

NuPhys2023: Prospects in Neutrino Physics

18–20 December 2023 King's College London

The ASTAROTH project

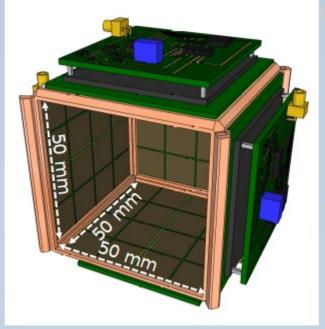
An innovative light detector based on Silicon PhotoMultipliers for rare event physics and its applications in dark matter direct detection experiments

<u>Valerio Toso</u>^{1,2}, for the ASTAROTH collaboration

¹Università degli Studi di Milano; ²INFN Milano

An alternative to PMTs

All current generation NaI(TI)-based detectors share concept and limitations: **Energy region** e.g. DAMA [2], of interest: SABRE [3], NaI(TI) ~5-12 kg 3" PMT ANAIS [4]. up to 6 keV. COSINE[5] Detected: 7-15 ph.e. / kev. Emitted: 40-42 photons / kev High noise from PMTs at low energy [partly "after-glow" but not well understood1 resulting spectrum dictated by PSD efficiency Currently, recoil energies below 1 keV_{ee} are not detectable Challenging to achieve ultra-high purity crystals of this length (≥ 20 cm)


ASTAROTH aims to overcome these limitations in the next generation detectors:

All-sensitive design:

light read-out from every face

5×5×5 cm³ cubic crystals Six 25 cm² SiPM matrices

Single channel (sum) read-out

Higher conversion efficiency SiPM PDE: up to 55% PMT QE: 30-35% @420nm NaI(TI) peak emission

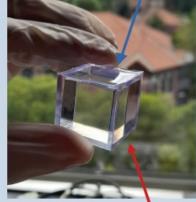
Aim at > 20 ph.e. / keV (optical simulations ongoing)

No "after-glow"

Lower dark count than PMTs at low temperature (<150 K) [1]

Negligible sensor radioactivity (i.e. dominated by electronics)

SiPM require cryogenic operation


Challenge: fully transparent moisture-tight case

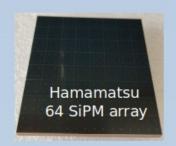
1. Fused silica (soldered vs. glued solution)

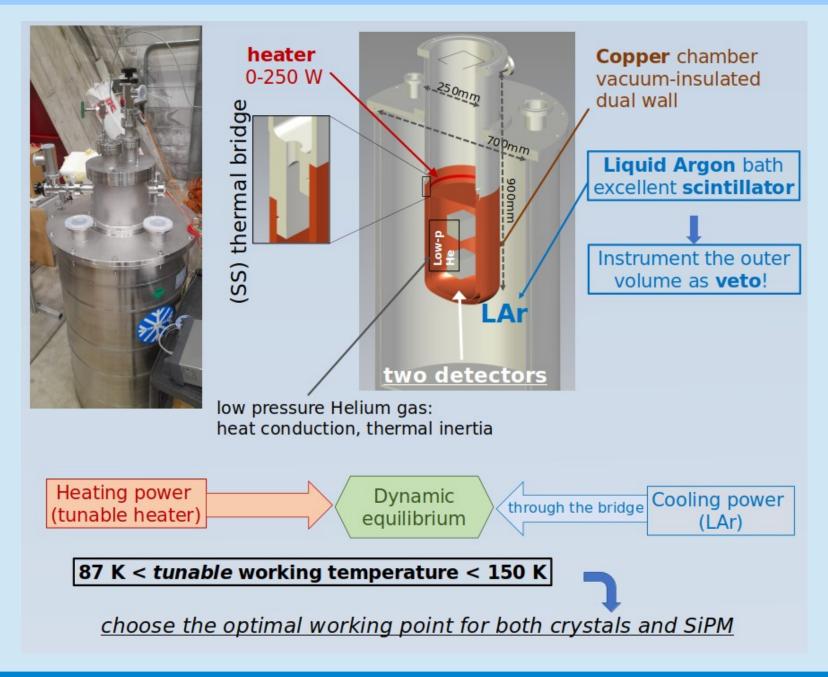
- 2. Epoxy resin:
 - Stycast 1266
 - Epotek 301-2
 - Masterbond EP29LPSP

25x25x25 mm

"complex 'cuisine' work!
Ask the Presenter for details!"

ASTAROTH size: 5x5x5cm


Future physics phase of 8-10cm: ultra-high-purity crystals


Compare SiPM from two vendors:

- 1. FBK NUV-HD-Cryo [1] pitch 40 μm, Low Field, wire bonded.
- 2. Hamamatsu S13361-6050 series pitch 50 μm

Compare two array layouts:

- 8x12 mm² (24 devices)
 "2s3p" ganging on array; front-end: 4 channels + sum [6]
- 2. 6x6 mm² (64 devices) variable ganging on the front-end (in development)

Thank you!