2107.02801 (PRR letter) with TaeHun Kim, and ongoing works

dS self-organized criticality for the weak scale

Sunghoon Jung Seoul National University

CAU workshop, Feb 2023

Overview

Take-home message:

"Early dS quantum effects may explain the near-criticality of our universe,

in particular the near-critical weak scale."

- 1. Near-criticality of our Universe.
- 2. dS self-organized criticality: New beauty?
- 3. QCD quantum critical points for the weak scale
- 4. dS information problem

Two well-known long-time examples: Higgs mass and c.c.

Near-criticality of our Universe

A new surprising case: metastable EW vacuum with $mh = 125$ GeV.

Just a coincidence, or a new beauty? (The question is not why they are so small, but why so close to some critical pts.)

dS self-organized criticality Sunghoon Jung (SNU)

Degrassi et al. (12,13)

Self-organized criticality

- Examples in nature:
	- Sand piling, 1/f noise seems to be a result of a SOC, Self-similar, fractal…
- It's a statistical phenomenon. Can such be realized for mh and cc?

G.Giudice (08) J.Khoury et al. (19, 20) G.Giudce, M.Mccullough, T.You (21)

Prototype (classical) mechanism - relaxion

During inflation, a theory inevitably evolves toward a critical point, independent of initial conditions.

The relaxion field value determines the value of the desired parameter — the Higgs vev, in our case.
P.W.Graham, D.Kaplan, S.Rajendran (15)

dS self-organized criticality Sunghoon Jung (SNU)

Relaxion's classical slow-roll sweeps a large range of field value, until it stops near a critical point.

Quantum relaxation in dS

We study relaxation via dS quantum fluctuations.

Quantum effects are essentially diffusion, probabilistic.

Necessarily, we talk about the prob distribution among Hubble patches — multiverse "ensemble".

Quantum version can be more widely applicable, stronger selection.

-
-
-

Usual evolution of Prob distribution

During inflation, scalar field values are subject to

 (1) classical rolling ~ -V'/3H : always downward (2) random walk ~ H/2pi : dS quantum origin, symmetric up or down

$$
o(\phi, t) \propto \exp\left\{\frac{-1}{2\sigma_{\phi}^2(t)}\left[\phi - \left(\phi_0 + \dot{\phi}_c t\right)\right]\right\}
$$

$$
\dot{\phi}_c = -V'/3H \qquad \sigma_{\phi}^2(t) = \left(\frac{H}{2\pi}\right)^2 Ht
$$

Usual equilibrium near the bottom

Equilibrium: Dispersion of the prob dist is balanced by steep classical rolling. Usually, delta-function like at the minimum; the steeper the potential, the

narrower the eq width.

Prob distribution can climb up if volume bias upward > slow-roll downward.

Condition: (1) broad width ~ Planckian (2) the potential needs to be flat enough

$$
\rho(\phi, t) \propto \exp \left\{ \frac{-1}{2\sigma_{\phi}^{2}(t)} \left[\phi - (\phi_{0} + \dot{\phi}_{c}t + \frac{3}{2}) \right] \right\}
$$

$$
\dot{\phi}_{c} = -V'/3H \qquad \sigma_{\phi}^{2}(t) = (\frac{H}{2\pi})^{2}Ht
$$

dS self-organized criticality Sunghoon Jung (SNU)

Now, quantum surge upward, by volume bias

Equilibrium near the top (or a steep point) of a potential — where Hubble rate is largest, hence the Hubble selection.

NB: The top essentially provides a repulsion force, hence eq away from the exact top. NB: The flatter, the stronger quantum surge and narrower eq width — sharper selection.

Equilibrium near a top (quantum critical pt)

In particular, the top can be a 1st-order quantum critical point.

external $B(\phi)$ increases
 $\int_{\mathcal{I}} \oint_{c} f_{o\Gamma}$ oc \overline{r}_{ρ} a let-order
 $\oint_{\mathcal{I}} \phi$ funtum critical $\bigvee_{\mathscr{O}} (\phi)$ Ф

QCD chiral symmetry indeed exhibits a variety of phases depending on the Higgs vev (quark masses).

- The SM is thought to be near a critical line.
- Lam_QCD ~ v_EW maybe not a coincidence.
- The vev dependence of QCD phase structure is not well known yet, needs further study with lattice and holography.
- = > We take a simplified pheno approach.

QCD quantum critical pts for the weak scale?

- SU(3)v (QCD vacuum today)
- SU(3)L x SU(3)R
- SU(2)L x SU(2)R x U(1)v

dS self-organized criticality Sunghoon Jung (SNU)

Three types of vacua: Y.Bai, B.Dobrescu (18)

Linear Sigma Model of mesons

We use LSM of 3 quark flavors for a LO study. SU(3)L x SU(3)R.

 $V_{\Sigma} = \mu^2 \text{Tr}[\Sigma \Sigma^{\dagger}] + \lambda_1 (\text{Tr}[\Sigma \Sigma^{\dagger}])^2 + \lambda_2 \text{Tr}[(\Sigma \Sigma^{\dagger})^2]$ $-c(\det\Sigma + \det\Sigma^{\dagger}) - \text{Tr}[\mathcal{H}(\Sigma + \Sigma^{\dagger})]$

H is linear to the Higgs vev!

The weak scale is likely near QCD critical pts

dS self-organized criticality Sunghoon Jung (SNU)

SJ, T.Kim (21)

Summary

- dS self-organized criticality : dS intrinsic quantum effects can drive universes toward a critical point, independently on initial conditions.
	-
	-
	-

Apparent Higgs fine-tunings can indeed be due to dS SOC. Hubble selection is analogous to Natural selection. SOC requires long inflation, sensitive to quantum gravity.

