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● The deexcitation process is modelled using statistical methods 
under the assumption of the formation of a compound nucleus 
state                    Hauser-Feshbach model.
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● Automatic differentiation frameworks like JAX give us the tools to 
compute exact gradients of the simulation outputs with respect to the 
model parameters:

○ Simulator tuning to data.

○ Forward inference to estimate the impact of parameter 
distributions.

○ Integration with Machine Learning tools.

● We implement a toy differentiable version of the Hauser-Feshbach model 
allowing us to:

○ Sample and take gradients from the continuum energy levels using 
a pathwise gradient estimator:

○ Compute probabilities and their gradients for discrete energy 
levels.



RESULTS
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● Sampling and gradient estimation vectorised and running on GPU.
● Using a pathwise estimator allows us to take derivatives of and 

“move” individual events.
● Gradient descent for parameter tuning working using MMD loss:

○ Some instabilities due to variance in gradient estimation.
○ Convergence achieved even with a fraction of the discrete paths 

computed!

 

MMD loss contour plot
Discrete paths and their 
probability gradients
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Coming soon:
● More complete implementation of the Hauser-Feshbach nuclear 

deexcitation model.
● Work on gradient descent stability.
● Event moving with higher order derivatives.
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For the future:
● Inclusion of the neutrino-nucleus interaction physics.
● Integration in a fully differentiable simulation chain.



PROSPECTS AND CONCLUSIONS

Coming soon:
● More complete implementation of the Hauser-Feshbach nuclear 

deexcitation model.
● Work on gradient descent stability.
● Event moving with higher order derivatives.

15

For the future:
● Inclusion of the neutrino-nucleus interaction physics.
● Integration in a fully differentiable simulation chain.

Conclusions:
● Demonstrated the feasibility of a differentiable implementation of 

the key components of a nuclear deexcitation model.
● Sampling and gradient estimation is fast and robust, but model 

fitting needs stability work.
● There is much work to do but we are confident in the scaling of our 

method!



Thank you for 
listening!
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