Adam Lister for the *NOvA* Collaboration University of Wisconsin - Madison **Neutrino Oscillations at NOvA**

NuPhys 2023 Kings College London

, governs **oscillation frequency** , governs **oscillation magnitude** δ_{CP} , governs $\nu-\bar{\nu}$ differences

L (baseline), **E** (energy) are **experimental choices**

L/E is characteristic of oscillations

3 Flavour first oscillation maximum around L/E ~500 Δm^2_{32} , θ_{23} , θ_{13} , δ_{CP} parameters important for these L/E values $\frac{2}{32}$, θ_{23} , θ_{13} , $\delta_{\rm CP}$

$\Delta m_{21}^2, \Delta m_{32}^2$, governs oscillation frequency $\theta_{12}, \theta_{13}, \theta_{23}$, governs oscillation magnitude δ_{CP} , governs $\nu-\bar{\nu}$ differences

L (baseline), **E** (energy) are **experimental choices**

L/E is characteristic of oscillations

3 Flavour first oscillation maximum around L/E ~500 Δm^2_{32} , θ_{23} , θ_{13} , δ_{CP} parameters important for these L/E values $\frac{2}{32}$, θ_{23} , θ_{13} , $\delta_{\rm CP}$

Using ν_{τ} in accelerator neutrino experiments is

What is the neutrino mass ordering? Normal or inverted?

Implications for 0*νββ, cosmology*

What is the octant of θ_{23} ?

For ν_3 , does $\nu_\mu = \nu_\tau$?

Is three-flavour the full picture?

Additional neutrino states? Non-standard interactions?

n

p n

e−

p

e+

Is CP violated? *Non-conservation of CP important for matter-antimatter asymmetry*

 ν_μ ν_e ν_τ ν_τ ν_e

Open Questions

What is the neutrino mass ordering? Normal or inverted?

Implications for 0*νββ, cosmology*

Is CP violated? *Non-conservation of CP important for matter-antimatter asymmetry*

Is three-flavour the full picture? Additional neutrino states? Non-standard interactions?

NOvA's oscillation analyses can probe these open questions!

NOvA's 3 Flavour Analyses

What is the octant of θ_{23} ? *For* ν_3 , does $\nu_\mu = \nu_\tau$?

NOvA's Sterile Neutrino Searches

Open Questions

What is the neutrino mass ordering? Normal or inverted?

Implications for 0*νββ, cosmology*

Is CP violated? *Non-conservation of CP important for matter-antimatter asymmetry*

Is three-flavour the full picture?

Additional neutrino states? Non-standard interactions?

NOvA's oscillation analyses can probe these open questions!

NOvA's 3 Flavour Analyses

What is the octant of θ_{23} ? *For* ν_3 , does $\nu_\mu = \nu_\tau$?

NOvA's Sterile Neutrino Searches

The NuMI Beam

Two focussing horns focus **chosen-sign mesons**, and defocus **opposite-sign mesons**

WI

Madison

MN

IL

The NOvA Experiment

Far Detector ~ 810 km from beam source on surface @ Ash River, MN

 \sim 1 km from beam source underground @ Fermilab, IL Placed near the oscillation maximum

L/E at the Far Detector is around ~400, **Excellent for 3 Flavour oscillations**

Adam Lister, NuPhys2023 @ Kings College London, 19th December 2023 12

We fire neutrinos from the NuMI beam through the earth towards Minnesota

Near Detector

Provides a measurement of the unoscillated flux

The NOvA Detectors Functionally identical Near and Far detectors * Segmented tracking calorimeters * Extruded PVC cells filled with liquid scintillator 60 m 15.6 m **4 m 14 m** Alternating plane orientation → **two views per event** Primary difference is **scale ND - 0.3 kT - 20,192 channels FD - 14 kT - 344,064 channels**

~6 samples per radiation length (~40 cm)

Large distance for π^0 to photon conversion helps disambiguate **electron neutrinos** from **NC interactions**

Three-Flavour Oscillations With NOvA

νμ

 ν_e ν_τ ν_e

νμ

νμ

Far Detector

This analysis uses 2014-2020 data 13.6×10^{20} POT ν

Our most recent 3-flavour oscillation analyses use an **extrapolation technique**

Data/simulation disagreements in the ND are used to predict the unoscillated **FD spectrum**

ντ

ντ

Dscillations happen

ντ

ντ

ντ

Profiles over hidden parameters and choose those that maximise χ^2

Two Statistical Treatments

Frequentist Analysis Bayesian Analysis

Requires Feldman-Cousins correcting *χ*² surface

> Marginalises over hidden parameters, getting the average contribution to the probability density

Consistent results between the two treatments

[Phys.Rev.D](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.106.032004) ¹⁰⁶ (2022) 3, ⁰³²⁰⁰⁴ *arXiv [2311.07835](https://arxiv.org/abs/2311.07835)*

Contours

[Phys.Rev.D](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.106.032004) 106 (2022) 3, 032004

Contours

Weak preference for **upper octant**

[Phys.Rev.D](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.106.032004) 106 (2022) 3, 032004

Adam Lister, NuPhys2023 @ Kings College London, 19th December 2023 20

Contours

Contours

Bayesian technique allows us to report **measurement of** sin²(2θ₁₃)

Typically our frequentist analyses **use reactor constraint on** $\sin^2(2\theta_{13})$

$$
\sin^2(2\theta_{13}) = 0.087^{+0.020}_{-0.016}
$$

NOvA-Only sin² (2*θ*13)

Good agreement with measurement from reactor experiments

Tests robustness of PMNS model - good agreement at vastly different baselines!

Are 3 Flavours The Full Picture?

 $\Box\mathrm{v_{e}}$

$\Delta m^2 >> \Delta m^2$ ₂₁, Δm^2 ₃₁ (**not predicted by 3-flavour!**)

mixing matrix grows: new mixing angles and CP violating phases θ_{14} , θ_{24} , θ_{34} , δ_{14} , δ_{24} , δ_{34} We add a new oscillation frequency, Δm²₄² 41 $U_{\alpha j} =$ U_{e1} U_{e2} U_{e3} U_{e4} $U_{\mu 1}$ $U_{\mu 2}$ $U_{\mu 3}$ $U_{\mu 4}$ $U_{\tau 1}$ $U_{\tau 2}$ $U_{\tau 3}$ $U_{\mu 4}$ U_{s2} U_{s3}

Several anomalous results potentially explained by oscillations

NC Disappearance

looking for

*ν*_{*μ*} disappearance, or $ν$ _{*e*} appearance

looking for *ν*_{*μ*} disappearance, or $ν$ _{*e*} appearance

NC Disappearance

To look for sterile neutrinos, we can look for NC disappearance

[Phys.Rev.D](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.96.072006) 96 (2017) 7, 072006 [Phys.Rev.Lett.](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.201801) 127 (2021) 20, 201801 Previous NOvA NC disappearance results

Data Samples

ν-beam \blacksquare Potrino-mode \blacksquare **-** Data 25 Cosmic Background 3F Expected \overline{O} \overline{O} \overline{O} \overline{O} \overline{O} Background Events / 0.1 GeV 3F Total Expectation w/ Syst. Uncertainty $\frac{1}{2}$ vents / 0.1 15 10 5 0 0 1 2 3 4 5 Reconstructed Neutrino Energy (GeV) ν-beam FD NC, 13.6×10^{20} POT -• Data Cosmic Background 3F Expected 300 Background 3F Total Expectation Events/GeV Events/GeV W/ Syst. Uncertainty <u>100</u> 0 1 1 1 1 Reconstructed Neutrino Energy (GeV)

NC samples and *νμ* samples in fit

Data agrees with 3-flavour prediction within uncertainties

New for this analysis!

New for this analysis!

Fit Results

NOvA contours show constraints on $\sin^2(\theta_{24})$ competitive around $\Delta m_{41}^2 = 10 \text{ eV}^2$

Sensitivity in high Δm²₄ region driven by Near Detector and is systematically limited 41

Sensitivity at low Δm^2_4 region driven by FD and is statistically limited 41

NOvA data shows no evidence for sterile neutrinos under 3+1 model

Fit Results

NC Disappearance gives access to $\sin^2(\theta_{34})$

NOvA data shows no evidence for sterile neutrinos under 3+1 model

For this space, we are more statistically limited across the space

Note that this does not include data from ν_{τ} appearance at short baselines, which measure effective mixing angle *θμτ*

NOvA's 3-flavour analysis has slight preference for Upper Octant, Normal Ordering

Bayesian analysis consistent with frequentist analysis, allows looking at data in new ways

NOvA data is consistent with 3-flavour oscillations at the 90% confidence level

NOvA has an extensive physics programme!

Upcoming from NOvA

More data!

Collected ~2x 2020 analysis protons-on-target

Running through 2027

NOvA-T2K Joint Fit

Work is in progress, results expected early next year

Improving Detector Understanding

Test Beam run wrapped up, and well into analysis stage

Additional Slides

42.1×10^{20} total POT 29.4×10^{20} POT neutrino-beam data **Recorded through 2023** 12.7×10^{20} POT neutrino-beam data

Current analysis dataset

 13.6×10^{20} POT neutrino-beam data 12.5×10^{20} POT antineutrino-beam data

Beam currently down but expected to return February

The NOvA detectors are **optimised** for surface running in a 2 GeV beam!

The NOvA detectors are **optimised** for surface running in a 2 GeV beam!

NOvA's Extrapolation Technique

$$
\begin{array}{c}\n\hline\n60 \\
\hline\n60 \\
\hline\n0\n\end{array}
$$
\n
$$
\begin{array}{c}\n\hline\n60 \\
\hline\n0\n\end{array}
$$
\n
$$
\begin{array}{c}\n\hline\n60 \\
\hline\n0\n\end{array}
$$
\n
$$
\begin{array}{c}\n\hline\n13.6 \\
\hline\n12.5\n\end{array}
$$
\n
$$
\begin{array}{c}\n\hline\n\end{array}
$$
\n
$$
\begin{array}{c}\n\hline
$$

Statistical Uncertainty Systematic Uncertainty Beam Flux Near-Far Uncor. Detector Response Neutrino Cross Sections Lepton Reconstruction Neutron Uncertainty Detector Calibration

Frequentist v Bayesian BF

$$
\Delta m_{32}^2 = (2.41 \pm 0.07) \times 10^{-3} \text{ eV}^2
$$

\n
$$
\sin^2 \theta_{23} = 0.57^{+0.03}_{-0.04}
$$

\n
$$
\delta_{CP} = 0.82^{+0.27}_{-0.87}\pi
$$

Best Fit Point

$$
Bayesian
$$

\n
$$
\Delta m_{32}^2 = (2.39 \pm 0.07) \times 10^{-3} \text{ eV}^2
$$

\n
$$
sin^2 \theta_{23} = 0.56_{-0.12}^{+0.03}
$$

\n
$$
\delta_{CP} = 0.89 [0.54, 1.07]
$$

\n
$$
\cup [1.99, 0.48] \pi
$$

Highest Probability Density

n, 19th December 2023 42

A Dual-Baseline Fit

$$
1 - P(\nu_{\mu} \to \nu_s) \approx 1 - \cos^4
$$

This also helps us to **break degeneracies between sterile-driven oscillations and systematic uncertainties**

Approximate NC Disappearance Probability (Full calculation used in fit)

$$
-\sin^2\theta_{34}\sin^22\theta_{23}\sin^2\theta_2
$$

$$
+\frac{1}{2}\sin\delta_{24}\sin\theta_{24}\sin2\theta_2
$$

We also add in an additional sample

$$
P(\nu_{\mu} \to \nu_{\mu}) \approx 1 - \sin^2 2\theta_{24} \Delta_{41}
$$

$$
+ 2\sin^2 2\theta_{23} \sin^2 \theta_{24} \sin^2 \theta_{31}
$$

$$
- \sin^2 2\theta_{23} \sin^2 \Delta_{31}
$$

Most interesting region for sterile oscillations is around $1\mathrm{eV}^2$

Sterile Analysis - A Dual Baseline Fit

→ sensitivity requires seeing **oscillations in the ND**

Rather than using extrapolation technique, **use a dual-baseline fit**

Oscillation Curves, ν_{μ} **CC Disappearance**

Oscillation Curves, NC Disappearance

Gaussian Multivariate Combined Neyman-Pearson $χ²$

Two different fitting techniques

CMF

PISCES

Fits for systematic pulls, then Poisson statistics

Two di fferent fitting techniques

CMF

Gaussian Multivariate Combined Neyman-Pearson *χ*

PISCES

Fits for systematic pulls, then Poisson statistics

Covariance Matrix Fitting With CMF

 $C = C_{\text{stat}} + C_{\text{flux}} + C_{\text{cross-section}} + C_{\text{cross}}$

Combined Neyman-Pearson Tchnique

$$
\chi_{\rm CNP}^2 \equiv \frac{1}{3} \left(\chi_{\rm Neyman}^2 + 2 \chi_{\rm Pearson}^2 \right) = \sum_{i=1}^n \frac{(\mu - M_i)^2}{3/(\frac{1}{M_i} + \frac{2}{\mu})}
$$

Linear combination of Neyman and Pearson χ^2 give a result that is less biased compared to Poisson statistics and has a more similar RMS

Covariance Matrix Fitting With PISCES

$$
\chi_{\text{stat}}^2 = 2 \sum_{i}^{N} \left[\left(\sum_{\alpha}^{M} \mu_{\alpha i} s_{\alpha i} \right) - x_i + x_i \log \left(\frac{\sum_{\alpha}^{N} \mu_{\alpha i} s_{\alpha i}}{\sum_{\alpha}^{N} \mu_{\alpha i} s_{\alpha i}} \right) \right]
$$

 $i =$ analysis bin $s =$ systematic shift $x =$ data C = covariance matrix = beam component *α* μ = nominal prediction

$$
\chi_{\text{syst}}^2 = \sum_{ij}^{N} \sum_{\alpha\beta}^{M} (s_{\alpha i} - 1) C_{\alpha i \beta j} (s_{\beta j} -
$$

(*sβ^j* − 1)

$$
\chi^2 = \chi^2_{\text{stat}} + \chi^2_{\text{syst}}
$$

Predict spectra for oscillation

Decompose into oscillation channels

Solve for systematic weights

Apply systematic weights by channel

Recompose into systematically shifted spectra

References for "With Friends" Contours

SK: K. Abe et al. (Super- Kamiokande), Phys. Rev. D 91, 052019 (2015) **CDHS:** F. Dydak et al. (CDHSW), Phys. Lett. B 134, 281 (1984) **CCFR:** I.E. Stockdale et al. (CCFR), Phys. Rev. Lett. 52, 1384 (1984) **SciBooNE:** K. B. M. Mahn et al. (SciBooNE, MiniBooNE), Phys. Rev. D 85, 032007 (2012) **MINOS+:** P. Adamson et al. (MINOS+) Phys. Rev. Lett. 122, 091803 (2019) **T2K:** K. Abe et al. (T2K) Phys. Rev. D 99, 071103(R) (2019) **IceCube:** M. G. Aartsen et al. (IceCube), Phys. Rev. Lett. 125, 141801 (2020)

SK Constrains $\sin^2 \theta_{24} < 0.041$ @ $\Delta m_{41}^2 > 0.1$ eV

2

IceCube allowed region is an exclusion region at 95%

Adam Lister, NuPhys2023 @ Kings College London, 19th December 2023 zi, ind
K

References for "With Friends" Contours

SK: K. Abe et al. (Super- Kamiokande), Phys. Rev. D 91, 052019 (2015) **MINOS+:** P. Adamson et al. (MINOS+) *Phys.Rev.Lett. 15, 151803* 117 (2016) **T2K:** K. Abe et al. (T2K) Phys. Rev. D 99, 071103(R) (2019) **IceCube:** M. G. Aartsen et al. (IceCube), *Phys.Rev.D* 95 11, 112002 (2017)

MINOS+ - constrains $\sin^2(\theta_{34})$ < 0.2 @ Δ m_{41}^2 = 0.5 eV **T2K** - constrains $U_{\tau 4}$ 2 < 0.5 @ Δm_{41}^2 = 0.1 eV **IceCube** - constrains $U_{\tau 4}$ 2 < 0.15 @ Δm^{2}_{41} = 1 eV **SK** - constrains $U_{\tau 4}$ 2 < 0.18 @ Δm^2_{41} > 0.1 eV $U_{\tau 4}^2 = \cos^2 \theta_{14} \cos^2(\theta_{24}) \sin^2(\theta_{34})$

Generally set to zero

References for "With Friends" Contours

CDHS: F. Dydak et al. (CDHSW), Phys. Lett. B 134, 281 (1984) **CCFR:** I.E. Stockdale et al. (CCFR), Phys. Rev. Lett. 52, 1384 (1984) **E531:** N. Ushida et al. *Phys.Rev.Lett.* 57 (1986) 2897-2900 **CHORUS:** R. Tsenov et al. *Balk.Phys.Lett.* 17 (2009) 191-200 **NOMAD:** P. Astier et al. *Nucl.Phys.B* 611 (2001) 3-39 **OPERA:** N. Agafonova et al. *Phys.Rev.D* 100 (2019) 5, 051301

 $\sin^2(2\theta_{\mu\tau}) = \sin^2(2\theta_{24})\sin^2(\theta_{34})$

