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= One goal of DUNE Is to precisely measure the v 80 E
oscillation parameters, with the aim of determining © 1:_ TOTAL
CP-violation in the lepton sector 50,3:— ¥
= To achieve this goal, we need precise estimates of "Eo 6:— PR
. . oVv.UL
Fy, and to increase our understanding of v-nucleus gt
cross-sections (o) 30-4:‘
= y-nucleus CCQE interactions are the largest go.g}
background in the v, flux, and are currently the > F o ]
largest systematic uncertainty for v oscillation 0 10" 1 10 10°
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Figure 1. Total o(E,) decomposed in QE, RES and DIS plot
shown for v, measurements [4].

Modelling CCQE interactions: Iy and z Expansion
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scattering experiments

= |[n a precision era of v physics, we need
sophisticated parameterisations, such
as the z expansion for Fy [1]:
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: =0 . . Figure 2. L: Bubble chamber data from the ANL 1981 experiment and the best
) The. best .z—e>§p.an5|on parametemsa.hon fit cross section predictions corresponding to dipole and N, = 4z expansion.
available is a joint fit of v-H scattering Rr: The best fit predictions from z expansion and dipole F4 parameterisations
data [2] with uncertainty bands. Figures [2].
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Factorisability of F4(¢?)

= Modern oscillation analyses sample from likelihoods with 100s of parameters
= To make this procedure computationally tractable, it often helps to treat nuisance parameters as factorisable
= a;. are not factorisable from Fy

= Approximating a;. as factorisable means that a;. can be treated as independent variables
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= Treating a;. as independent is not sufficient for the level of precision required by high-precision experiments
such as DUNE

= The correlation matrix from [2] demonstrates that a;. are correlated:

Improvement: Principal Component Analysis (PCA)

= Transforms a;. to an uncorrelated basis (b;):

o] = Diag (v/%) [ai] " [o]

A\, v; are the eigenvalues and eigenvectors of the covariance matrix

= Examples of applying the fractional change from varying each of several parameters ‘independently’ and the
value of F fully calculated at that set of parameters is shown in Figure 3(a)
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Figure 3. Assuming that the a; parameters a factorisable from F4 leads to large divergences from F{V in the original
parameterisation. This affect is reduced in the new transformed basis.

= MicroBooNE is a liquid Argon TPC positioned in the Booster v beamline at Fermilab, and is therefore the
most relevant data set for studying cross-section measurements.

= Using the MicroBooNE flux-integrated multidifferential measurements of charged-current p v scattering
on Argon with 1 in the final state [3].

* Implemented z-expansion NuSystematics and used Nuisance to compare to MicroBooNE data.
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