Neutrino Oscillations at NOvA Adam Lister for the NOvA Collaboration University of Wisconsin - Madison

NuPhys 2023 Kings College London

 $\Delta m_{21}^2, \Delta m_{32}^2$, governs oscillation frequency $\theta_{12}, \theta_{13}, \theta_{23}$, governs oscillation magnitude δ_{CP} , governs $\nu - \bar{\nu}$ differences

L (baseline), E (energy) are experimental choices

L/E is characteristic of oscillations

3 Flavour first oscillation maximum around L/E ~500 Δm_{32}^2 , θ_{23} , θ_{13} , δ_{CP} parameters important for these L/E values

$\Delta m_{21}^2, \Delta m_{32}^2$, governs oscillation frequency $\theta_{12}, \theta_{13}, \theta_{23}$, governs oscillation magnitude δ_{CP} , governs $\nu - \bar{\nu}$ differences

L (baseline), E (energy) are experimental choices

L/E is characteristic of oscillations

3 Flavour first oscillation maximum around L/E ~500 Δm_{32}^2 , θ_{23} , θ_{13} , δ_{CP} parameters important for these L/E values

Using ν_{τ} in accelerator neutrino experiments is difficult because of τ mass

What is the neutrino mass ordering? Normal or inverted?

Implications for $0\nu\beta\beta$, cosmology

What is the octant of θ_{23} ?

For ν_3 , does $\nu_\mu = \nu_\tau$?

Is three-flavour the full picture?

Additional neutrino states? Non-standard interactions?

Is CP violated? Non-conservation of CP important for matter-antimatter asymmetry

Open Questions

What is the neutrino mass ordering? Normal or inverted?

Implications for $0\nu\beta\beta$, cosmology

NOvA's oscillation analyses can probe these open questions!

NOvA's 3 Flavour Analyses

What is the octant of θ_{23} ? For ν_3 , does $\nu_\mu = \nu_\tau$?

Is three-flavour the full picture? Additional neutrino states? Non-standard interactions?

NOvA's Sterile Neutrino Searches

Is CP violated? Non-conservation of CP important for matter-antimatter asymmetry

Open Questions

What is the neutrino mass ordering? Normal or inverted?

Implications for $0\nu\beta\beta$, cosmology

NOvA's oscillation analyses can probe these open questions!

NOvA's 3 Flavour Analyses

What is the octant of θ_{23} ? For ν_3 , does $\nu_\mu = \nu_\tau$?

Is three-flavour the full picture?

Additional neutrino states? Non-standard interactions?

NOvA's Sterile Neutrino Searches

Is CP violated? Non-conservation of CP important for matter-antimatter asymmetry

The NuMI Beam

Two focussing horns focus chosen-sign mesons, and defocus opposite-sign mesons

The NOvA Experiment

We fire neutrinos from the NuMI beam through the earth towards Minnesota

Near Detector

~ 1 km from beam source underground @ Fermilab, IL

Provides a measurement of the unoscillated flux

MN

Madison

IL

Far Detector~ 810 km from beam source

on surface @ Ash River, MN

Placed near the oscillation maximum

L/E at the Far Detector is around ~400, Excellent for 3 Flavour oscillations

The NOvA Detectors

~6 samples per radiation length (~40 cm)

Large distance for π^0 to photon conversion helps disambiguate electron neutrinos from NC interactions

Three-Flavour Oscillations With NOvA

Data/simulation disagreements in the ND are used to predict the unoscillated FD spectrum

This analysis uses 2014-2020 data $13.6 \times 10^{20} \text{ POT } \nu$ $12.5 \times 10^{20} \text{ POT } \bar{\nu}$

Far Detector

Oscillations happen

Our most recent 3-flavour oscillation analyses use an **extrapolation** technique

Two Statistical Treatments

Frequentist Analysis

Phys.Rev.D 106 (2022) 3, 032004

Confidence Levels from χ^2 surface

Requires Feldman-Cousins correcting χ^2 surface

Profiles over hidden parameters and choose those that maximise χ^2

Consistent results between the two treatments

Bayesian Analysis arXiv 2311.07835

Marginalises over hidden parameters, getting the average contribution to the probability density

Phys.Rev.D 106 (2022) 3, 032004

Adam Lister, NuPhys2023 @ Kings College London, 19th December 2023 18

Phys.Rev.D 106 (2022) 3, 032004

Weak preference for upper octant

Adam Lister, NuPhys2023 @ Kings College London, 19th December 2023 19

Adam Lister, NuPhys2023 @ Kings College London, 19th December 2023 21

NOvA-Only $\sin^2(2\theta_{13})$

Typically our frequentist analyses use reactor constraint on $\sin^2(2\theta_{13})$

Bayesian technique allows us to report measurement of $\sin^2(2\theta_{13})$

$$\sin^2(2\theta_{13}) = 0.087^{+0.020}_{-0.016}$$

Good agreement with measurement from reactor experiments

Tests robustness of PMNS model - good agreement at vastly different baselines!

Are 3 Flavours The Full Picture?

 v_{e}

Several anomalous results potentially explained by oscillations

$\Delta m^2 >> \Delta m^2_{21}, \Delta m^2_{31}$ (not predicted by 3-flavour!)

We add a new oscillation frequency, Δm_{A1}^2 mixing matrix grows: new mixing angles and CP violating phases $\theta_{14}, \theta_{24}, \theta_{34}, \delta_{14}, \delta_{24}, \delta_{34}$ $U_{\mu 1} U_{\mu 2} U_{\mu 3}$ $U_{\tau 1} U_{\tau 2} U_{\tau 3}$ $U_{\mu4}$ $U_{\mu4}$ U_{s2} U_{s3}

NC Disappearance

For 3-flavour analyses, we're typically looking for

 ν_{μ} disappearance, or ν_{e} appearance

NC Disappearance

For 3-flavour analyses, we're typically looking for ν_{μ} disappearance, or ν_{e} appearance

To look for sterile neutrinos, we can look for NC disappearance

Previous NOvA NC disappearance results Phys.Rev.D 96 (2017) 7, 072006 Phys.Rev.Lett. 127 (2021) 20, 201801

Data agrees with 3-flavour prediction within uncertainties

★ New for this analysis!

Include neutrino-mode NC samples and $\nu_{\mu} \star$ samples in fit

★ New for this analysis!

Fit Results

Sensitivity in high Δm_{41}^2 region driven by Near Detector and is systematically limited

Sensitivity at low Δm_{41}^2 region driven by FD and is statistically limited

NOvA data shows no evidence for sterile neutrinos under 3+1 model

NOvA contours show constraints on $\sin^2(\theta_{24})$ competitive around $\Delta m_{41}^2 = 10 \text{ eV}^2$

Fit Results

NC Disappearance gives access to $\sin^2(\theta_{34})$

For this space, we are more statistically limited across the space

NOvA data shows no evidence for sterile neutrinos under 3+1 model

Note that this does not include data from ν_{τ} appearance at short baselines, which measure effective mixing angle $\theta_{\mu\tau}$

NOvA has an extensive physics programme!

NOvA's 3-flavour analysis has slight preference for Upper Octant, Normal Ordering

Bayesian analysis consistent with frequentist analysis, allows looking at data in new ways

NOvA data is consistent with 3-flavour oscillations at the 90% confidence level

More data!

Collected ~2x 2020 analysis protons-on-target

Running through 2027

Upcoming from NOvA

Improving Detector Understanding

Test Beam run wrapped up, and well into analysis stage

NOvA-T2K Joint Fit

Work is in progress, results expected early next year

Additional Slides

Recorded through 2023 42.1×10^{20} total POT POT neutrino-beam data 29.4×10^{20} 12.7×10^{20} POT neutrino-beam data

Current analysis dataset

 13.6×10^{20} POT neutrino-beam data 12.5×10^{20} POT antineutrino-beam data

Beam currently down but expected to return February

The NOvA detectors are **optimised** for surface running in a 2 GeV beam!

The NOvA detectors are **optimised** for surface running in a 2 GeV beam!

NOvA's Extrapolation Technique

Detector Calibration Neutron Uncertainty Lepton Reconstruction Neutrino Cross Sections **Detector Response** Near-Far Uncor. Beam Flux Systematic Uncertainty Statistical Uncertainty -0.05

Frequentist v Bayesian BF

Best Fit Point

$$\Delta m_{32}^2 = (2.41 \pm 0.07) \times 10^{-3} \text{ eV}^2$$
$$sin^2 \theta_{23} = 0.57^{+0.03}_{-0.04}$$
$$\delta_{CP} = 0.82^{+0.27}_{-0.87} \pi$$

Highest Probability Density

Bayesian

$$\Delta m_{32}^2 = (2.39 \pm 0.07) \times 10^{-3} \text{ eV}^2$$

$$sin^2 \theta_{23} = 0.56^{+0.03}_{-0.12}$$

$$\delta_{CP} = 0.89 \ [0.54, 1.07]$$

$$\cup [1.99, 0.48]\pi$$

n, 19th December 2023 42

A Dual-Baseline Fit

$$1 - P(\nu_{\mu} \to \nu_s) \approx 1 - \cos^4 \theta_1$$

Approximate **NC Disappearance Probability** (Full calculation used in fit)

$$-\sin^{2}\theta_{34}\sin^{2}2\theta_{23}\sin^{2}\theta_{23}\sin^{2}\theta_{24}+\frac{1}{2}\sin\delta_{24}\sin\theta_{24}\sin2\theta_{24}$$

We also add in an addition

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - \sin^2 2\theta_{24} \Delta_{41}$$
$$+ 2\sin^2 2\theta_{23} \sin^2 \theta_{24} \sin^2 \theta_{24} \sin^2 \theta_{23}$$
$$- \sin^2 2\theta_{23} \sin^2 \Delta_{31}$$

This also helps us to break degeneracies between sterile-driven oscillations and systematic uncertainties

onal sample, $ u_{\mu}$, disappearance
,	In ND, sterile frequency oscillation gives independent handle on θ_{2^4}
Δ_{31}	FD Oscillations at atmospheric freque also give access to θ_{24} , but mixed up with
	oscillations

Sterile Analysis - A Dual Baseline Fit

Most interesting region for sterile oscillations is around $1 eV^2$

 \rightarrow sensitivity requires seeing oscillations in the ND

Rather than using extrapolation technique, use a dual-baseline fit

Oscillation Curves, ν_{μ} **CC Disappearance**

Oscillation Curves, NC Disappearance

ND $ u_{\mu}$ CC		
Data	2826066	
Prediction	2448720 ± 451259	
Signal	2436864	
Background	11855	

FD $ u_{\mu}$ CC		
Data	209	
Prediction	180.55 ± 34.79	
Signal	171.88	
Background	3.72	
Cosmic	4.95	

NDNC		
Data	103109	
Prediction	115776 ± 25381	
Signal	103635	
Background	12142	

FD NC			
Data	469		
Prediction	475.59 ± 30.36		
Signal	324.51		
Background	63.9		
Cosmic	87.13		

Two different fitting techniques

CMF

Gaussian Multivariate Combined Neyman-Pearson χ^2

PISCES

Fits for systematic pulls, then Poisson statistics

Two different fitting techniques

CMF

Gaussian Multivariate Combined Neyman-Pearson χ^2

PISCES

Fits for systematic pulls, then Poisson statistics

Covariance Matrix Fitting With CMF

$$C = C_{\text{stat.}} + C_{\text{flux}} + C_{\text{cross-section}} + C_{\text{stat.}}$$

$$[N_j^{\text{data}} - N_j^{\text{model}}(\Theta)]$$

Combined Neyman-Pearson Tchnique

$$\chi^2_{\rm CNP} \equiv \frac{1}{3} \left(\chi^2_{\rm Neyman} + 2\chi^2_{\rm Pearson} \right) = \sum_{i=1}^n \frac{(\mu - M_i)^2}{3/(\frac{1}{M_i} + \frac{2}{\mu})}$$

Linear combination of Neyman and Pearson χ^2 give a result that is less biased compared to Poisson statistics and has a more similar RMS

Covariance Matrix Fitting With PISCES

$$\chi^2 = \chi^2_{\rm stat} + \chi^2_{\rm syst}$$

$$\chi^2_{\text{syst}} = \sum_{ij}^{N} \sum_{\alpha\beta}^{M} (s_{\alpha i} - 1) C_{\alpha i\beta j} (s_{\beta j} - 1) C_{\alpha i\beta j} (s_{\beta$$

$$\chi_{\text{stat}}^2 = 2 \sum_{i}^{N} \left[\left(\sum_{\alpha}^{M} \mu_{\alpha i} s_{\alpha i} \right) - x_i + x_i \log\left(\frac{1}{\sum_{\alpha}^{M}} \right) \right]$$

i =analysis bin S =systematic shift α = beam component x = dataC = covariance matrix μ = nominal prediction

- 1)

Predict spectra for oscillation

Decompose into oscillation channels

Solve for systematic weights

Apply systematic weights by channel

Recompose into systematically shifted spectra

References for "With Friends" Contours

SK: K. Abe et al. (Super- Kamiokande), Phys. Rev. D 91, 052019 (2015) **CDHS:** F. Dydak et al. (CDHSW), Phys. Lett. B 134, 281 (1984) **CCFR:** I.E. Stockdale et al. (CCFR), Phys. Rev. Lett. 52, 1384 (1984) SciBooNE: K. B. M. Mahn et al. (SciBooNE, MiniBooNE), Phys. Rev. D 85, 032007 (2012) **MINOS+:** P. Adamson et al. (MINOS+) Phys. Rev. Lett. 122, 091803 (2019) **T2K:** K. Abe et al. (T2K) Phys. Rev. D 99, 071103(R) (2019) IceCube: M. G. Aartsen et al. (IceCube), Phys. Rev. Lett. 125, 141801 (2020)

SK Constrains $\sin^2 \theta_{24} < 0.041 @ \Delta m_{41}^2 > 0.1 eV^2$

IceCube allowed region is an exclusion region at 95%

References for "With Friends" Contours

SK: K. Abe et al. (Super- Kamiokande), Phys. Rev. D 91, 052019 (2015) **MINOS+:** P. Adamson et al. (MINOS+) *Phys.Rev.Lett.* 15, 151803 117 (2016) **T2K:** K. Abe et al. (T2K) Phys. Rev. D 99, 071103(R) (2019) IceCube: M. G. Aartsen et al. (IceCube), *Phys.Rev.D* 95 11, 112002 (2017)

MINOS+ - constrains $\sin^2(\theta_{34}) < 0.2 @ \Delta m_{41}^2 = 0.5 eV^2$ **T2K** - constrains $U_{\tau 4}^2 < 0.5 @ \Delta m_{41}^2 = 0.1 \text{ eV}^2$ IceCube - constrains $U_{\tau 4}^{2} < 0.15 @ \Delta m_{41}^{2} = 1 \text{ eV}^{2}$ SK - constrains $U_{\tau 4}^2 < 0.18 @ \Delta m_{41}^2 > 0.1 eV^2$ $U_{\tau 4}^{2} = \cos^{2} \theta_{14} \cos^{2}(\theta_{24}) \sin^{2}(\theta_{34})$

Generally set to zero

References for "With Friends" Contours

CDHS: F. Dydak et al. (CDHSW), Phys. Lett. B 134, 281 (1984) **CCFR:** I.E. Stockdale et al. (CCFR), Phys. Rev. Lett. 52, 1384 (1984) E531: N. Ushida et al. *Phys.Rev.Lett.* 57 (1986) 2897-2900 **CHORUS:** R. Tsenov et al. *Balk.Phys.Lett.* 17 (2009) 191-200 **NOMAD:** P. Astier et al. *Nucl.Phys.B* 611 (2001) 3-39 **OPERA:** N. Agafonova et al. *Phys.Rev.D* 100 (2019) 5, 051301

 $\sin^2(2\theta_{\mu\tau}) = \sin^2(2\theta_{24})\sin^2(\theta_{34})$

