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Super-Kamiokande

50 ktonne water Cherenkov detector with 22.5 ktonne fiducial

Neutrino interactions
produce relativistic
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to detect the Cherenkov light signals



A distinguished history at Kamioka
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Kamiokande sees
neutrinos from a

supernova explosion.

Broof VP . .06

2 Lot 256 |Dean - 0o* 1005
139

AT A [ 4

: “ 0 ws® (6 20‘0)

% Up/Down syst. error for pu-like

flux caleulation ---- £ 1/
Tkm vock above Sk -~ L& )13%

Energy calib. for ry 072

Non v Background -----< 21)21X

Prediction (

Data (

Super-K discovers
atmospheric neutrino
oscillation in 1998.

2000s

2010s

Super-K and SNO
discover solar neutrino
oscillation in 2001

T2K discovers
electron neutrino
appearance in 2011




Still innovating
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Super-Kamiokande has been running with
gadolinium (Gd) dissolved in the tank since 2020

and we’re waiting for the next major discovery!




Gd for supernova spotting

What can we do with Gd in the tank?

See pre-supernova neutrinos from Si-burning
Improve pointing accuracy for a galactic supernova
See Diffuse Supernova Neutrino Background
(DSNB) from all supernovae since the beginning of time

For these goals, we need to detect the inverse beta
decay (IBD) interaction (~90% of the expected
supernova neutrino interactions).

With Gd, we can tag the previously indistinct
neutrons from IBD.
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Supernova neutrinos

Visible light
signal came
later

Neutrinos from supernova 1987Ain the
Large Magellanic Cloud (50kpc):

e Kamiokande-Il (11 evts.)

e [IMB-3 (8 evts.)

e Baksan (5 evts.)

Core-collapse supernovae (“supernovae” in
this talk) produce a neutrino burst which we
can detect on Earth

Neutrinos are produced at multiple stages:
— initial matter infall

— subsequent shock revival

— remnant proto-neutron star cooling
Neutrinos carry away >99% of the energy
from supernova explosions

Neutrino signal produced a few minutes to
several hours before the stellar explosion
SO we can give advance warning to the wider

supernova community



Many supernova models to disentangle
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A large disparity between supernova models!

Shown here for number of neutrinos (left) and neutrino energy (right)
as a function of time in Super-K for a supernova at 10 kpc.

'Standing Accretion-Shock Instability, 2 Lepton-number Emission Self-sustained Asymmetry

Progress:

e Recent multi-dimensional
supernova simulations
successfully reproduce SN
explosion.

e Several contributions to
explosion mechanism (SASI,
LESA?, rotation, convection,
equation of state).

-, Challenges:

e Neutrino oscillation in high
density

e MSW effect in much, much
higher density than in the SUN!

e And many more...



Many supernova models to disentangle
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Three fields of investigation: pre-supernova,

Aot Ssupernova-burst and supernova relic neutrinos (DSNB).
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Pre-SN neutrinos: the calm before the storm

Neutrino emission increases as a massive star approaches the core-collapse supernova

(Adapted from Odrzywolek et al., 2004)
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pre-supernova (pre-SN) difficult to see without Gd!
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Number of events

Pre-SN neutrinos from up to 800 pc away at 30

Up to 15 hours warning if Betelgeuse goes supernoval
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Expected total number of IBD events in SK7 with

0.03% (Gd as a function of distance to SN.

Online pre-supernova alert system went live in October 2021 (Machado et al. 2022).
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Combined pre-SN public alert system with KamLAND here.
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https://iopscience.iop.org/article/10.3847/1538-4357/ac7f9c
http://www.lowbg.org/presnalarm
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Supernova burst neutrinos in SK-Gd

SK could detect a burst of neutrinos from a supernova >100kpc away (model-dependent).
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Alarm could be released in about 1 minute
following a SN burst at 10 kpc (preliminary)
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Offline
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Software
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Realtime
reconstruction
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search for
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Supernova
alarm!
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Fast analysis:

o \ertex

e Direction

e Energy

e |BD selection



Isolate elastic scatters to point to supernova

Need to remove the IBD events to see the signal from elastic scatters on electrons

Vex >~ e, largely forward-scattered

SN burst events with 72% of IBD events removed
(10 kpc simulation) (10 kpc simulation, 0.1% Gd)

Gd is vital to achieve good pointing accuracy! 13



Pointing within a few degrees for SN at 10 kpc
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Pointing accuracy increasing with Gd concentration 14



DSNB - messengers from the beginning of time

Diffuse Supernova Neutrino Background (Supernova Relic Neutrinos):

Background neutrino ‘fuzz’ from all core-collapse supernovae since the beginning of time!

What can DSNB tell us?

Ne;;g‘t”SOstom » Test of star formation rate
* SN rate as function of z
» Average energy spectrum of SN burst neutrinos
» Average temperature inside the SN
128y ‘ « Black-hole formation, dim supernovae rate

15



Challenges in DSNB detection
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Small window to see DSNB - need to
aggressively drive down backgrounds
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Honing in on the DSNB

Spectrum-independent analysis (M. Harada)
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Latest results for SK-6 (0.01% Gd) with
improved background rejection
compared to Harada et al, 2023:

* Neural-network based neutron tagging
 “Multiple scattering goodness™ cut

(A. Santos) to remove atmospheric
backgrounds where multiple Cherenkov
cones have been reconstructed as a single
cone (in the prompt event)

« Updated atmospheric neutrino simulation

14 events found

17


https://iopscience.iop.org/article/10.3847/2041-8213/acdc9e

New limit at < 17 MeV with '

Spectrum-independent analysis (M. Harada)
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What can we do with 0.03% Gd?!

Spectrum-independent analysis (M. Harada)
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Work continues:
SK-7 (0.03% Gd) studies
Spectral fits

events [bin

NUIMDE

CNN for atmospheric neutrino rejection®
Machine learning for cosmogenic muon-induced -n backgrounds*

i
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*See poster #57 and poster talk today at 17:30 (S. Samani):

Atmospheric Backqround Reduction using CNNs in DSNB Searches at Super-Kamiokande Gd

*See poster #EX-14 and poster talk today at 17:33 (J. Fannon):

Modelling Cosmic Ray Muon Spallation for Super & Hyper-Kamiokande DSNB 19
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https://indico.cern.ch/event/1234324/contributions/5712731/
https://indico.cern.ch/event/1234324/contributions/5712732/

Supernova spotting in SK-Gd

Super-Kamiokande Gd is a new era in SN detection:

Detection of neutrinos from pre-supernova stars up to 800 pc away at 30, and from
Betelgeuse up to 15 hours before the explosion.

« Supernova pointing accuracy has been improved to a few degrees for a 10-kpc supernova.
» Supernova alert could be issued in less than a minute for a supernova burst at 10 kpc.

* New limits on DSNB at <17 MeV in SK-6 (0.01% Gd) with ' of the observation time
compared to pre-Gd phase.

Work is now focused on using the increased Gd concentration in SK-7 (0.03%), all
the time innovating and improving the existing analyses. Watch this space!
20



Backups

21
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Spectral fits

DSNB model = Horiuchi+09 6 MeV, max
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Relay early warning FAST

Software
trigger

Triggered data

~1h

SNWatch

¥ Processed data

Search for
event clusters

Meeting, experts decide
if the SN is real and
manually send
worldwide announcement:
Atel, IAU-CBAT

lllllllllllllllll »
Offline
p—)  Realtime processes
reconstruction
Alarm flowchart
Event cluster
a found!
|

Call and mail
to SK experts

Uniform vertex
distribution

Non-Uniform vertex
distribution

~10 minutes at present
(for 10kpc SN)
but will be improved
to < 1 minute.

Automated GCN
notice

———

NEW

v

Check cluster size

Y

<
25

Silent alarm

>60 l

# of IBD-tagged
events > 10

>25

Normal alarm

Thanks to software and algorithm upgrades

SNWatch processing time is going to be largely

improved:

e Event reconstruction: Improved by using
multi-threading
— <1 min for 10 kpc SN (~5 min for 3 kpc SN)

e 3Supernova direction reconstruction: Under
iInvestigation, promising results
— Preliminary results indicate ~2 sec for 10
kpc SN (<5 sec for any SN)

e Alarm release: automated alarm shortly after
the SN direction reconstruction
— Alarm could be released in about 1 minute
following the SN burst (Preliminary)
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Seeing the future (predicting a supernova)
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Many pre-supernova candidates within 1 kpc of Earth! Mukhopadhyay. et al. 2020

Online pre-supernova alert system went live in October 2021 (Machado et al, 2022).
Combined pre-SN public alert system with KamLAND here. 24



https://iopscience.iop.org/article/10.3847/1538-4357/ac7f9c
http://www.lowbg.org/presnalarm
https://iopscience.iop.org/article/10.3847/1538-4357/ab99a6

