Electric Charge Breaking in Neutrino Physics

Manuel Salewski

Max-Planck-Institut für Kernphysik manuel.salewski@mpi-hd.mpg.de

NuPhys2023

1/6

Why?

How?

Consequences?

2/6

Why?

- To quantify how well we know the SM gauge group
- Theoretically allowed, but very little literature available How?

Consequences?

Why?

- To quantify how well we know the SM gauge group
- ► Theoretically allowed, but very little literature available **How**?
 - Add a charged scalar ϕ to your model
 - Have it obtain a (very small) vev $\phi
 ightarrow v$

Consequences?

Why?

- To quantify how well we know the SM gauge group
- Theoretically allowed, but very little literature available How?
 - Add a charged scalar ϕ to your model
 - Have it obtain a (very small) vev $\phi
 ightarrow v$

Consequences?

- Photon mass, W- and Z-boson mass corrections
- Corrections to the weak mixing angle θ
- Electrons and Neutrinos can mix with each other and form new mass eigenstates with new interactions

New Interactions

• Leptons need to be brought into mass-basis using small mixing angles θ_x , θ_y , θ_z

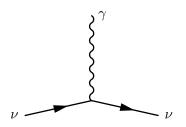
New Interactions

- Leptons need to be brought into mass-basis using small mixing angles θ_x , θ_y , θ_z
- The interaction terms will be affected by this:

$$\begin{pmatrix} \overline{e_{L}^{-}} & \overline{e_{L}^{+}} & \overline{\nu_{L}} \end{pmatrix} \begin{bmatrix} \begin{pmatrix} e \\ & -e \\ & 0 \end{pmatrix} \\ & \underbrace{e_{L}^{-} & e_{L}^{-} & \overline{\nu_{L}} \end{pmatrix}_{\text{Standard Model}} \longrightarrow \underbrace{\begin{pmatrix} \frac{1}{2}(e_{1}+e_{2}) & \frac{1}{2}(3e_{1}+e_{2})\theta_{z} & e_{2}\frac{\theta_{y}+\theta_{z}}{\sqrt{2}} \\ \frac{1}{2}(3e_{1}+e_{2})\theta_{z} & -e_{1} & \frac{3e_{1}-e_{2}}{2}\frac{\theta_{y}-\theta_{z}}{\sqrt{2}} \\ & e_{2}\frac{\theta_{y}+\theta_{z}}{\sqrt{2}} & \frac{3e_{1}-e_{2}}{\sqrt{2}}\frac{\theta_{y}-\theta_{z}}{\sqrt{2}} & \frac{1}{2}(e_{1}-e_{2}) \end{pmatrix}}{\text{New Basis}} \end{bmatrix} A \begin{pmatrix} e_{L}^{-} \\ e_{L}^{+} \\ \nu_{L} \end{pmatrix}$$

 $e_1=g'\cos\theta$ and $e_2=g\sin\theta$ are the U(1)Y and SU(2)L parts of the electric charge, respectively

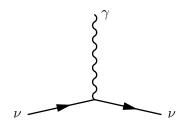
New Interactions


- Leptons need to be brought into mass-basis using small mixing angles θ_x , θ_y , θ_z
- The interaction terms will be affected by this:

 $e_1 = g' \cos \theta$ and $e_2 = g \sin \theta$ are the U(1)_Y and SU(2)_L parts of the electric charge, respectively

 All lepton-lepton-EW gauge boson interactions are possible on tree-level (with certain scalar representations)

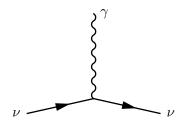
Magnetic Moment


Because there is an explicit neutrino-neutrino-photon coupling, the neutrino has a tree-level magnetic moment.

Magnetic Moment

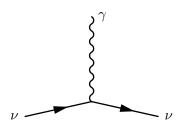
Because there is an explicit neutrino-neutrino-photon coupling, the neutrino has a tree-level magnetic moment.

We can define an effective charge for the neutrino q_{eff} = ½(e₁ − e₂)



Magnetic Moment

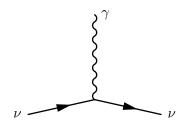
Because there is an explicit neutrino-neutrino-photon coupling, the neutrino has a tree-level magnetic moment.


- We can define an effective charge for the neutrino q_{eff} = ½(e₁ − e₂)
- The tree-level magnetic moment is then

$$|\mu| = \frac{q_{\rm eff}}{e} \mu_{\rm B}$$

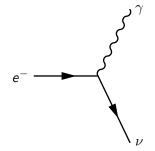
Photon Decay

The same diagram can also lead to photon decay. This only works if the lightest neutrino is lighter than the photon.


Photon Decay

The same diagram can also lead to photon decay. This only works if the lightest neutrino is lighter than the photon.

The lifetime is then

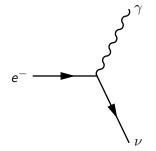

$$au_{\gamma} pprox rac{96\pi}{q_{
m eff}^2 M_{\gamma}} rac{M_{\gamma}^2}{M_{\gamma}^2 - m_{
u}^2}$$

m_ν is proportional to the vev of (1, 1)₀, but the formula still holds if it vanishes

Electron Decay

The massive photon has an **additional third polarization** and observables dependent on the photon coupling need not necessarily go smoothly to the SM limit for $M_{\gamma} \rightarrow 0$.

6/6


Electron Decay

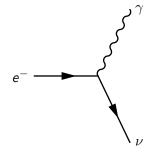
The massive photon has an **additional third polarization** and observables dependent on the photon coupling need not necessarily go smoothly to the SM limit for $M_{\gamma} \rightarrow 0$.

► The electron now has a lifetime

$$\tau_e \approx 1.4 \cdot 10^{-18} \, \mathrm{s} \, \frac{M_\gamma^2}{M_{\mathrm{LL}}^2 + M_{\mathrm{RL}}^2}$$

 $M_{\rm LL}$ and $M_{\rm RL}$ are prop. to the vevs of the scalars that couple to e and ν

Electron Decay


The massive photon has an **additional third polarization** and observables dependent on the photon coupling need not necessarily go smoothly to the SM limit for $M_{\gamma} \rightarrow 0$.

The electron now has a lifetime

$$\tau_e \approx 1.4 \cdot 10^{-18} \, {\rm s} \, \frac{M_\gamma^2}{M_{\rm LL}^2 + M_{\rm RL}^2}$$

 $M_{\rm LL}$ and $M_{\rm RL}$ are prop. to the vevs of the scalars that couple to e and ν

This goes to zero for a small photon mass!

