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The Hauser-Feshbach statistical emission model [2] is used by
event generators like MARLEY [3], the standard generator for low
energy nuclear physics in Liquid Argon TPCs for experiments like
DUNE. It exploits the small distance between highly excited
nuclear states to derive the decay rate at a given nuclear energy
using statistical methods, by averaging over many states of similar
energies.

The differential decay width to a given state by emitting a
particular nuclear fragment can be written as:

where sums are over the different quantum numbers ⍺ (EM
transition type and multipolarity for 𝛄-rays or angular momentum
for massive fragments, and isospin and total angular momenta of
the initial and final nuclear states).

Estimating the gradients
We estimate the gradients of expected values (“stochastic
gradients”) of a function f of the outputs with respect to the
model parameters via a pathwise gradient estimator [5]:

As taking a derivative of the inverse of a function is hard, we
can decouple the sampling and the gradient computation
obtaining the gradient directly from the CDF:

where we must take care to include the dependence of the
previous energy with 𝝷.

Sampling the continuum
Starting with an initial nuclear energy E₀ transferred
by the neutrino in the interaction, we sample the next
excitation energy via the sampling path:

where 𝝷 are the model parameters and g is the
inverse CDF of the differential decay width modified
to account for the probability of  the decay to a
discrete nuclear state. We continue sampling
energies sequentially until we reach a discrete state.
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Sampling and inferenceThe modelling of neutrino-nucleus interactions plays an
important role in present and future neutrino experiments. The
accurate simulation of these interactions at low energies (<100
MeV) is crucial for the detection and study of supernova, solar
and atmospheric neutrinos [1].

Reconstruction of the incoming neutrino properties depends on the
ability to measure the products from the deexcitation of the final
state nucleus after the initial neutrino-nucleus scattering reaction. 
A realistic nuclear deexcitation model that can correctly
manage the theoretical uncertainties in the process is key to
determine the response of a detector to low energy neutrinos.

Differentiable nuclear deexcitation 
simulation for low energy neutrino physics

Autodiff frameworks like JAX [4] give us the tools to
build differentiable simulators by computing exact
gradients of the outputs with respect to the model
parameters. Advantages include:

Parameter tuning via gradient descent.
Efficient estimation of uncertainties.
Integration with existing Machine Learning tools.

We implement a differentiable toy version of the
Hauser-Feshbach model where we focus on the
dominant mode of deexcitation: 𝛄-ray emission.
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Gradients of the discrete levels
Once the deexcitation process reaches a discrete level, we
no longer have a smooth dependence of the process
energies on the model parameters. To avoid the problem of
taking derivatives of a discrete variable, we introduce a
novel approach sampling the whole discrete tree: we
compute the probability of each discrete path and its
derivative with respect to 𝝷. Then, we can estimate the
elements of the gradient as

Model fitting via gradient descent

Conclusions
We have demonstrated the feasibility of a fully
differentiable implementation of the key components of a
nuclear deexcitation model.
Sampling and gradient estimation is fast and robust.
Model fitting via gradient descent still needs work in
stability.
There is much work to do but we are confident in the
scaling of our method!
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Fig 2. Three deexcitation paths in the continuum. Each point represents a
sampled nuclear level, coloured according to the gradient w.r.t. the λ
parameter. This parameter controls how shifted into the continuum the event
density function is, modelled as a backshifted Fermi gas.

Fig 3. A subsample of the discrete deexcitation “tree” for a given
continuum path. Top: paths coloured by the path probability. Bottom:
paths coloured by the gradient of the probability w.r.t. model parameter ⍺,
that controls the frequency of the “resonance peaks” in the transition
strength function.

Our sampling procedure implemented in JAX is
vectorised, runs on the GPU and automatically
yields the gradients of the outputs.
Gradients checked against finite differences
and other stochastic gradient estimators like the
score function method.
Using a pathwise estimator allows us to take derivatives of and “move” individual events.
We can estimate the uncertainty on the expected values of an observable given a set of parameters by
running the simulation only on the central values and performing an expansion around them.

We find that the procedure works well in general but suffers from
occasional instability, especially for smaller sample sizes.
Computing the probability and gradients for only a fraction of
the total possible discrete paths yields an estimate accurate
enough for gradient descent, promising scalability.

Fig 4. Two gradient descent iterations converging in the
⍺-λ plane, coloured by loss. 

At each point, generate new sample and
compute the loss and its gradient via
Maximum Mean Discrepancy (MMD).
Perform 10 extra iterations at the end where we
double the sample size to reduce the variance
of the estimator.

Fig 5. Loss function for different
values of the ⍺ parameter. Several
samples were generated at each
value to estimate the loss. While
peaked at “thruth” ⍺=1, the variance
in the estimator can occasionally
produce a gradient in the wrong
direction, inducing instability.
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More complete implementation of the
Hausser-Feshbach deexcitation model.
Work on stability and speed of the
gradient descent algorithm.
Event moving with higher order
derivatives.

Inclusion of the neutrino-nucleus
interaction physics.
Integration in a fully differentiable
simulation chain, from generation
to reconstruction.
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Fig 1. For low energy neutrinos we
assume the ν-N scattering process
results in the formation of a compound
nucleus: the decay of this compound
state is independent from its formation
and the properties of the involved
projectile.
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