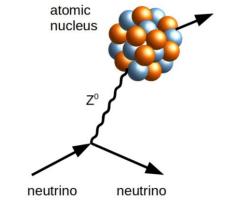
# CONUS experiment: recent results and prospects for reactor CEvNS research

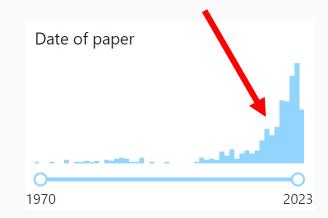
Kaixiang Ni – On behalf of the CONUS collaboration



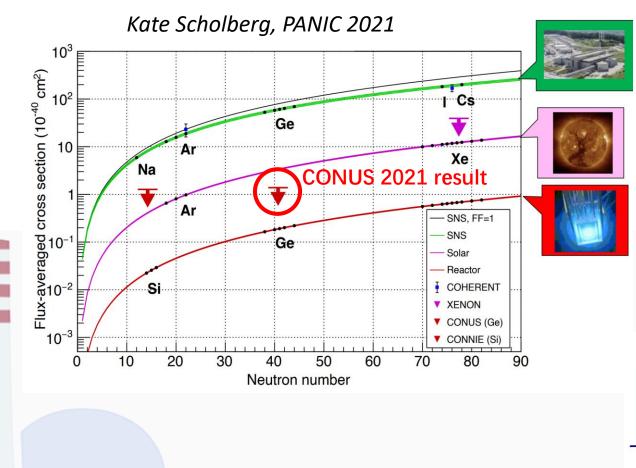
NuPhys2023: Prospects in Neutrino Physics King's College London, Dec. 2023


### Coherent elastic neutrino nucleus scattering (CEvNS)

"Coherent": neutrino interacts with the nucleus as a whole


- Standard model predicted: *D. Freedman, PRD 9 1389 (1974)*
- Relatively large cross section:  $\sim 10^{-16}$  barn
- Low energy scale: several keV of recoil energy

$$\frac{d\sigma}{dT} = \frac{G_f^2}{4\pi} \left( N - \left( 1 - 4\sin^2\theta_w \right) Z \right)^2 F^2(q^2) M(1 - \frac{MT}{2E_v^2})$$


- ✓ Verification of Standard model (e.g. Weinberg angle) at low energy
- ✓ BSM searches for new neutrino interactions: magnet moments, millicharged, etc.
- ✓ Insight of nuclear structure (nuclear matrix, etc.)
- $\checkmark\,$  Supernova neutrinos, "neutrino floor" in dark matter search

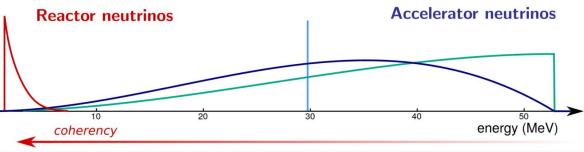


#### Detection of CEvNS by COHERENT! Science 357 (2017) 6356, 1123-1126



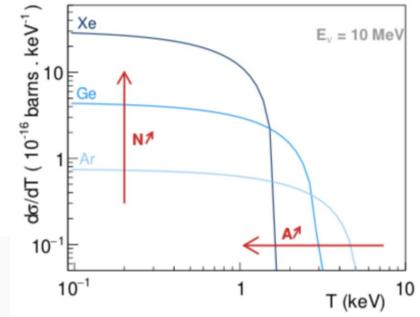
### Neutrino sources




- Different neutrino flavors tected by 000 2000  $E_{v} \sim 20-50 \text{ MeV} (F < 1)$ , less coherency Pulsed flux, higher S/N ratio r v (<sup>8</sup>B v):

#### Solar v (<sup>8</sup>B v):

- By-product of dark matter experiments
- No on-off comparison


#### Reactor v

- Inside fully coherent regime
- **Complementary** to the accelerator experiments ٠



### Reactor experiments worldwide

| reactor | CONUS                 | Brokdorf: 3.9 GW  | 17 m     | 4 MeV | Ge                                                    | 4 kg                                               |
|---------|-----------------------|-------------------|----------|-------|-------------------------------------------------------|----------------------------------------------------|
|         | CONUS+                | Leibstadt: 3.6 GW | 21 m     | 4 MeV | Ge                                                    | 4 kg (upgraded)                                    |
|         | VGEN <sup>O</sup>     | Kalinin: 3.1 GW   | 11-12 m  | 4 MeV | Ge                                                    | 1.4 kg→6 kg                                        |
|         | RED-100 <sup>0</sup>  | Kalinin: 3.1 GW   | 19 m     | 4 MeV | Xe                                                    | 160 kg                                             |
|         | NCC-1701 T            | Dresden-II: 3 GW  | 10.4 m   | 4 MeV | Ge                                                    | 3 kg                                               |
|         | NCC-1701 <sup>P</sup> | Ringhals: 3.6 GW  | 23 m     | 4 MeV | Ge                                                    | 3 kg (upgraded)                                    |
|         | RECODE                | Sanmen: 3.4 GW    | 25 m     | 4 MeV | Ge                                                    | 2x5 kg                                             |
|         | RELICS                | Sanmen: 3.4 GW    | 25 m     | 4 MeV | Xe                                                    | 30 kg                                              |
|         | N.N. <sup>P</sup>     | Taishan: 4.6 GW   | 35 m     | 4 MeV | Ar                                                    | 100 kg                                             |
|         | CONNIE                | Angra: 3.9 GW     | 30 m     | 4 MeV | Si                                                    | 50 g                                               |
|         | NEON                  | Hanbit: 2.8 GW    | 24 m     | 4 MeV | Nal                                                   | 15kg                                               |
|         | TEXONO                | Kuosh.: 2.9 GW    | 25 m     | 4 MeV | Ge                                                    | 1-2 kg                                             |
|         | MINER                 | TAMU: 1 MW        | 2-3 m    | 4 MeV | Ge/Si                                                 | 1 kg                                               |
|         | Richochet AP          | MIT R: 5.5 MW     | 4 m      | 4 MeV | Ge, Zn                                                | 5 kg, 5 kg                                         |
|         | Richochet BP          | ILL: 58 MW        | 8.8 m    | 4 MeV | Ge                                                    | 1 kg                                               |
|         | Basket                | Chooz: 8.6 GW     | 70-400 m | 4 MeV | Li2WO4                                                | 1000                                               |
|         | ν-CLEUS <sup>P</sup>  | Chooz: 8.6 GW     | 70-100 m | 4 MeV | CaWO <sub>4</sub> .<br>Al <sub>2</sub> O <sub>3</sub> | $1 g \rightarrow 10 kg$<br>$1 g \rightarrow 10 kg$ |



O/T: operational/terminated, P: in preparation, R= R&D

Choose of target materials:

- Larger atomic number: higher cross section, but larger quenching and lower threshold
- Technologies applied to detect energy at sub-keV level
- Target mass as kg scale is enough to see CEvNS.

### The CONUS/CONUS+ collaboration







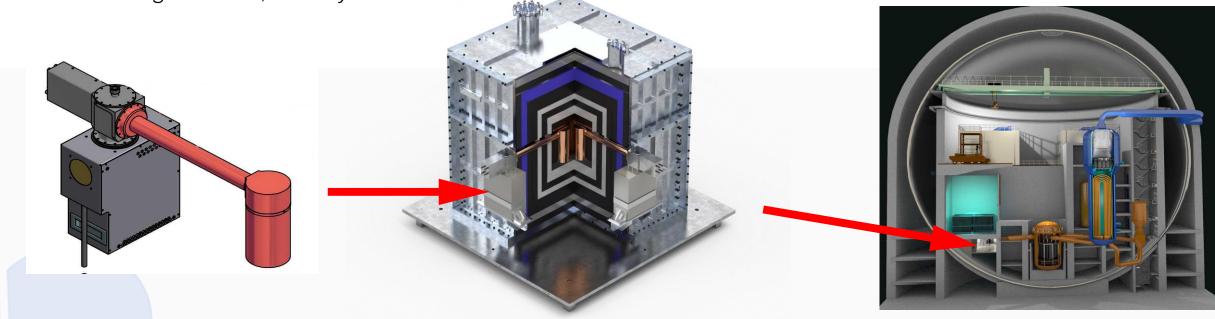
Max-Planck-Institut für Kernphysik (MPIK), Heidelberg: N. Ackermann, S. Armbruster, A. Bonhomme, H. Bonet, C. Buck, J. Hakenmüller, J. Hempfling, G. Heusser, M. Lindner, W. Maneschg, K. Ni, T. Rink, E. Sanchez-Garcia, H. Strecker
Former collaborators: T. Schierhuber, E. Van der Meeren, J. Henrichs, T. Hugle, J. Stauber
Preussen Elektra GmbH, Kernkraftwerk Brokdorf (KBR), Brokdorf: K. Fülber, R. Wink
Kernkraftwerk Leibstadt AG (KKL), Leibstadt: J. Wönckhaus, M. Rank

#### Scientific cooperations with:

Physikalisch-Technische Bundesanstalt (PTB), Braunschweig: R. Nolte, E. Pirovano, M. Reginatto, M. Zboril, A. Zimbal Paul-Scherrer-Institut (PSI), Villigen: E. Hohmann, R. Gaalev

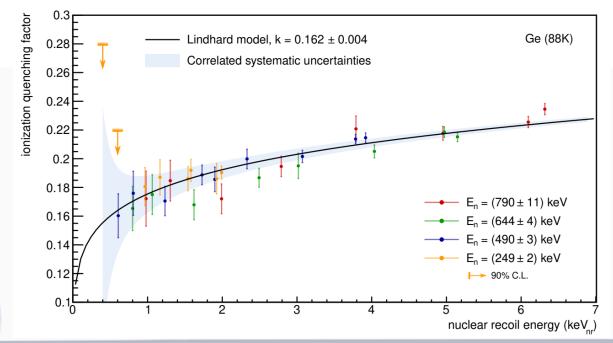
### CONUS @ KBR

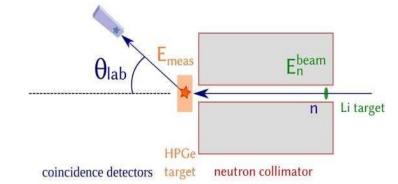
#### **Detector:**

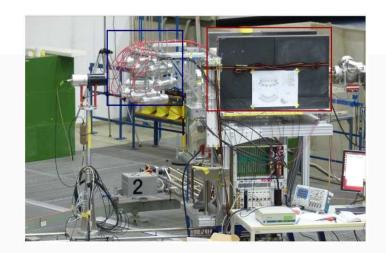

- Point-contact high purity Germanium crystal
- Electrical cryo-cooled
- Energy threshold: 200-300eV
- Four 1-kg modules, in array

#### Shield:

- Lead + Polyethylene + active muon veto scintillators
- Volume: 1.65m<sup>3</sup>, mass: 11 tons
- Total bkg suppression:  $>10^4 \text{ x}$


#### **Experiment site:**


- 3.9GW thermal power
- 17m distance to the reactor core, 2.3 x  $10^{13} v/s/cm^2$
- 24m w.e. overburden



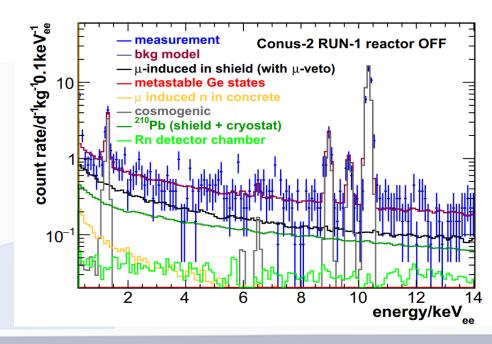

## Quenching measurement

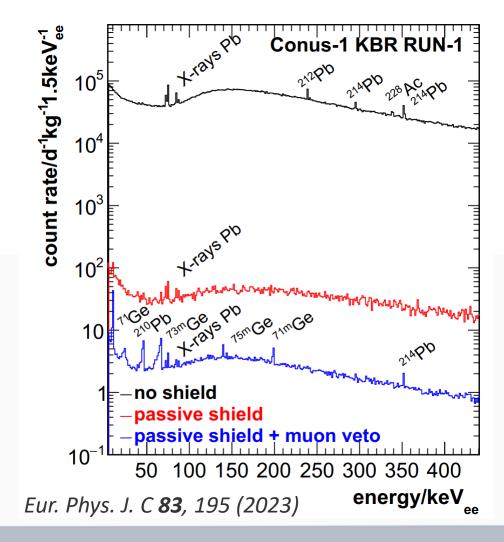
- Only part of the nuclear recoil energy could turn into detectable signal
   → quenching
- Most commonly used model: Lindhard model, with unknown parameter k
- Auxiliary measurement done with neutron beams at PTB, Germany
- k=0.162+-0.004 (stat.+syst.)





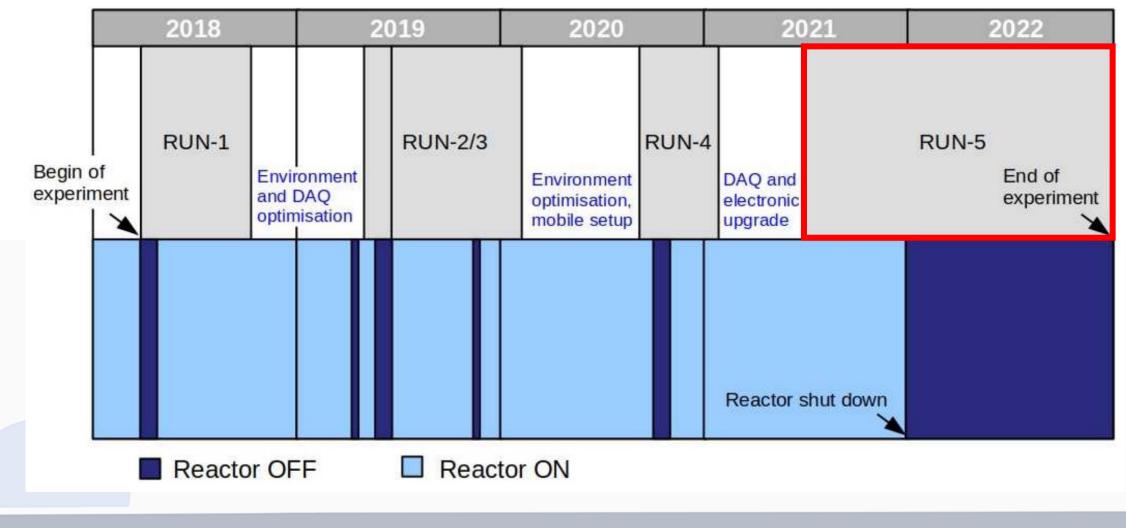



Eur. Phys. J. C 82, 815 (2022)

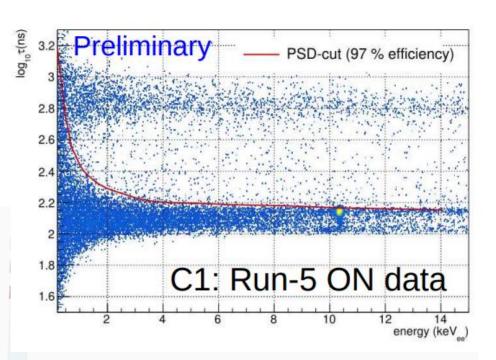

2023/12/20

#### NuPhys2023: Prospects in Neutrino Physics

### **Background estimation**

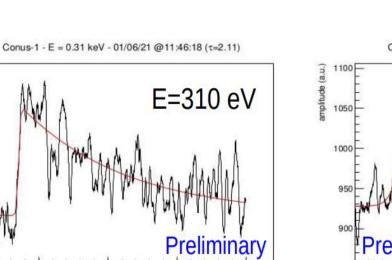

- Suppression factor by shield: >10<sup>4</sup>
- Remaining bkg rate in ROI: O(10) cts/d/kg
- Bkg is dominated by muon-induced events and <sup>210</sup>Pb events
  - Reactor neutron/activation negligible





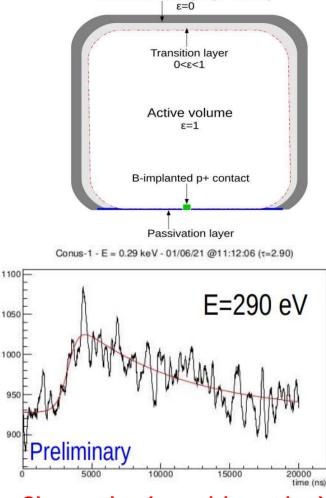

#### NuPhys2023: Prospects in Neutrino Physics

### Runs




### Run 5 with Pulse Shape Discrimination (PSD)




**Efficiency:** remove ~50% of the surface events at ~300eV with >90% bulk event acceptance

- Energy deposition near the transition layer contributes to a slow signal
- Removing slow pulses could reduce surface background, while losing a little effective mass



#### Normal (fast) pulse

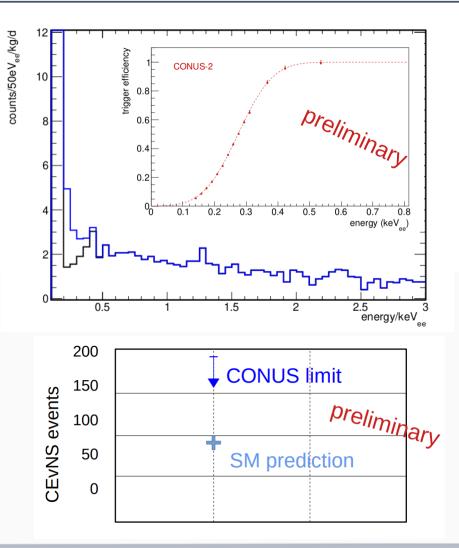
10000



Li-diffused dead layer (n+ contact)

Slow pulse (transition edge)

#### 2023/12/20


5000

1050

### New limits from Run5

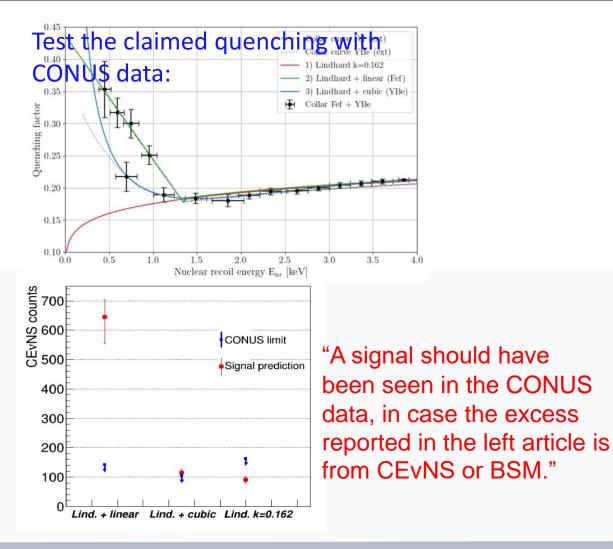
- Upper limit: factor ~2 above SM prediction
- Strongest limit on reactor CEvNS count rate! (Assuming Lindhard quenching)
- Publication in preparation

| Detector | Exposure<br>(ON/OFF,<br>kg-d) | Threshold<br>(eV)           | Anticipated<br>Signals<br>(k=0.16) | Likelihood<br>fit |
|----------|-------------------------------|-----------------------------|------------------------------------|-------------------|
| C1       | 142/40                        | 210                         | 42                                 | <59               |
| C2       | 146/130                       | 210                         | (26                                | <75               |
| C4       | 139/102                       | 210<br>210 mina<br>relimina | 24                                 | <90               |
| Total    | 426/272                       | oreli                       | 92                                 | <163              |
|          |                               | K                           |                                    |                   |



### Comparison with other experiments

#### Current results from reactor CEvNS experiments:


- constraints from vGen, CONNIE,...
- strong signal preference with NCC-1701 at Dresden-II reactor US:

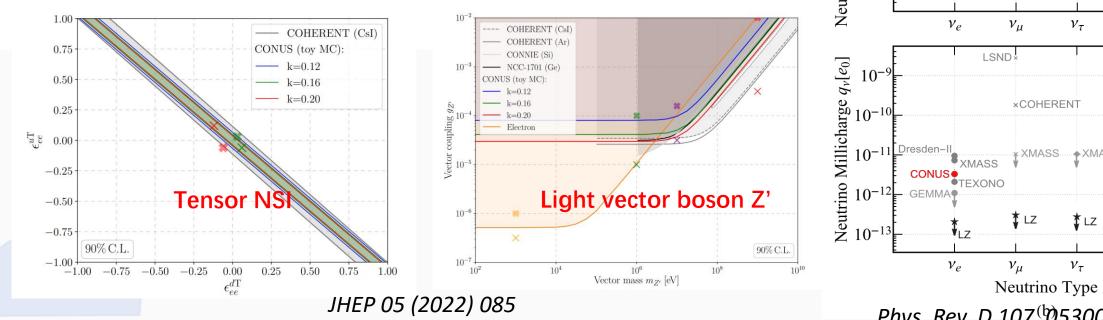
#### Abstract of Phys. Rev. Lett. 129, 211802 (2022)

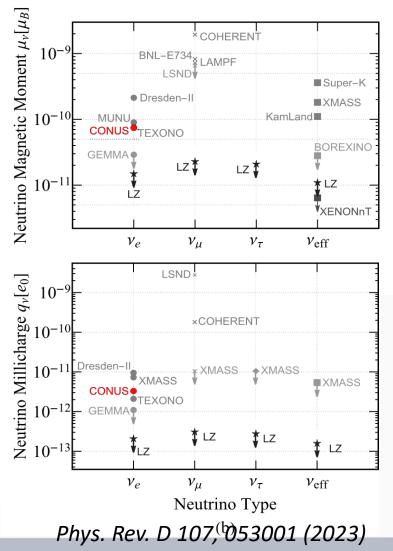
The 96.4 day exposure of a 3 kg ultralow noise germanium detector to the high flux of antineutrinos from a power nuclear reactor is described. A very strong preference  $(p < 1.2 \times 10^{-3})$  for the presence of a coherent elastic neutrino-nucleus scattering (CE $\nu$ NS) component in the data is found, when compared to a background-only model. No such effect is visible in 25 days of operation during reactor outages. The best-fit CE $\nu$ NS signal is in good agreement with expectations based on a recent characterization of germanium response to sub-keV nuclear recoils. Deviations of order 60% from the standard model CE $\nu$ NS prediction can be excluded using present data. Standing uncertainties in models of germanium quenching factor, neutrino energy spectrum, and background are examined.

#### Abstract of Phys. Rev. D 103, 122003 (2021)

Germanium is the detector material of choice in many rare-event searches looking for low-energy nuclear recoils induced by dark matter particles or neutrinos. We perform a systematic exploration of its quenching factor for sub-keV nuclear recoils, using multiple techniques: photoneutron sources, recoils from gamma-emission following thermal neutron capture, and a monochromatic filtered neutron beam. Our results point to a marked deviation from the predictions of the Lindhard model in this mostly unexplored energy range. We comment on the compatibility of our data with low-energy processes such as the Migdal effect, and on the impact of our measurements on upcoming searches.




2023/12/20


#### NuPhys2023: Prospects in Neutrino Physics

### **BSM** results

**Tensor/Vector NSI** (non-standard interactions): limits the coupling parameter space

**Light vector boson**: limits the mass-coupling parameter space **Neutrino millicharged**:  $|q_v| < 3.3 \times 10^{-12} e_0$ **Neutrino magnetic moment**:  $\mu_v < 7.5 \times 10^{-11} \mu_B$ 





NuPhys2023: Prospects in Neutrino Physics

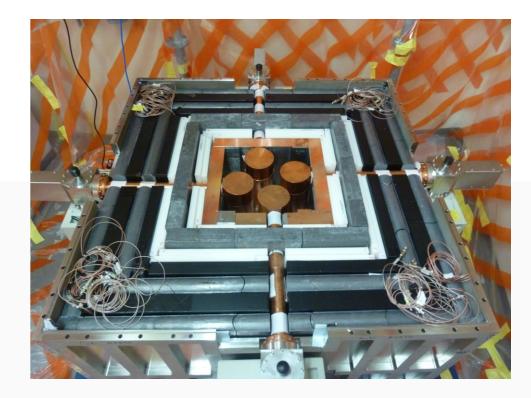
## From CONUS to CONUS+

- Nuclear power plants in Germany are shut-down…
- Our new home: Kernkraftwerk Leibstadt (KKL), Switzerland
  - Experiment hall: ~21m from 3.6 GW reactor core, 1.45 x  $10^{13} v/s/cm^2$
  - New environmental background characterized, large differences observed



| Parameter                   | Method                            | CONUS+ vs.<br>CONUS               |  |
|-----------------------------|-----------------------------------|-----------------------------------|--|
| Gamma-radiation<br>(>3 MeV) | Low bg. Ge spectr.<br>CONRAD      | 25x smaller                       |  |
| Cosmic muon<br>flux         | Liquid scintillator cells         | 2.2x larger<br>(critical)         |  |
| Neutron<br>spectrometry     | Bonner Spheres<br>from MPIK + PSI | 30x larger<br>(still subdominant) |  |
| Temperture,<br>Radon conc   | diff. sensors                     | similar                           |  |

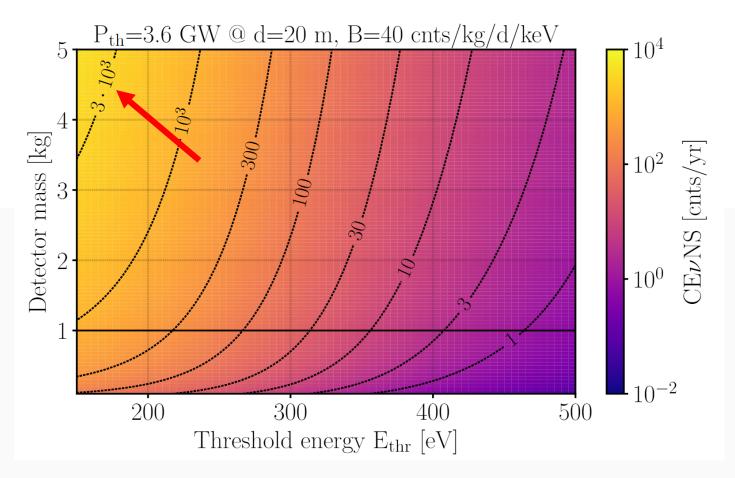
COvUS+


### Upgraded experiment

#### • Ge detector refurbishment:

- Reduced point-contact size
- Higher trigger efficiency ASIC
- Water-cooled system to reduce vibration and microphonic noise

#### • 2<sup>nd</sup> muon veto

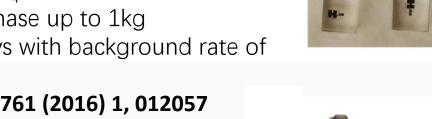

- Higher coverage, less gamma interference
- Independent trigger on each scintillator, coincidence available
- Real-time remote control
- NOW ongoing physical data taking!

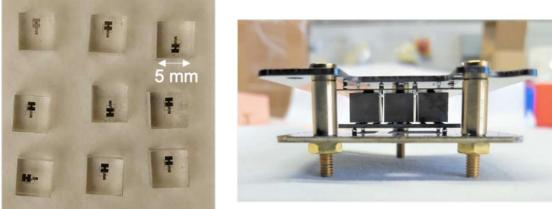


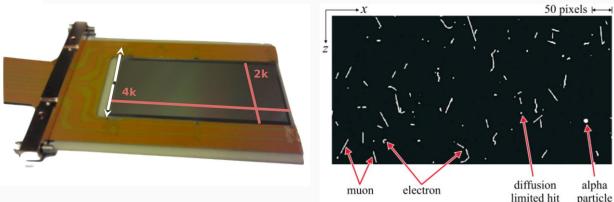
### Future prospects

For CONUS+, a threshold down to <200eV will hopefully provide >10<sup>3</sup> CEvNS events per year!

Global pursuit of reactor CEvNS detection has just begun, aiming for higher detector mass and lower threshold.





### Towards lower threshold


#### With new detection technology!

#### NUCLEUS: transition edge sensors(TES) J.Low Temp.Phys. 199 (2019) 1-2, 433-440

- Energy threshold: O(10 eV)
- Target material: Al<sub>2</sub>O<sub>3</sub>/CaWO<sub>4</sub>
- Target mass: 10g, second phase up to 1kg
- ightarrow Reach 5 $\sigma$  in less than 40 days with background rate of
- 100 counts/(keV·kg·day) CONNIE: CCD J.Phys.Conf.Ser. 761 (2016) 1, 012057
- Energy threshold: 50eV
- Target material: Si
- Target mass: 50g
- ightarrow Additional tracking ability
- → Reached limit: <551 counts/keV/kg/day, 39 times larger than the standard model expectation

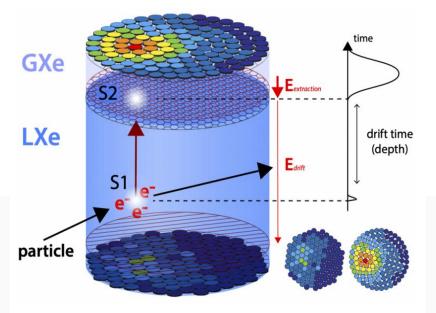






### Towards larger target mass

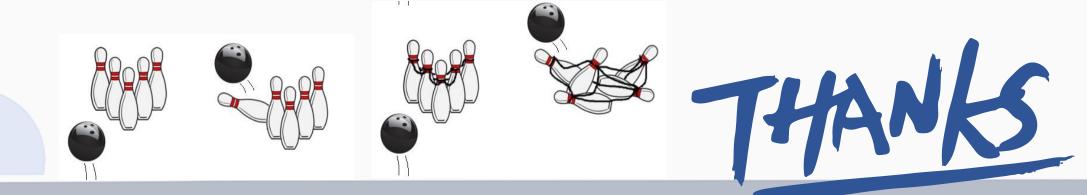
At O(100)kg level, ordinary crystals may not be available. The alternative is to use noble liquid detectors.


- Well developed technique thanks to the dark matter community
- Happens both scintillation/ionization, helps to discriminate electron/nuclear recoils
- Delayed single electron signal might be the dominant background

Experiments:

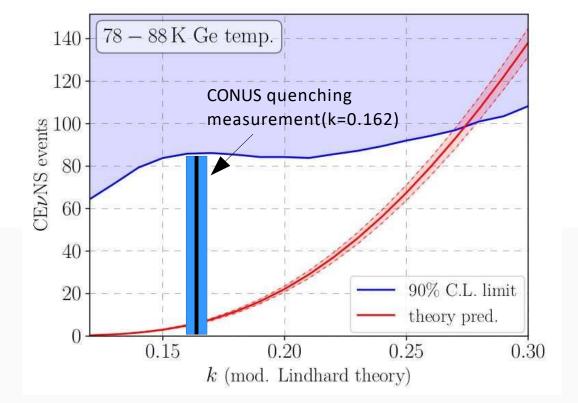
- Currently running: RED-100.
- More proposals/R&Ds came out recently: RELICS, NUXE, etc.

Signal prediction of a xenon TPC with 30kg-yr exposure @  $10^{13}$   $v/s/cm^2$  flux: >5000

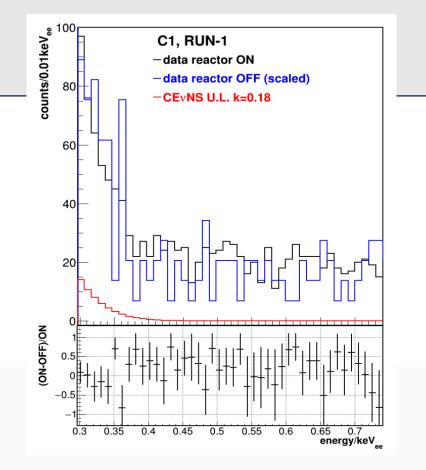

Also stay tuned to solar neutrino CEvNS detection by the dark matter experiments (PandaX-4T, LZ, XENONnT)!



the two-phase (LXe/GXe) time projection chamber (TPC), XENON Collaboration


### Summary

- Reactor CEvNS is a validation for SM neutrino interaction at low energy limit, but is still not observed.
- The CONUS experiment was running in KBR to detect CEvNS until the end of 2022. Analysis of the full data set is completed and the preliminary result shows that *we are at the edge of making discovery.*
- The next phase of the experiment, CONUS+, is moved to KKL with improved Ge detector performance and adaptions to the new background composition.
- There is a global effort to search for CEvNS where various detection technologies beside HPGe are being developed. We are glad to see a more and more active CEvNS community!

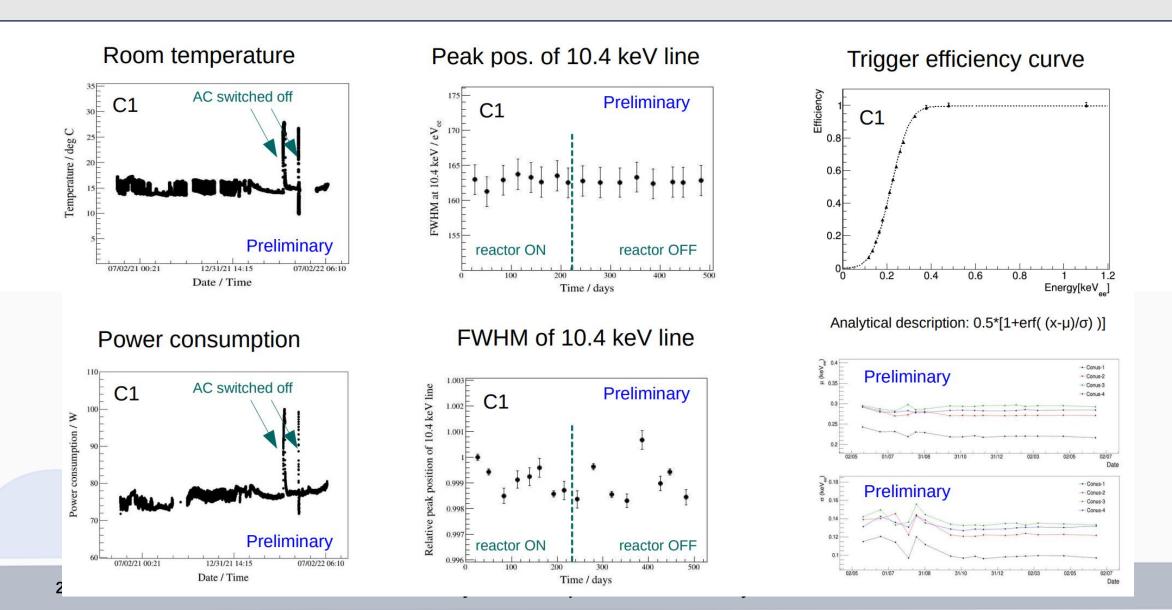








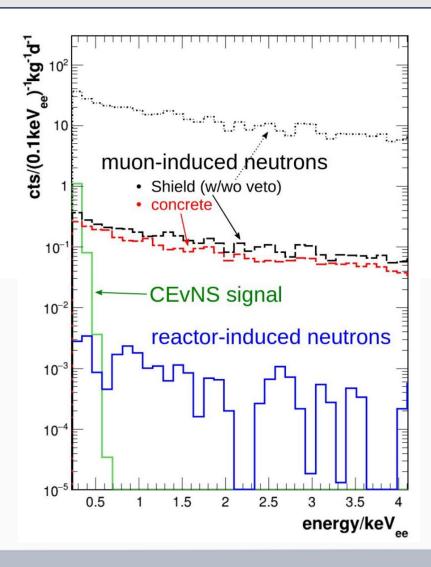

<85 events are detected Upper limit is still factor 17 higher than SM!




- Data: 248.7kg-d ON, 58.8kg-d OFF
- Threshold: ~300eV
- Binned Likelihood:
  - Simultaneously fit ON/OFF data
  - Poisson distribution in each bin

#### 2023/12/20

#### Phys.Rev.Lett. 126 (2021) 4, 041804 NuPhys2023: Prospects in Neutrino Physics


### Run stability (Run5)



### Reactor correlated neutron

- Neutron spectrometry with NEMUS detectors by PTB
- → Highly thermalized (>80%) and correlated with reactor thermal power
- Muon induced neutron takes the major role in CONUS background, instead of reactor neutron



