PROBING NEUTRINO OSCILLATIONS WITH REACTOR ANTINEUTRINOS IN JUNO

VANESSA CERRONE on behalf of the JUNO collaboration vanessa.cerrone@pd.infn.it

THE JUNO EXPERIMENT

The **J**iangmen **U**nderground **N**eutrino **O**bservatory (**JUNO**) is a multi-purpose neutrino experiment currently under construction in southern China

Where?

* 52.5 km from two Nuclear Power Plants

What do we measure?

- * Reactor antineutrinos
- * Pure and intense source of electron-flavor antineutrinos $\bar{\nu}_e$ @ 1-10 MeV
- * Measure deficit in $\bar{\nu}_e$ interactions $\rightarrow \bar{\nu}_e$ survival probability

THE JUNO EXPERIMENT

The **J**iangmen **U**nderground **N**eutrino **O**bservatory (**JUNO**) is a multi-purpose neutrino experiment currently under construction in southern China

Where?

* 52.5 km from two Nuclear Power Plants

What do we measure?

- * Reactor antineutrinos
- * Pure and intense source of electron-flavor antineutrinos $\bar{\nu}_e$ @ 1-10 MeV
- * Measure deficit in $\bar{\nu}_e$ interactions $\rightarrow \bar{\nu}_e$ survival probability

Main goal

Determination of the Neutrino Mass Ordering (NMO)

Vacuum-dominant regime No dependence on δ_{CP} and θ_{23} Complementary to long baseline experiments

ANTINEUTRINO OSCILLATIONS IN JUNO

$\overline{ u}_e$ survival probability

$$egin{array}{lll} \mathcal{P}_{ee} &=& 1 - \mathcal{P}_{21} - \mathcal{P}_{31} - \mathcal{P}_{32} \ \hline & \mathcal{P}_{21} &=& \sin^2 2 heta_{12}c_{13}^4\sin^2\Delta_{21} \ \hline & \mathcal{P}_{31} &=& \sin^2 2 heta_{13}c_{12}^2\sin^2\Delta_{31} \ \hline & \mathcal{P}_{32} &=& \sin^2 2 heta_{13}s_{12}^2\sin^2\Delta_{32} \end{array}
ight.$$
 FAST

ANTINEUTRINO OSCILLATIONS IN JUNO

$\overline{\nu}_e$ survival probability

$$egin{array}{lll} egin{array}{lll} \mathcal{P}_{ee} &=& 1 - \mathcal{P}_{21} - \mathcal{P}_{31} - \mathcal{P}_{32} \ \hline & \left\{ \mathcal{P}_{21} &=& \sin^2 2 heta_{12}c_{13}^4\sin^2\Delta_{21} & \right\} & \text{SLOW} \ \hline & \mathcal{P}_{31} &=& \sin^2 2 heta_{13}c_{12}^2\sin^2\Delta_{31} & & \text{FAST} \ & \mathcal{P}_{32} &=& \sin^2 2 heta_{13}s_{12}^2\sin^2\Delta_{32} & & \end{array}$$

$$c_{ij} \equiv \cos \theta_{ij}, \ s_{ij} \equiv \sin \theta_{ij}, \ \Delta_{ij} = \Delta m_{ij}^2 L/4E$$

- * Probe the effects of oscillations on both solar (Δm^2_{21}) and atmospheric (Δm^2_{31}) scales
- Optimized baseline for the determination of the Neutrino Mass Ordering (NMO)

EXPERIMENTAL CHALLENGES

- * Large antineutrino statistics
 - ✓ **20 kton** LS target

- ✓ Total photocoverage ≈ 78%
- ✓ Light yield ≈ 1660 PE/MeV

- * Good knowledge of the unoscillated antineutrino spectrum
 - Short baseline satellite detector Taishan Antineutrino Observatory (TAO) to provide model-independent reference spectrum

CONCLUSIONS

JUNO will probe neutrino oscillations with unprecedented precision

- * Sub-percent precision in less than 2 years on Δm^2_{21} , $\sin^2 \theta_{12}$, and Δm^2_{31}
- * 3σ NMO median sensitivity in ~ 6.7 years DAQ time via only reactor $\overline{\nu}_e$

Thank you!

More information in my poster

