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Reactor antineutrinos in a nutshell Oscillation physics in JUNO

Why reactor antineutrinos? The Jiangmen Underground Neutrino Observatory (JUNO) [1]is a multi-purpose

neutrino experiment currently under construction in South China.
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Antineutrino detection Event selection and backgrounds

Reactor antineutrinos are detected in JUNO through the Inverse Beta Decay Reactor IBD signal (= 57.4 events/day) is rare with respect to the dominant
(IBD) reaction. background (mainly due to natural radioactivity).
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Detector response effects [2] on the spectrum are considered in spectrum A Prompt signal: energy deposited by positron in LS
calculation: non-linearity (NL) and resolution (Res). Delayed signal: neutron capture on H (or '2C):

Delayed 2.22 MeV (4.95 MeV) gamma emission, T ~ 200 us.

1. IBD reaction and cross section, 2. Liquid scintillator non-linearity —
et deposited energy (LSNL), visible energy o« detected PEs

Prompt

Neutrino interaction in JUNO: detection of a pair of time-correlated events.

Selection is based on prompt-delayed coincidence signature.
Edep ~ E,;e — 0.782 MeV Eyis = fLSNL (Edep) ' Edep

~82% efticiency for reactor IBD 0.22

JUNO 6 years data taking events - 47.1 events/day [3] 02
T | T T T | ' . I I I . : —_— 0.18

:  —— Geoneutrinos : — °LiHe
i = Accidentals i = '°C(a,n)"°0
= Global Reactors = Atmospheric NC |
: : : = Fast Neutrons __

-

Background Rate (day~1) F0.16
Geoneutrinos 1.2

5 5 World reactors 1.0
OFrec _ ( o ) p2 ( C ) Accidentals 0.8
Evis V Evis Evis gLi/ 8He 0.8 ] ; : — IBD Signal
Atmospheric neutrinos 0.16 04f N —— IBD + residual BG

SPMT w/ NL&Res Fast neutrons O N

AIL L é L . .1|0. \ .1|2. ! 13C(a,n)160 0.05

Energy [MeV] Visible Energy [MeV]

N 3. Energy resolution

V
©
N

2 4 6 8 10 1
Deposited Energy Ed [MeV]
ep

o
'_L
N

©
—

— LPMT 15 2 25 3 35 4 45
' Visible Energy (MeV) .

w/o NL&Res —SPMT

Events/0.02 [MeV’

— w/NL

Events per 20 keV

—

2 4 6 8 10 12

S

Energy Resolution [%

1| —— LPMT w/ NL&Res 8
' Visible Energy E . [MeV]

Reactor antineutrino sensitivity analysis and results

Precision measurement of oscillation parameters [3] I Mass Ordering sensitivity

100 days 6 years 20 years
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Median sensitivity discriminator by fitting normal
ordering (NO) and inverted ordering (I10) Asimov
data under both NO and |O hypotheses:
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— Stat.+syst.

* Sensitivity to the two mixing angles dominated by rate Stat. only

. . . ® Lm3 * Ams3,
systematic uncertainties. < S0, ® sinn

* Sensitivity to the two mass splittings dominated by
systematic uncertainties distorting the spectral shape
— reference spectrum™* and detector non-linearity.
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Precision levels for the oscillation parameters: current knowledge (PDG2020)
compared with 100 days, 6 years, and 20 years of JUNO data taking.
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PDG 2020 1.3% 2.4% 4.2% 3.2%
JUNO 100 days ~0.8% ~1.0% ~1.9% ~47.9%
JUNO 6 years ~0.2% ~0.3% ~0.5% ~12%
JUNO 20 years ~0.1% ~0.2% ~0.3% ~7.3%
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**Good knowledge of the unoscillated
spectrum is needed.

30 median sensitivity in ~ 6.7 years DAQ time via
only reactor v,

Sensitivity boost via atmospheric v, /v, in JUNO
Potential in combining atmospheric and
accelerator neutrino experiments measurements
Dedicated publication coming soon

The satellite detector Taishan Antineutrino
Observatory (TAO) will be located at = 40 m
from one reactor core, and it will provide a
model independent reference antineutrino
spectrum for JUNQO's analysis.

Improve current precision of almost one order of magnitude
in 6 years for Am5,, sin?0,,, and Am%,, surpassing global
precision on these parameters within the initial 100 days of
data acquisition.
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By-product of sub-percent precision on oscillation parameters [1]

* Rigorous tests of the neutrino sector of the Standard Model (e.g., unitarity of the PMNS matrix)
* Precise searches for physics beyond the Standard Model

* Discriminator of neutrino masses and mixing models IPPNP 123 [2]JHEPO3  [3] CPC 46
(2022) 103927  (2021)004  (2022) 123001




