final black hole Resulting outflow leads to neutrino production Electron capture during collapse

Other: neutrino emission associated to supermassive black hole inspiral De Bruijn et al. [2006.11288]

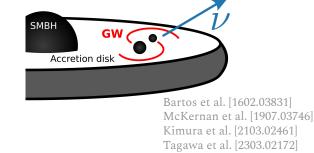
GW-triggered neutrino searches


Mostly... At this time...

GW observing runs


<u> https://observing.docs.ligo.org/plan/</u>

Masses in the Stellar Graveyard



LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

How to get non-GW emission from BBH mergers?

Binaries in AGN accretion disks

✗ No emission

✓ Remnant disk reactivated

Dead disk

<u>Main take-away:</u>

Isolated binaries

- Steal as much as you can from GRB models
- No clear singular model prediction

- / Many (heavy) black holes
- / Frequent mergers
- ✓ Gas-rich environment

Quantifying limits on neutrino flux

<u>Limits from individual events</u>

 $E_{
u}^{
m iso}$

Note: beaming effects complicate limits

Sometimes re-expressed in terms of

$$f^E_
u = rac{E^{
m iso}_
u}{E_{
m GW}}$$
 or $f^M_
u = rac{E^{
m iso}_
u}{M_{
m tot}}$

<u>Population/stacking limits</u>

assuming all mergers have same $E^{
m iso}_{
u},\,f^E_{
u}$, or $f^M_{
u}$

Limits on neutrino flux

<u>Motivation</u> for $f^E_
u$ or $f^M_
u$?

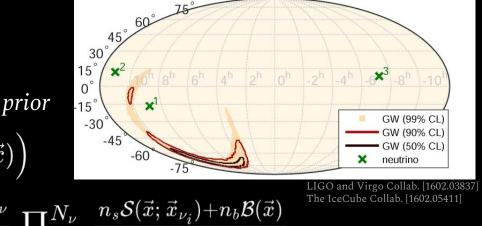
Large variation of BBH masses = need to assume *some* scaling

Physical models have f_{ν}^{E} , $f_{\nu}^{M} < 1$

If universal: strong limits from diffuse flux $f_{\nu}^{E} < 10^{-5}$ Compared to typical per-event limit from IceCube of $f_{\nu}^{E} \sim 10^{-2}$

<u>Conclusion</u>: significant individual detection = exceptional event

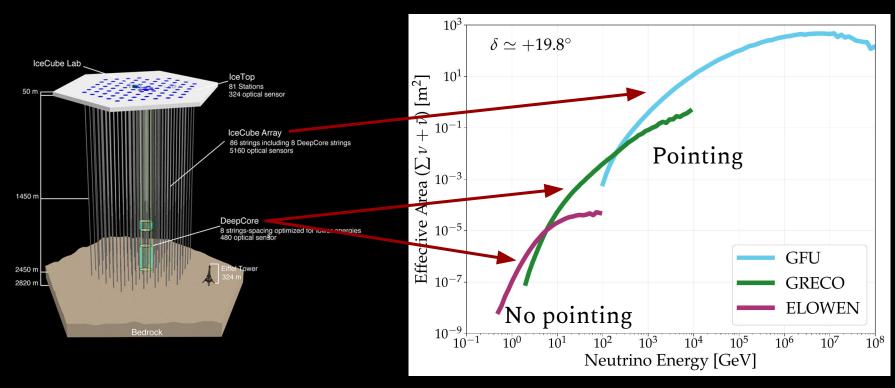
De Vries et al. [1612.02648]


Neutrino search methods

→ Cut-and-count

Number of v from GW direction

 $\Rightarrow \text{ Unbinned maximum likelihood + spatial prior} \\ TS = \max 2 \ln \left(\frac{\mathcal{L}_{S+B,\nu}(\vec{x};n_s)}{\mathcal{L}_{B,\nu}(\vec{x};n_s=0)} \times p_{\text{GW}}(\vec{x}) \right) \\ \mathcal{L}_{S+B,\nu}(\vec{x};n_s) = \frac{e^{-(n_s+n_b)}(n_s+n_b)^{N_\nu}}{N_\nu!} \prod_{i=1}^{N_\nu} \frac{n_s \mathcal{S}(\vec{x};\vec{x}_{\nu_i}) + n_b \mathcal{B}(\vec{x})}{n_s + n_b}$


GW150914 skymap

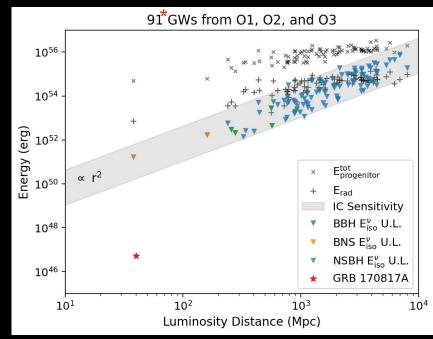
→ LLAMA pipeline with Bayesian odds ratio

Considering all combinations of signal/background hypotheses

IceCube searches

The IceCube Collab. [2302.05459]

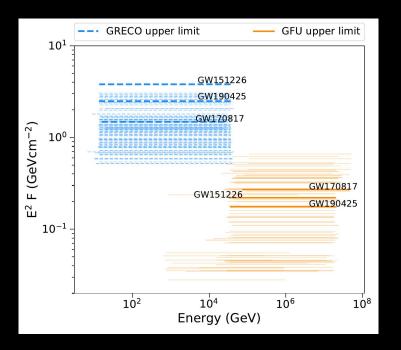
IceCube GWTC-3 follow-up


<u>GFU</u>

- Unbinned maximum likelihood
- LLAMA

Online + offline

Time windows:


- 1000 s
- 2 weeks if neutron star
- Custom for GW190521 with ZTF association

The IceCube Collab. [2208.09532]

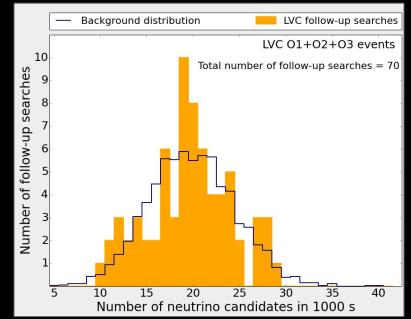
90 confident events from GWTC-3 + GW200105_162426 a NSBH candidate with p_{astro} <0.5

IceCube GWTC-3 follow-up

<u>GRECO</u> Unbinned maximum likelihood

The IceCube Collab. [2303.15970]

Also search for associations with sub-threshold gw events

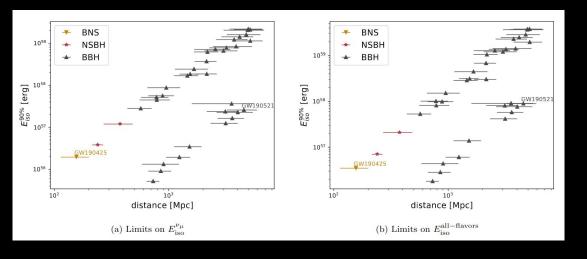

The IceCube Collab. [2308.06102]

IceCube GWTC-3 follow-up

ELOWEN

No pointing so Poisson counting analysis

0.5-5 GeV energy range probes different emission regime



The IceCube Collab. [2105.13160]

Super-Kamiokande O3a

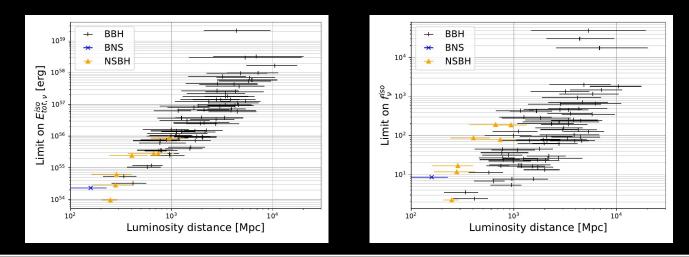
<u>Low-energy analysis</u>

- 7-100 MeV
- Inverse beta-decay (v_{e}) and elastic scattering (all v)
- Poisson counts

<u>High-energy analysis</u>

- 0.1-1e5 GeV
- v_{e} and v_{μ}
- Spatial likelihood x time likelihood

Super-Kamiokande Collab. [2104.09196]

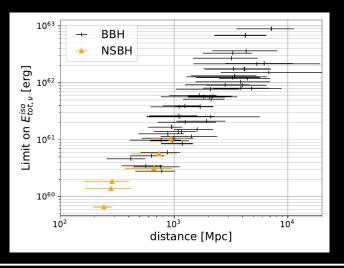

ANTARES O3

Cut-and-count analysis

- Tracks and showers
- From 90% GW skymap + buffer angle

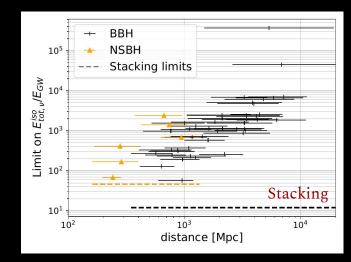
Also stacking analysis f_{ν}^{E} < 0.15

ANTARES Collab. [2302.07723]

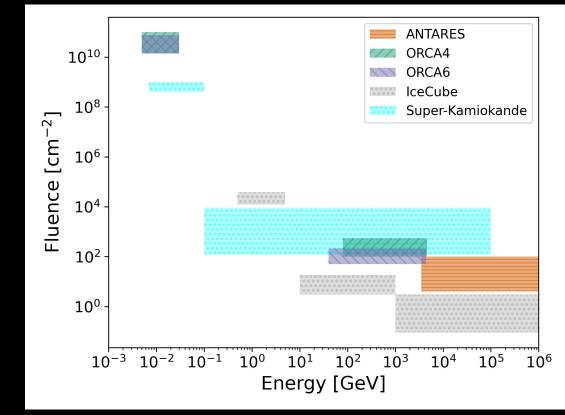

KM3Net O3

Partial detectors: ORCA4 and ORCA6

KM3Net Collab. [2311.03804]

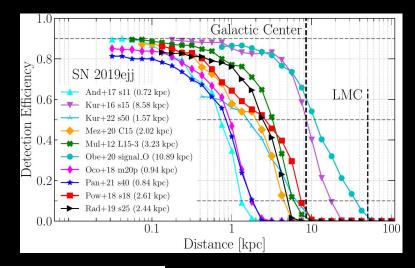

<u>Low-energy search</u>

- MeV neutrinos
- Inverse beta-decay
- Global rate in 2s time window



<u>High-energy search</u>

- Upgoing tracks from GW skymap + buffer
- 1000 s time window
- Cut-and-count

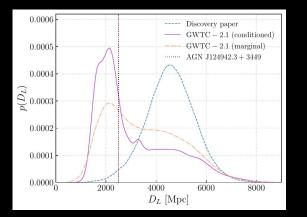

Summary of searches

KM3Net Collab. [2311.03804]

GW from supernovae

Both GW and neutrino observatories perform SN searches

Supernova	Type	e Host	Distance	t_1	t_2	Δt	OSW	$T_{ m coinc}$
		Galaxy	[Mpc]	[UTC]	[UTC]	[days]	Method	[days]
SN 2019ehk	IIb	NGC 4321	16.1	2019 Apr 23.10	2019 Apr 24.50	1.40	2	0.41 (29%)
SN 2019ejj	II	ESO 430-G20	15.7	2019 Apr 23.28	2019 Apr 30.86	7.58	3	1.25~(16%)
SN 2019fcn	II	ESO 430-G20	15.7	2019 May 03.02	2019 May 07.56	4.54	3	2.51~(55%)
SN 2019hsw	II	NGC 2805	28.2	2019 Jun 05.14	2019 Jun 13.14	8.00	1	5.08(64%)
SN 2020oi	\mathbf{Ic}	NGC 4321	16.1	2020 Jan 02.48	2020 Jan 06.18	3.70	2	2.56~(69%)
SN 2020 cxd	IIP	NGC 6395	20.9	2020 Feb 16.53	2020 Feb 22.53	6.00	1	4.58(76%)
SN 2020 dpw	IIP	NGC 6952	22.3	2020 Feb 21.08	2020 Feb 25.08	4.00	1	3.06(77%)
SN 2020fqv	IIb	NGC 4568	17.3	2020 Mar 22.00	$2020 { m Mar} 28.00$	6.00	1	4.06~(68%)
·								


Szczepańczyk et al. [2305.16146]

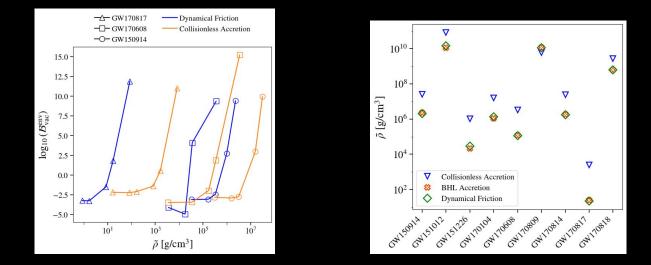
Back to BBH mergers in AGN

→ "Just" counting AGN Bartos et al. [1

Bartos et al. [1701.02328] Veronesi et al. [2203.05907] Veronesi et al. [2306.09415]

GW190521 associated with ZTF19abanrhr from an AGN?

Graham et al. [2006.14122]


Updated localisation compatible with this hypothesis

Morton et al. [2310.16025]

Effects on waveform

Effect of gaseous disk environment on waveform

 $ho \sim 10^{-8} - 0.1 (10^5 M_\odot/M_{
m SMBH})^{7/10} {
m g/cm^3}$

Next generation detectors will be sensitive to this!

Santoro et al. [2309.05061]

Conclusion

- Many experimental searches for GW+neutrino coincidences
- Vanilla models don't predict such emission from BBH mergers
- But many models have appeared in recent years that do
- So far no detection
- Future GW observatories will be able to observe all BBH mergers in the universe, but neutrino telescopes sensitivity remains limited