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The Strong CP Problem in QCD
!The CP-violating term in QCD

!Experimental bound from neutron EDM :
!Theoretically, this problem even more puzzling  

strong CP phase

theta vacuum chiral transformation

Why ! is so small is the strong CP problem.



The QCD axion
!Peccei-Quinn (PQ) mechanism : Strong CP phase is promoted  
to a dynamical variable :

: decay constant

Peccei, Quinn `77, Weinberg `78, Wilczek `78



Axion Interactions with SM particles
!Axion-gluon interaction

!Axion-photon interaction

PQ symmetry breaking scale
domain wall number

Plugging Eqs. (127), (157) and (165) into Eq. (50), we obtain
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EM anomaly
color anomaly



Axion Interactions with SM particles
!Axion-electron interaction

!Axion-nucleons interaction

!The axion couples to the SM particles with strength inversely  
proportional to the decay constant. Hence, the axion feebly 
couples to the SM particles due to the large decay constant.

: model-dependent coefficient

(related to our work)

E.O.M. & I.P.



!The axions can be produced copiously from some and hot 
dense celestial objects such as supernovae (SNe), neutron 
stars, and white dwarfs.

Øe.g. SN1987A

ØRaffelt’s criteria

Axion emission from celestial bodies

Raffelt `90

Super-Kamiokande

PNS



Axion emission from Supernovae
!Two hadronic processes that can create axions inside SNe
ØNucleon-nucleon bremsstrahlung (NNB) : 
ØPion-induced Compton-like scattering (PCS) :

ØIt has been thought the NNB as the dominant axion emission
Øfor a while due to the underestimate of the        inside SNe.
ØRecent studies have shown that the PCS dominates over the 
ØNNB to be the main source of the axion emission inside SNe.

B. Fore and S. Reddy (2020), P. Carenza, et al. (2021), T. Fischer, et al. (2021)



Ｗhat we did
!We evaluate the supernova axion emission rate including the
Δ0resonance in the heavy baryon chiral perturbation theory

ØFor                 MeV,                                                          MeV
ØThe           is somewhere in the middle of and      masses.

FIG. 1: Feynman diagrams for ⇡
� + p ! n+ a with the � baryon contributions.

IV. SCATTERING CROSS SECTION OF ⇡� + p ! n + a

Before evaluating the supernova axion emission rate, let us first see the resonance behavior
in the cross section of the scattering process ⇡

� + p ! n+ a due to the �(1232) baryon. With
the interactions in Eqs. (8), (12), (28) and (32), the Feynman diagrams of the scattering process
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� + p ! n+ a are depicted in Fig. 1, and the corresponding squared matrix element averaged

over the initial spin of the proton is given by10
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P. Carenza, B. Fore, M. Giannotti, A. Mirizzi and S. Reddy (2021) K. Choi, H. J. Kim, H. Seong & C. S. Shin (2022)

In our work
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Heavy Baryon Formalism
!In this formalism, the nucleon is almost on-shell with a nearly 
unchanged velocity when it exchanges some tiny momentum 
with the pion

ØVelocity-dependence baryon field

ØThe power counting expansion of the effective field theory
Øfor pions and baryons can be systematic and well-behaved.
ØThe algebra of the spin operator formalism can be much 
Øsimpler than that of the gamma matrix formalism.

Jenkins & Manohar `91  



Effective Chiral Lagrangian
!Interaction between meson octet and baryon octet

Ø

couplings to octet and decuplet baryons and the hadron axial vector currents which are crucial
for the � resonance contribution to the axion emission rate of a supernova. For more detailed
discussions of the HBChPT, one can refer to Ref. [31, 32].

Firstly, let us write down the lowest order effective chiral Lagrangian containing the baryon
octet B
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not contribute to the charged pion-nucleon interactions.
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Effective Chiral Lagrangian
!Interaction between meson octet and baryon octet

ØTo the first order in 

couplings to octet and decuplet baryons and the hadron axial vector currents which are crucial
for the � resonance contribution to the axion emission rate of a supernova. For more detailed
discussions of the HBChPT, one can refer to Ref. [31, 32].
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Effective Chiral Lagrangian
!Interactions of meson octet, baryon octet & baryon decuplet

ØSpin-3/2 Rarita-Schwinger field :
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Next, we write down the lowest order effective chiral Lagrangian including the interactions
between the baryon octet, meson octet, and the spin-3/2 baryon decuplet which is described by
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with which one can check that Eq. (6) is invariant under the chiral symmetry. To explicitly find
out the interactions among pions, nucleons and � baryons, we use the following representation
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We will utilize these hadron axial vector currents to derive the interactions among the axion,
nucleons and decuplet baryons in the next section.

III. AXION COUPLINGS TO BARYONS AND MESONS

In this section, we will show the derivation of the interactions between the QCD axion and
baryons and mesons, particularly the axion coupling to decuplet baryons, in the HBChPT. We
first write down the effective Lagrangian of the QCD axion in two representative axion mod-
els, Kim-Shifman-Vainshtein-Zakharov (KSVZ) model [35, 36] and Dine-Fischler-Srednicki-
Zhitnitsky (DFSZ) model [37, 38], and perform a chiral transformation on the light quark fields
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couplings to octet and decuplet baryons and the hadron axial vector currents which are crucial
for the � resonance contribution to the axion emission rate of a supernova. For more detailed
discussions of the HBChPT, one can refer to Ref. [31, 32].

Firstly, let us write down the lowest order effective chiral Lagrangian containing the baryon
octet B

v
and the meson octet ⇡ as follows [32]

L
⇡B

� i

⌦
B
v
v
µ
D
µ
B
v

↵
+ 2D

⌦
B
v
S
µ

v

�
A

µ
,B

v

 ↵
+ 2F

⌦
B
v
S
µ

v

⇥
A

µ
,B

v

⇤↵

+
1

4
f
2
⇡

⌦
@
µ⇧@µ⇧

†
↵
+ b

⌦
M

q

�
⇧+⇧†�↵+ · · · , (2)

where h · · · i = tr( · · · ) denotes the trace of a matrix,

B
v
=

0

B@

1p
2
⌃0

v
+ 1p

6
⇤

v
⌃+

v
p
v

⌃�
v

�
1p
2
⌃0

v
+ 1p

6
⇤

v
n
v

⌅�
v

⌅0
v

�
2p
6
⇤

v

1

CA , D
µ
B
v
= @

µ
B
v
+
⇥
V
µ
,B

v

⇤
,

V
µ
=

1

2

�
⇠@

µ
⇠
† + ⇠

†
@
µ
⇠
�
, A

µ
=

i

2

�
⇠@

µ
⇠
†
� ⇠

†
@
µ
⇠
�
,

⇠ = exp

✓
i⇡

f
⇡

◆
, ⇧ = ⇠

2
, ⇡ =

1
p
2

0

B@

1p
2
⇡
0 + 1p

6
⌘ ⇡

+
K

+

⇡
�

�
1p
2
⇡
0 + 1p

6
⌘ K

0

K
�

K̄0 �
2p
6
⌘

1

CA ,

(3)

with f
⇡
' 92.4MeV is the pion decay constant [29], Sµ

v
= �

5
⇥
/v, �

µ
⇤
/4 is the spin operator with

v · S
v
= 0, and M

q
= diag(m

u
,m

d
,m

s
) is a diagonal light quark mass matrix which explicitly

breaks the global chiral symmetry of the Lagrangian, SU(3)
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down to SU(3)

V
. Under

the SU(3)
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from which the interactions of the charged pions and nucleons can be extracted as
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where g
A
= D+F ' 1.254 [33] is the axial coupling. Notice that the D�F term in Eq. (5) does

not contribute to the charged pion-nucleon interactions.
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Next, we write down the lowest order effective chiral Lagrangian including the interactions
between the baryon octet, meson octet, and the spin-3/2 baryon decuplet which is described by
a Rarita-Schwinger field T
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with which one can check that Eq. (7) is invariant under the chiral symmetry. To explicitly find
out the interactions among pions, nucleons and � baryons, we use the following representation
of the � baryons in terms of the above symmetric three-index tensor [34]
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from which the pion-nucleon-� interactions related to our study are extracted as
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Finally, let us write down the hadronic axial vector currents associated with L
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where t
A (A = 1, 2, · · · , 8) are the Gell-Mann matrices with the normalization
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We will utilize these hadron axial vector currents to derive the interactions among the axion,
nucleons and decuplet baryons in the next section.

III. AXION COUPLINGS TO BARYONS AND MESONS

In this section, we will show the derivation of the interactions between the QCD axion and
baryons and mesons, particularly the axion coupling to decuplet baryons, in the HBChPT. We
first write down the effective Lagrangian of the QCD axion in two representative axion mod-
els, Kim-Shifman-Vainshtein-Zakharov (KSVZ) model [35, 36] and Dine-Fischler-Srednicki-
Zhitnitsky (DFSZ) model [37, 38], and perform a chiral transformation on the light quark fields
to eliminate the axion-gluon interaction as usual. In this quark field basis, we can then match
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couplings to octet and decuplet baryons and the hadron axial vector currents which are crucial
for the � resonance contribution to the axion emission rate of a supernova. For more detailed
discussions of the HBChPT, one can refer to Ref. [31, 32].
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from which the interactions of the charged pions and nucleons can be extracted as
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= D+F ' 1.254 [33] is the axial coupling. Notice that the D�F term in Eq. (5) does

not contribute to the charged pion-nucleon interactions.
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Next, we write down the lowest order effective chiral Lagrangian including the interactions
between the baryon octet, meson octet, and the spin-3/2 baryon decuplet which is described by
a Rarita-Schwinger field T
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with which one can check that Eq. (6) is invariant under the chiral symmetry. To explicitly find
out the interactions among pions, nucleons and � baryons, we use the following representation
of the � baryons in terms of the above symmetric three-index tensor [34]
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from which the pion-nucleon-� interactions related to our study are extracted as
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Finally, let us write down the hadronic axial vector currents associated with L
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where t
A (A = 1, 2, · · · , 8) are the Gell-Mann matrices with the normalization
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We will utilize these hadron axial vector currents to derive the interactions among the axion,
nucleons and decuplet baryons in the next section.

III. AXION COUPLINGS TO BARYONS AND MESONS

In this section, we will show the derivation of the interactions between the QCD axion and
baryons and mesons, particularly the axion coupling to decuplet baryons, in the HBChPT. We
first write down the effective Lagrangian of the QCD axion in two representative axion mod-
els, Kim-Shifman-Vainshtein-Zakharov (KSVZ) model [35, 36] and Dine-Fischler-Srednicki-
Zhitnitsky (DFSZ) model [37, 38], and perform a chiral transformation on the light quark fields
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Next, we write down the lowest order effective chiral Lagrangian including the interactions
between the baryon octet, meson octet, and the spin-3/2 baryon decuplet which is described by
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with which one can check that Eq. (7) is invariant under the chiral symmetry. To explicitly find
out the interactions among pions, nucleons and � baryons, we use the following representation
of the � baryons in terms of the above symmetric three-index tensor [34]
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We will utilize these hadron axial vector currents to derive the interactions among the axion,
nucleons and decuplet baryons in the next section.
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baryons and mesons, particularly the axion coupling to decuplet baryons, in the HBChPT. We
first write down the effective Lagrangian of the QCD axion in two representative axion mod-
els, Kim-Shifman-Vainshtein-Zakharov (KSVZ) model [35, 36] and Dine-Fischler-Srednicki-
Zhitnitsky (DFSZ) model [37, 38], and perform a chiral transformation on the light quark fields
to eliminate the axion-gluon interaction as usual. In this quark field basis, we can then match
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The QCD axion Lagrangian
! & at leading order in

ØLight quark fields :
ØAxion coupling matrix :
ØTypically, one introduces an SM-singlet complex scalar field

with a PQ charge in UV models. After the        ,
the phase of                     is then identified as the axion.

the couplings of the axion to quarks and gluons above the QCD confinement scale onto that of
the axion to baryons and mesons below the QCD confinement scale.2

The most general effective Lagrangian of the QCD axion, a(x), with the light quark fields,
q = (u, d, s)T , below the PQ and EW breaking scales and above the scale of QCD confinement
can be expressed at leading order in a/f
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(here we omit the axion interaction with photons as

it is irreverent to our study) as
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in the previous section. The last term in Eq. (13) denotes the axion derivative interactions with
the quark axial vector currents with Xq = diag(Xu, Xd, Xs) being a coupling matrix depending
on a UV model above the PQ symmetry breaking scale. Typically, one introduces an SM-singlet
complex scalar field � ⇠ (1,1)0 with a PQ charge in these UV models. After the PQ symmetry
breaking, the phase of � is then identified as the axion which couples to the SM gluons due to
the QCD anomaly. In the KSVZ model, the QCD anomaly is realized by introducing a heavy
vector-like fermion Q = Q
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the PQ symmetry. Since only � and Q have the PQ charges, implying that the axion interacts
with the SM quark fields radiatively [40], Xq = 0 at tree level in the KSVZ model. In the DFSZ
model, the QCD anomaly is induced by assuming two Higgs doublets H

u
and H

d
which couple

to the SM quarks, Q
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under the PQ symmetry.3 After the PQ and the EW symmetry breaking,
the axion field which is one of the linear superpositions of the CP-odd scalars in H

u
, H

d
and �

can couple to the SM quarks at tree level.4 Here we summarize the axion couplings to the light
quarks at tree level in the KSVZ and DFSZ models below [42] :

KSVZ model : Xu = Xd = Xs = 0 ; DFSZ model : Xu =
cos2�

Ng

, Xd = Xs =
sin2
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, (14)

where Ng = 3 is the number of the SM fermion generations, and tan � = �
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with �

u
and �

d

being the vacuum expectation values of H
u

and H
d
, respectively.

To compute the axion couplings to baryons and mesons below the scale of QCD confinement,
we can first remove the axion-gluon interaction explicitly by the following chiral transformation

2 A more detailed discussion of this procedure can be found in Ref. [39].
3 The DFSZ model can further classify into the DFSZ-I and DFSZ-II models, in which the leptophilic Yukawa

interactions are LLYeHdER and LLYeHuER, respectively, with LL and ER being the SM lepton fields. However,
since the Higgs doublets couplings to the SM quarks are the same in these two models and the axion emission
from a supernova are hadronic processes, we do not distinguish these two models in our calculations.

4 A detailed calculation of the DFSZ axion couplings to the SM fermions can be found in a recent paper [41].
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the couplings of the axion to quarks and gluons above the QCD confinement scale onto that of
the axion to baryons and mesons below the QCD confinement scale.2

The most general effective Lagrangian of the QCD axion, a(x), with the light quark fields,
q = (u, d, s)T , below the PQ and EW breaking scales and above the scale of QCD confinement
can be expressed at leading order in a/f
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the quark axial vector currents with Xq = diag(Xu, Xd, Xs) being a coupling matrix depending
on a UV model above the PQ symmetry breaking scale. Typically, one introduces an SM-singlet
complex scalar field � ⇠ (1,1)0 with a PQ charge in these UV models. After the PQ symmetry
breaking, the phase of � is then identified as the axion which couples to the SM gluons due to
the QCD anomaly. In the KSVZ model, the QCD anomaly is realized by introducing a heavy
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the PQ symmetry. Since only � and Q have the PQ charges, implying that the axion interacts
with the SM quark fields radiatively [40], Xq = 0 at tree level in the KSVZ model. In the DFSZ
model, the QCD anomaly is induced by assuming two Higgs doublets H
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under the PQ symmetry.3 After the PQ and the EW symmetry breaking,
the axion field which is one of the linear superpositions of the CP-odd scalars in H

u
, H

d
and �

can couple to the SM quarks at tree level.4 Here we summarize the axion couplings to the light
quarks at tree level in the KSVZ and DFSZ models below [42] :

KSVZ model : Xu = Xd = Xs = 0 ; DFSZ model : Xu =
cos2�
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, Xd = Xs =
sin2
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where Ng = 3 is the number of the SM fermion generations, and tan � = �
u
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d
with �

u
and �

d

being the vacuum expectation values of H
u

and H
d
, respectively.

To compute the axion couplings to baryons and mesons below the scale of QCD confinement,
we can first remove the axion-gluon interaction explicitly by the following chiral transformation

2 A more detailed discussion of this procedure can be found in Ref. [39].
3 The DFSZ model can further classify into the DFSZ-I and DFSZ-II models, in which the leptophilic Yukawa

interactions are LLYeHdER and LLYeHuER, respectively, with LL and ER being the SM lepton fields. However,
since the Higgs doublets couplings to the SM quarks are the same in these two models and the axion emission
from a supernova are hadronic processes, we do not distinguish these two models in our calculations.

4 A detailed calculation of the DFSZ axion couplings to the SM fermions can be found in a recent paper [41].
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breaking, the phase of � is then identified as the axion which couples to the SM gluons due to
the QCD anomaly. In the KSVZ model, the QCD anomaly is realized by introducing a heavy
vector-like fermion Q = Q

L
+ Q

R
⇠ (3,1)0 which couples to the PQ scalar � via the Yukawa

interaction, y
Q
�Q

L
Q

R
+ h.c., where � ! e

iqPQ� Q
L
! e

iqPQ/2
Q

L
Q

R
! e

�iqPQ/2
Q

R
under

the PQ symmetry. Since only � and Q have the PQ charges, implying that the axion interacts
with the SM quark fields radiatively [40], Xq = 0 at tree level in the KSVZ model. In the DFSZ
model, the QCD anomaly is induced by assuming two Higgs doublets H

u
and H

d
which couple

to the SM quarks, Q
L
, U

R
, and D

R
via the Yukawa interactions, Q

L

�
Y

u
eH
u
U
R
+ Y

d
H

d
D

R

�
+ h.c.,

and the PQ scalar � couples to these two Higgs doublets via the terms in the scalar potential,
e.g.,H†

u
H

d
(�⇤)2, where � ! e

iqPQ�, H
u
! e

�iqPQH
u
, H

d
! e

iqPQH
d
, Q

L
! Q

L
, U

R
! e

�iqPQU
R
,

and D
R
! e

�iqPQD
R

under the PQ symmetry.3 After the PQ and the EW symmetry breaking,
the axion field which is one of the linear superpositions of the CP-odd scalars in H

u
, H

d
and �

can couple to the SM quarks at tree level.4 Here we summarize the axion couplings to the light
quarks at tree level in the KSVZ and DFSZ models below [42] :

KSVZ model : Xu = Xd = Xs = 0 ; DFSZ model : Xu =
cos2�

Ng

, Xd = Xs =
sin2

�

Ng

, (14)

where Ng = 3 is the number of the SM fermion generations, and tan � = �
u
/�

d
with �

u
and �

d

being the vacuum expectation values of H
u

and H
d
, respectively.

To compute the axion couplings to baryons and mesons below the scale of QCD confinement,
we can first remove the axion-gluon interaction explicitly by the following chiral transformation

2 A more detailed discussion of this procedure can be found in Ref. [39].
3 The DFSZ model can further classify into the DFSZ-I and DFSZ-II models, in which the leptophilic Yukawa

interactions are LLYeHdER and LLYeHuER, respectively, with LL and ER being the SM lepton fields. However,
since the Higgs doublets couplings to the SM quarks are the same in these two models and the axion emission
from a supernova are hadronic processes, we do not distinguish these two models in our calculations.

4 A detailed calculation of the DFSZ axion couplings to the SM fermions can be found in a recent paper [41].
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the couplings of the axion to quarks and gluons above the QCD confinement scale onto that of
the axion to baryons and mesons below the QCD confinement scale.2

The most general effective Lagrangian of the QCD axion, a(x), with the light quark fields,
q = (u, d, s)T , below the PQ and EW breaking scales and above the scale of QCD confinement
can be expressed at leading order in a/f

a
(here we omit the axion interaction with photons as

it is irreverent to our study) as

L
aqg

=
1

2
@µa@

µ
a+

g
2
s

32⇡2

a

f
a

G
c

µ⌫
eGcµ⌫ + q i�

µ
@
µ
q �

�
q
L
M

q
q
R
+ h.c.

�
+

@µa

2f
a

q�
µ
�
5
Xqq , (15)

where f
a

is the axion decay constant, g
s
is the gauge coupling of the strong interaction, Gc

µ⌫
with

c being the color index is the gluon field strength tensor and eGcµ⌫ = ✏
µ⌫⇢�

G
c

⇢�
/2 with ✏

0123 = +1
is its dual tensor, q

L,R
= P

L,R
q with P

L,R
= (1⌥�

5)/2, and M
q
is the quark mass matrix defined

in the previous section. The last term in Eq. (15) denotes the axion derivative interactions with
the quark axial vector currents with Xq = diag(Xu, Xd, Xs) being a coupling matrix depending
on a UV model above the PQ symmetry breaking scale. Typically, one introduces an SM-singlet
complex scalar field � ⇠ (1,1)0 with a PQ charge in these UV models. After the PQ symmetry
breaking, the phase of � is then identified as the axion which couples to the SM gluons due to the
QCD anomaly. In the KSVZ model, the QCD anomaly is realized by introducing a heavy vector-
like fermion Q = Q

L
+Q

R
⇠ (3,1)0 which couples to the PQ scalar � via the Yukawa interaction,

y
Q
�Q

L
Q

R
+ h.c., where � ! e

iqPQ� Q
L

! e
iqPQ/2

Q
L

Q
R

! e
�iqPQ/2

Q
R

under the PQ
symmetry. Since only � and Q have the PQ charges, implying that the axion interacts with the
SM quark fields radiatively [40], Xq = 0 at tree level in the KSVZ model. In the DFSZ model,
the QCD anomaly is induced by assuming two Higgs doublets H

u
and H

d
which couple to the SM

quarks, Q
L
, U

R
, and D

R
via the Yukawa interactions, Q

L

�
Y

u
eH
u
U
R
+Y

d
H

d
D

R

�
+h.c., and the PQ

scalar � couples to these two Higgs doublets via the terms in the scalar potential, e.g.,H†
u
H

d
(�⇤)2,

where � ! e
iqPQ� H

u
! e

�iqPQH
u

H
d
! e

iqPQH
d

Q
L

! Q
L

U
R

! e
�iqPQU

R
D

R
!

e
�iqPQD

R
under the PQ symmetry.3 After the PQ and the EW symmetry breaking, the axion

field which is one of the linear superpositions of the CP-odd scalars in H
u
, H

d
and � can couple

to the SM quarks at tree level.4 Here we summarize the axion couplings to the light quarks at
tree level in the KSVZ and DFSZ models below [42] :

KSVZ model : Xu = Xd = Xs = 0 ; DFSZ model : Xu =
cos2�

3
, Xd,s =

sin2
�

3
, (16)

where Ng = 3 is the number of the SM fermion generations, and tan � = �
u
/�

d
with �

u
and �

d

being the vacuum expectation values of H
u

and H
d
, respectively.

To compute the axion couplings to baryons and mesons below the scale of QCD confinement,
we can first remove the axion-gluon interaction explicitly by the following chiral transformation

2 A more detailed discussion of this procedure can be found in Ref. [39].
3 The DFSZ model can further classify into the DFSZ-I and DFSZ-II models, in which the leptophilic Yukawa

interactions are LLYeHdER and LLYeHuER, respectively, with LL and ER being the SM lepton fields. However,
since the Higgs doublets couplings to the SM quarks are the same in these two models and the axion emission
from a supernova are hadronic processes, we do not distinguish these two models in our calculations.

4 A detailed calculation of the DFSZ axion couplings to the SM fermions can be found in a recent paper [41].
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Axion couplings to hadrons
!Below the QCD confinement scale, one can remove the axion
-gluon coupling by the chiral trans. on the light quark fields

!To avoid the axion-!"mass mixing, the customary choice is

on the light quark fields as [39]

q ! R
a
q = exp

✓
�i�

5 a

2f
a

Q
a

◆
q , hQ

a
i = 1 , (17)

where Q
a

is a real 3 by 3 matrix acting on the quark flavor space.5 To avoid the axion-⇡0 mass
mixing, the convenient choice of Q

a
is given by6 [39]

Q
a
=

M
�1
q

tr
�
M�1

q

� =
m

u
m

d
m

s

m
u
m

d
+m

u
m

s
+m

d
m

s

diag

✓
1

m
u

,
1

m
d

,
1

m
s

◆
. (19)

On the other hand, under this chiral transformation, the quark kinetic term in (15) is shifted as

q i�
µ
@
µ
q ! q i�

µ
@
µ
q +

@
µ
a

2f
a

q�
µ
�
5
Q

a
q +O

✓
a
2

f 2
a

◆
, (20)

while the light quark mass term becomes

q
L
M

q
q
R

! q
L
M

a
q
R
, q

R
M

q
q
L
! q

R
M

†
a
q
L
, (21)

where M
a
⌘ R

a
M

q
R

a
, and up to the second order in a/f

a
we have

M
a
= M

q
� i

a

2f
a

�
M

q
,Q

a

 
�

a
2

8f 2
a

��
M

q
,Q

a

 
,Q

a

 
+O

✓
a
3

f 3
a

◆
. (22)

With Eqs. (17), (20), and (21), the resulting Lagrangian with only the axion and quark fields is

L
aq

=
1

2
@µa@

µ
a+ q i�

µ
@
µ
q +

⌦
M

a
q
R
q
L
+M

†
a
q
L
q
R

↵
+

@µa

f
a

⌦�
Xq +Q

a

�
t̂
A
↵
J

Aµ

q
, (23)

where
�
t̂
A
 
=
�
t
A
 
[
�
t
0
 

with t
0 = I3⇥3/

p
6 and

⌦
t̂
A
t̂
B
↵
= �

AB
/2, and J

Aµ

q
= q�

µ
�
5
t̂
A
q are

the quark axial vector currents. For the last term in the above expression, we have applied the
relation M3⇥3 = 2hM3⇥3 t̂

A
it̂

A for any 3 by 3 Hermitian matrix M3⇥3. Our next step is to replace
the light quark fields in Eq. (23) with the corresponding hadron fields in the HBChPT.

First, we can replace the q
L
q
R

in the third term of Eq. (23) with the ⇧ in Eq. (4) since
both have the same transformation properties, U †

L
(q

L
q
R
)U †

R
⇠ U

†
L
⇧ U

†
R
. With the correct mass

dimension, we can write down

La⇡ =
1

2
f
2
⇡
B0

⌦
M

a
⇧† +M

†
a
⇧
↵
, (24)

5 With the convention of ✏0123 = +1, the functional measure in the quark field functional integration gives [43]
Z
DqDq̄ !

Z
DqDq̄ exp


i

Z
d4x

✓
�

g
2
s

32⇡2

a

fa

G
c
µ⌫

eGcµ⌫
hQai

◆�
(18)

under the chiral transformation in (17), where we take hQai = 1 to cancel the axion-gluon interaction in (15).
6 Even with this customary choice of Qa, there is still an axion-⇡0 kinetic mixing in the Lagrangian. However,

since the strength of this kinetic mixing ✏a⇡ ⇠ O(ma/m⇡) ⌧ 1, it is usually ignored in the literature [11].
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on the light quark fields as [39]

q ! R
a
q = exp

✓
�i�

5 a

2f
a

Q
a

◆
q , hQ

a
i = 1 , (17)

where Q
a

is a real 3 by 3 matrix acting on the quark flavor space.5 To avoid the axion-⇡0 mass
mixing, the convenient choice of Q

a
is given by6 [39]

Q
a
=

M
�1
q

tr
�
M�1

q

� =
m

u
m

d
m

s

m
u
m

d
+m

u
m

s
+m

d
m

s

diag

✓
1

m
u

,
1

m
d

,
1

m
s

◆
. (19)

On the other hand, under this chiral transformation, the quark kinetic term in (15) is shifted as

q i�
µ
@
µ
q ! q i�

µ
@
µ
q +

@
µ
a

2f
a

q�
µ
�
5
Q

a
q +O

✓
a
2

f 2
a

◆
, (20)

while the light quark mass term becomes

q
L
M

q
q
R

! q
L
M

a
q
R
, q

R
M

q
q
L
! q

R
M

†
a
q
L
, (21)

where M
a
⌘ R

a
M

q
R

a
, and up to the second order in a/f

a
we have

M
a
= M

q
� i

a

2f
a

�
M

q
,Q

a

 
�

a
2

8f 2
a

��
M

q
,Q

a

 
,Q

a

 
+O

✓
a
3

f 3
a

◆
. (22)

With Eqs. (17), (20), and (21), the resulting Lagrangian with only the axion and quark fields is

L
aq

=
1

2
@µa@

µ
a+ q i�

µ
@
µ
q +

⌦
M

a
q
R
q
L
+M

†
a
q
L
q
R

↵
+

@µa

f
a

⌦�
Xq +Q

a

�
t̂
A
↵
J

Aµ

q
, (23)

where
�
t̂
A
 
=
�
t
A
 
[
�
t
0
 

with t
0 = I3⇥3/

p
6 and

⌦
t̂
A
t̂
B
↵
= �

AB
/2, and J

Aµ

q
= q�

µ
�
5
t̂
A
q are

the quark axial vector currents. For the last term in the above expression, we have applied the
relation M3⇥3 = 2hM3⇥3 t̂

A
it̂

A for any 3 by 3 Hermitian matrix M3⇥3. Our next step is to replace
the light quark fields in Eq. (23) with the corresponding hadron fields in the HBChPT.

First, we can replace the q
L
q
R

in the third term of Eq. (23) with the ⇧ in Eq. (4) since
both have the same transformation properties, U †

L
(q

L
q
R
)U †

R
⇠ U

†
L
⇧ U

†
R
. With the correct mass

dimension, we can write down

La⇡ =
1

2
f
2
⇡
B0

⌦
M

a
⇧† +M

†
a
⇧
↵
, (24)

5 With the convention of ✏0123 = +1, the functional measure in the quark field functional integration gives [43]
Z
DqDq̄ !

Z
DqDq̄ exp


i

Z
d4x

✓
�

g
2
s

32⇡2

a

fa

G
c
µ⌫

eGcµ⌫
hQai

◆�
(18)

under the chiral transformation in (17), where we take hQai = 1 to cancel the axion-gluon interaction in (15).
6 Even with this customary choice of Qa, there is still an axion-⇡0 kinetic mixing in the Lagrangian. However,

since the strength of this kinetic mixing ✏a⇡ ⇠ O(ma/m⇡) ⌧ 1, it is usually ignored in the literature [11].
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act on the quark flavor space 

on the light quark fields as [39]

q ! R
a
q = exp

✓
�i�

5 a

2f
a

Q
a

◆
q , hQ

a
i = 1 , (17)

where Q
a

is a real 3 by 3 matrix acting on the quark flavor space.5 To avoid the axion-⇡0 mass
mixing, the convenient choice of Q

a
is given by6 [39]

Q
a
=

M
�1
q

tr
�
M�1

q

� =
m

u
m

d
m

s

m
u
m

d
+m

u
m

s
+m

d
m

s

diag

✓
1

m
u

,
1

m
d

,
1

m
s

◆
. (19)

On the other hand, under this chiral transformation, the quark kinetic term in (15) is shifted as

q i�
µ
@
µ
q ! q i�

µ
@
µ
q +

@
µ
a

2f
a

q�
µ
�
5
Q

a
q +O

✓
a
2

f 2
a

◆
, (20)

while the light quark mass term becomes

q
L
M

q
q
R

! q
L
M

a
q
R
, q

R
M

q
q
L
! q

R
M

†
a
q
L
, (21)

where M
a
⌘ R

a
M

q
R

a
, and up to the second order in a/f

a
we have

M
a
= M

q
� i

a

2f
a

�
M

q
,Q

a

 
�

a
2

8f 2
a

��
M

q
,Q

a

 
,Q

a

 
+O

✓
a
3

f 3
a

◆
. (22)

With Eqs. (17), (20), and (21), the resulting Lagrangian with only the axion and quark fields is

L
aq

=
1

2
@µa@

µ
a+ q i�

µ
@
µ
q +

⌦
M

a
q
R
q
L
+M

†
a
q
L
q
R

↵
+

@µa

f
a

⌦�
Xq +Q

a

�
t̂
A
↵
J

Aµ

q
, (23)

where
�
t̂
A
 
=
�
t
A
 
[
�
t
0
 

with t
0 = I3⇥3/

p
6 and

⌦
t̂
A
t̂
B
↵
= �

AB
/2, and J

Aµ

q
= q�

µ
�
5
t̂
A
q are

the quark axial vector currents. For the last term in the above expression, we have applied the
relation M3⇥3 = 2hM3⇥3 t̂

A
it̂

A for any 3 by 3 Hermitian matrix M3⇥3. Our next step is to replace
the light quark fields in Eq. (23) with the corresponding hadron fields in the HBChPT.

First, we can replace the q
L
q
R

in the third term of Eq. (23) with the ⇧ in Eq. (4) since
both have the same transformation properties, U †

L
(q

L
q
R
)U †

R
⇠ U

†
L
⇧ U

†
R
. With the correct mass

dimension, we can write down

La⇡ =
1

2
f
2
⇡
B0

⌦
M

a
⇧† +M

†
a
⇧
↵
, (24)

5 With the convention of ✏0123 = +1, the functional measure in the quark field functional integration gives [43]
Z
DqDq̄ !

Z
DqDq̄ exp


i

Z
d4x

✓
�

g
2
s

32⇡2

a

fa

G
c
µ⌫

eGcµ⌫
hQai

◆�
(18)

under the chiral transformation in (17), where we take hQai = 1 to cancel the axion-gluon interaction in (15).
6 Even with this customary choice of Qa, there is still an axion-⇡0 kinetic mixing in the Lagrangian. However,

since the strength of this kinetic mixing ✏a⇡ ⇠ O(ma/m⇡) ⌧ 1, it is usually ignored in the literature [11].
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on the light quark fields as [39]

q ! R
a
q = exp

✓
�i�

5 a

2f
a

Q
a

◆
q , hQ

a
i = 1 , (17)

where Q
a

is a real 3 by 3 matrix acting on the quark flavor space.5 To avoid the axion-⇡0 mass
mixing, the convenient choice of Q

a
is given by6 [39]

Q
a
=

M
�1
q

tr
�
M�1

q

� =
m

u
m

d
m

s

m
u
m

d
+m

u
m

s
+m

d
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s
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✓
1

m
u

,
1

m
d

,
1

m
s

◆
. (19)

On the other hand, under this chiral transformation, the quark kinetic term in (15) is shifted as

q i�
µ
@
µ
q ! q i�

µ
@
µ
q +

@
µ
a

2f
a

q�
µ
�
5
Q

a
q +O

✓
a
2

f 2
a

◆
, (20)

while the light quark mass term becomes

q
L
M

q
q
R

! q
L
M

a
q
R
, q

R
M

q
q
L
! q

R
M

†
a
q
L
, (21)

where M
a
⌘ R

a
M

q
R

a
, and up to the second order in a/f

a
we have

M
a
= M

q
� i

a

2f
a

�
M

q
,Q

a

 
�

a
2

8f 2
a

��
M

q
,Q

a

 
,Q

a

 
+O

✓
a
3

f 3
a

◆
. (22)

With Eqs. (17), (20), and (21), the resulting Lagrangian with only the axion and quark fields is

L
aq

=
1

2
@µa@

µ
a+ q i�

µ
@
µ
q +

⌦
M

a
q
R
q
L
+M

†
a
q
L
q
R

↵
+

@µa

f
a

⌦�
Xq +Q

a

�
t̂
A
↵
J

Aµ

q
, (23)

where
�
t̂
A
 
=
�
t
A
 
[
�
t
0
 

with t
0 = I3⇥3/

p
6 and

⌦
t̂
A
t̂
B
↵
= �

AB
/2, and J

Aµ

q
= q�

µ
�
5
t̂
A
q are

the quark axial vector currents. For the last term in the above expression, we have applied the
relation M3⇥3 = 2hM3⇥3 t̂

A
it̂

A for any 3 by 3 Hermitian matrix M3⇥3. Our next step is to replace
the light quark fields in Eq. (23) with the corresponding hadron fields in the HBChPT.

First, we can replace the q
L
q
R

in the third term of Eq. (23) with the ⇧ in Eq. (4) since
both have the same transformation properties, U †

L
(q

L
q
R
)U †

R
⇠ U

†
L
⇧ U

†
R
. With the correct mass

dimension, we can write down

La⇡ =
1

2
f
2
⇡
B0

⌦
M

a
⇧† +M

†
a
⇧
↵
, (24)

5 With the convention of ✏0123 = +1, the functional measure in the quark field functional integration gives [43]
Z
DqDq̄ !

Z
DqDq̄ exp


i

Z
d4x

✓
�

g
2
s

32⇡2

a

fa

G
c
µ⌫

eGcµ⌫
hQai

◆�
(18)

under the chiral transformation in (17), where we take hQai = 1 to cancel the axion-gluon interaction in (15).
6 Even with this customary choice of Qa, there is still an axion-⇡0 kinetic mixing in the Lagrangian. However,

since the strength of this kinetic mixing ✏a⇡ ⇠ O(ma/m⇡) ⌧ 1, it is usually ignored in the literature [11].
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Axion couplings to hadrons
!Under the chiral trans., the quark kinetic term is shifted as

!The light quark mass term becomes

on the light quark fields as [39]
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On the other hand, under this chiral transformation, the quark kinetic term in (15) is shifted as
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With Eqs. (17), (20), and (21), the resulting Lagrangian with only the axion and quark fields is
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A for any 3 by 3 Hermitian matrix M3⇥3. Our next step is to replace
the light quark fields in Eq. (23) with the corresponding hadron fields in the HBChPT.
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5 With the convention of ✏0123 = +1, the functional measure in the quark field functional integration gives [43]
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under the chiral transformation in (17), where we take hQai = 1 to cancel the axion-gluon interaction in (15).
6 Even with this customary choice of Qa, there is still an axion-⇡0 kinetic mixing in the Lagrangian. However,

since the strength of this kinetic mixing ✏a⇡ ⇠ O(ma/m⇡) ⌧ 1, it is usually ignored in the literature [11].
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With Eqs. (17), (20), and (21), the resulting Lagrangian with only the axion and quark fields is
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5 With the convention of ✏0123 = +1, the functional measure in the quark field functional integration gives [43]
Z
DqDq̄ !

Z
DqDq̄ exp


i

Z
d4x

✓
�

g
2
s

32⇡2

a

fa

G
c
µ⌫

eGcµ⌫
hQai

◆�
(18)

under the chiral transformation in (17), where we take hQai = 1 to cancel the axion-gluon interaction in (15).
6 Even with this customary choice of Qa, there is still an axion-⇡0 kinetic mixing in the Lagrangian. However,

since the strength of this kinetic mixing ✏a⇡ ⇠ O(ma/m⇡) ⌧ 1, it is usually ignored in the literature [11].
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With Eqs. (17), (20), and (21), the resulting Lagrangian with only the axion and quark fields is
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5 With the convention of ✏0123 = +1, the functional measure in the quark field functional integration gives [43]
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under the chiral transformation in (17), where we take hQai = 1 to cancel the axion-gluon interaction in (15).
6 Even with this customary choice of Qa, there is still an axion-⇡0 kinetic mixing in the Lagrangian. However,

since the strength of this kinetic mixing ✏a⇡ ⇠ O(ma/m⇡) ⌧ 1, it is usually ignored in the literature [11].
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With Eqs. (17), (20), and (21), the resulting Lagrangian with only the axion and quark fields is
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5 With the convention of ✏0123 = +1, the functional measure in the quark field functional integration gives [43]
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under the chiral transformation in (17), where we take hQai = 1 to cancel the axion-gluon interaction in (15).
6 Even with this customary choice of Qa, there is still an axion-⇡0 kinetic mixing in the Lagrangian. However,

since the strength of this kinetic mixing ✏a⇡ ⇠ O(ma/m⇡) ⌧ 1, it is usually ignored in the literature [11].
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Axion couplings to hadrons
!The resulting Lagrangian with only the axion and quark fields
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With Eqs. (17), (20), and (21), the resulting Lagrangian with only the axion and quark fields is
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5 With the convention of ✏0123 = +1, the functional measure in the quark field functional integration gives [43]
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under the chiral transformation in (17), where we take hQai = 1 to cancel the axion-gluon interaction in (15).
6 Even with this customary choice of Qa, there is still an axion-⇡0 kinetic mixing in the Lagrangian. However,

since the strength of this kinetic mixing ✏a⇡ ⇠ O(ma/m⇡) ⌧ 1, it is usually ignored in the literature [11].
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the couplings of the axion to quarks and gluons above the QCD confinement scale onto that of
the axion to baryons and mesons below the QCD confinement scale.2

The most general effective Lagrangian of the QCD axion, a(x), with the light quark fields,
q = (u, d, s)T , below the PQ and EW breaking scales and above the scale of QCD confinement
can be expressed at leading order in a/f

a
(here we omit the axion interaction with photons as

it is irreverent to our study) as
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where f
a

is the axion decay constant, g
s
is the gauge coupling of the strong interaction, Gc

µ⌫
with

c being the color index is the gluon field strength tensor and eGcµ⌫ = ✏
µ⌫⇢�
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is its dual tensor, q
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L,R
q with P
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= (1⌥�

5)/2, and M
q
is the quark mass matrix defined

in the previous section. The last term in Eq. (15) denotes the axion derivative interactions with
the quark axial vector currents with Xq = diag(Xu, Xd, Xs) being a coupling matrix depending
on a UV model above the PQ symmetry breaking scale. Typically, one introduces an SM-singlet
complex scalar field � ⇠ (1,1)0 with a PQ charge in these UV models. After the PQ symmetry
breaking, the phase of � is then identified as the axion which couples to the SM gluons due to the
QCD anomaly. In the KSVZ model, the QCD anomaly is realized by introducing a heavy vector-
like fermion Q = Q

L
+Q

R
⇠ (3,1)0 which couples to the PQ scalar � via the Yukawa interaction,

y
Q
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R
+ h.c., where � ! e
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Q
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under the PQ
symmetry. Since only � and Q have the PQ charges, implying that the axion interacts with the
SM quark fields radiatively [40], Xq = 0 at tree level in the KSVZ model. In the DFSZ model,
the QCD anomaly is induced by assuming two Higgs doublets H

u
and H

d
which couple to the SM

quarks, Q
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, U
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, and D
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via the Yukawa interactions, Q
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scalar � couples to these two Higgs doublets via the terms in the scalar potential, e.g.,H†
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under the PQ symmetry.3 After the PQ and the EW symmetry breaking, the axion

field which is one of the linear superpositions of the CP-odd scalars in H
u
, H

d
and � can couple

to the SM quarks at tree level.4 Here we summarize the axion couplings to the light quarks at
tree level in the KSVZ and DFSZ models below [42] :

KSVZ model : Xu = Xd = Xs = 0 ; DFSZ model : Xu =
cos2�

3
, Xd,s =

sin2
�

3
, (16)

where Ng = 3 is the number of the SM fermion generations, and tan � = �
u
/�

d
with �

u
and �

d

being the vacuum expectation values of H
u

and H
d
, respectively.

To compute the axion couplings to baryons and mesons below the scale of QCD confinement,
we can first remove the axion-gluon interaction explicitly by the following chiral transformation

2 A more detailed discussion of this procedure can be found in Ref. [39].
3 The DFSZ model can further classify into the DFSZ-I and DFSZ-II models, in which the leptophilic Yukawa

interactions are LLYeHdER and LLYeHuER, respectively, with LL and ER being the SM lepton fields. However,
since the Higgs doublets couplings to the SM quarks are the same in these two models and the axion emission
from a supernova are hadronic processes, we do not distinguish these two models in our calculations.

4 A detailed calculation of the DFSZ axion couplings to the SM fermions can be found in a recent paper [41].
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With Eqs. (17), (20), and (21), the resulting Lagrangian with only the axion and quark fields is
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under the chiral transformation in (17), where we take hQai = 1 to cancel the axion-gluon interaction in (15).
6 Even with this customary choice of Qa, there is still an axion-⇡0 kinetic mixing in the Lagrangian. However,

since the strength of this kinetic mixing ✏a⇡ ⇠ O(ma/m⇡) ⌧ 1, it is usually ignored in the literature [11].
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With Eqs. (17), (20), and (21), the resulting Lagrangian with only the axion and quark fields is
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under the chiral transformation in (17), where we take hQai = 1 to cancel the axion-gluon interaction in (15).
6 Even with this customary choice of Qa, there is still an axion-⇡0 kinetic mixing in the Lagrangian. However,

since the strength of this kinetic mixing ✏a⇡ ⇠ O(ma/m⇡) ⌧ 1, it is usually ignored in the literature [11].
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With Eqs. (17), (20), and (21), the resulting Lagrangian with only the axion and quark fields is
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under the chiral transformation in (17), where we take hQai = 1 to cancel the axion-gluon interaction in (15).
6 Even with this customary choice of Qa, there is still an axion-⇡0 kinetic mixing in the Lagrangian. However,

since the strength of this kinetic mixing ✏a⇡ ⇠ O(ma/m⇡) ⌧ 1, it is usually ignored in the literature [11].
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With Eqs. (17), (20), and (21), the resulting Lagrangian with only the axion and quark fields is

L
aq

=
1

2
@µa@

µ
a+ q i�

µ
@
µ
q +

⌦
M

a
q
R
q
L
+M

†
a
q
L
q
R

↵
+

@µa

f
a

⌦�
Xq +Q

a

�
t̂
A
↵
J

Aµ

q
, (23)

where
�
t̂
A
 
=
�
t
A
 
[
�
t
0
 

with t
0 = I3⇥3/

p
6 and

⌦
t̂
A
t̂
B
↵
= �

AB
/2, and J

Aµ

q
= q�

µ
�
5
t̂
A
q are

the quark axial vector currents. For the last term in the above expression, we have applied the
relation M3⇥3 = 2hM3⇥3 t̂

A
it̂

A for any 3 by 3 Hermitian matrix M3⇥3. Our next step is to replace
the light quark fields in Eq. (23) with the corresponding hadron fields in the HBChPT.

First, we can replace the q
L
q
R

in the third term of Eq. (23) with the ⇧ in Eq. (4) since
both have the same transformation properties, U †

L
(q

L
q
R
)U †

R
⇠ U

†
L
⇧ U

†
R
. With the correct mass

dimension, we can write down

La⇡ =
1

2
f
2
⇡
B0

⌦
M

a
⇧† +M

†
a
⇧
↵
, (24)

5 With the convention of ✏0123 = +1, the functional measure in the quark field functional integration gives [43]
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under the chiral transformation in (17), where we take hQai = 1 to cancel the axion-gluon interaction in (15).
6 Even with this customary choice of Qa, there is still an axion-⇡0 kinetic mixing in the Lagrangian. However,

since the strength of this kinetic mixing ✏a⇡ ⇠ O(ma/m⇡) ⌧ 1, it is usually ignored in the literature [11].
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With Eqs. (17), (20), and (21), the resulting Lagrangian with only the axion and quark fields is
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5 With the convention of ✏0123 = +1, the functional measure in the quark field functional integration gives [43]
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under the chiral transformation in (17), where we take hQai = 1 to cancel the axion-gluon interaction in (15).
6 Even with this customary choice of Qa, there is still an axion-⇡0 kinetic mixing in the Lagrangian. However,

since the strength of this kinetic mixing ✏a⇡ ⇠ O(ma/m⇡) ⌧ 1, it is usually ignored in the literature [11].
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With Eqs. (17), (20), and (21), the resulting Lagrangian with only the axion and quark fields is
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5 With the convention of ✏0123 = +1, the functional measure in the quark field functional integration gives [43]
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under the chiral transformation in (17), where we take hQai = 1 to cancel the axion-gluon interaction in (15).
6 Even with this customary choice of Qa, there is still an axion-⇡0 kinetic mixing in the Lagrangian. However,

since the strength of this kinetic mixing ✏a⇡ ⇠ O(ma/m⇡) ⌧ 1, it is usually ignored in the literature [11].
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On the other hand, under this chiral transformation, the quark kinetic term in (15) is shifted as
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With Eqs. (17), (20), and (21), the resulting Lagrangian with only the axion and quark fields is
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the light quark fields in Eq. (23) with the corresponding hadron fields in the HBChPT.
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5 With the convention of ✏0123 = +1, the functional measure in the quark field functional integration gives [43]
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under the chiral transformation in (17), where we take hQai = 1 to cancel the axion-gluon interaction in (15).
6 Even with this customary choice of Qa, there is still an axion-⇡0 kinetic mixing in the Lagrangian. However,

since the strength of this kinetic mixing ✏a⇡ ⇠ O(ma/m⇡) ⌧ 1, it is usually ignored in the literature [11].
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With Eqs. (17), (20), and (21), the resulting Lagrangian with only the axion and quark fields is
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under the chiral transformation in (17), where we take hQai = 1 to cancel the axion-gluon interaction in (15).
6 Even with this customary choice of Qa, there is still an axion-⇡0 kinetic mixing in the Lagrangian. However,

since the strength of this kinetic mixing ✏a⇡ ⇠ O(ma/m⇡) ⌧ 1, it is usually ignored in the literature [11].
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With Eqs. (17), (20), and (21), the resulting Lagrangian with only the axion and quark fields is
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under the chiral transformation in (17), where we take hQai = 1 to cancel the axion-gluon interaction in (15).
6 Even with this customary choice of Qa, there is still an axion-⇡0 kinetic mixing in the Lagrangian. However,

since the strength of this kinetic mixing ✏a⇡ ⇠ O(ma/m⇡) ⌧ 1, it is usually ignored in the literature [11].
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With Eqs. (17), (20), and (21), the resulting Lagrangian with only the axion and quark fields is

L
aq

=
1

2
@µa@

µ
a+ q i�

µ
@
µ
q +

⌦
M

a
q
R
q
L
+M

†
a
q
L
q
R

↵
+

@µa

f
a

⌦�
Xq +Q

a

�
t̂
A
↵
J

Aµ

q
, (23)

where
�
t̂
A
 
=
�
t
A
 
[
�
t
0
 

with t
0 = I3⇥3/

p
6 and

⌦
t̂
A
t̂
B
↵
= �

AB
/2, and J

Aµ

q
= q�

µ
�
5
t̂
A
q are

the quark axial vector currents. For the last term in the above expression, we have applied the
relation M3⇥3 = 2hM3⇥3 t̂

A
it̂

A for any 3 by 3 Hermitian matrix M3⇥3. Our next step is to replace
the light quark fields in Eq. (23) with the corresponding hadron fields in the HBChPT.

First, we can replace the q
L
q
R

in the third term of Eq. (23) with the ⇧ in Eq. (4) since
both have the same transformation properties, U †

L
(q

L
q
R
)U †

R
⇠ U

†
L
⇧ U

†
R
. With the correct mass

dimension, we can write down

La⇡ =
1

2
f
2
⇡
B0

⌦
M

a
⇧† +M

†
a
⇧
↵
, (24)

5 With the convention of ✏0123 = +1, the functional measure in the quark field functional integration gives [43]
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under the chiral transformation in (17), where we take hQai = 1 to cancel the axion-gluon interaction in (15).
6 Even with this customary choice of Qa, there is still an axion-⇡0 kinetic mixing in the Lagrangian. However,

since the strength of this kinetic mixing ✏a⇡ ⇠ O(ma/m⇡) ⌧ 1, it is usually ignored in the literature [11].
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0.025 [33]. In the following sections, we will assume that the axion is massless in our calculations
since m
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for our numerical calculations).
Similarly, we can replace the axial vector currents of the light quark fields in Eq. (23) with
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which is written down for the first time in this study. Notice that there is no iso-singlet axial
vector current including the decuplet baryons since ✏
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= 0. From Eq. (26), we
can obtain the interactions between the axion, pions, and nucleons. However, they have been
derived a number of times in the literature [29, 33, 45], thus we do not go into the detail of their
derivations in this paper. Here we simply write down these interactions in the HBChPT as7
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In these axion couplings, �u = 0.847,�d = �0.407, and �s = �0.035 are the nucleon matrix
elements defined by hp|qS
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��pi = s

µ�q/2 with s
µ being the proton spin [33]. Notice that there

is a contact interaction for a-⇡-N , the C
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given in Eq. (17). On the other hand, the mass of the axion can be expressed

in terms of the light quark masses and the pion mass m
⇡

as

m
a
=

r
z

(1 + z)(1 + z + w)

f
⇡
m

⇡

f
a
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✓
109 GeV

f
a

◆
, (25)

where m
⇡
=

p
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+m
d
) ' 139.57MeV [44], and z ⌘ m

u
/m

d
' 0.485, and w ⌘ m

u
/m

s
'

0.025 [33]. In the following sections, we will assume that the axion is massless in our calculations
since m

a
⌧ m

⇡
with the typical values of f

a
(we will take f

a
= 109 GeV throughout this paper

for our numerical calculations).
Similarly, we can replace the axial vector currents of the light quark fields in Eq. (23) with

those of the hadron fields in Eq. (4) as follows [39]
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where J
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is an iso-singlet axial vector current, and
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which is written down for the first time in this study. Notice that there is no iso-singlet axial
vector current including the decuplet baryons since ✏

ijk

�
T

µ

v

�
ijm

�
B
v

�
mk

= 0. From Eq. (26), we
can obtain the interactions between the axion, pions, and nucleons. However, they have been
derived a number of times in the literature [29, 33, 45], thus we do not go into the detail of their
derivations in this paper. Here we simply write down these interactions in the HBChPT as7
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where the axion couplings to the charged pions and nucleons are given by
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✓
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=
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. (31)

In these axion couplings, �u = 0.847,�d = �0.407, and �s = �0.035 are the nucleon matrix
elements defined by hp|qS

µ

v
q
��pi = s

µ�q/2 with s
µ being the proton spin [33]. Notice that there

is a contact interaction for a-⇡-N , the C
a⇡N

term in Eq. (28), which was largely ignored in the

7 This can be done by using the identities, Bv�
µ
Bv = v

µ
BvBv and Bv�

µ
�
5
Bv = 2BvS

µ
vBv [31].
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In these axion couplings, �u = 0.847,�d = �0.407, and �s = �0.035 are the nucleon matrix
elements defined by hp|qS

µ

v
q
��pi = s

µ�q/2 with s
µ being the proton spin [33]. Notice that there

is a contact interaction for a-⇡-N , the C
a⇡N

term in Eq. (28), which was largely ignored in the
literature and should be present in order to respect the spontaneous chiral symmetry breaking
of QCD. Also, its relevance in the axion emission from the SNe was noted in Ref. [29].

7 This can be done by using the identities, Bv�
µ
Bv = v

µ
BvBv and Bv�

µ
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5
Bv = 2BvS

µ
vBv [31].
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on the light quark fields as [39]

q ! R
a
q = exp

✓
�i�

5 a

2f
a

Q
a

◆
q , hQ

a
i = 1 , (18)

where Q
a

is a real 3 by 3 matrix acting on the quark flavor space.5 To avoid the axion-⇡0 mass
mixing, the convenient choice of Q

a
is given by6 [39]

Q
a
=

M
�1
q

tr
�
M�1

q

� =
m

u
m

d
m

s

m
u
m

d
+m

u
m

s
+m

d
m

s

diag

✓
1

m
u

,
1

m
d

,
1

m
s

◆
. (20)

On the other hand, under this chiral transformation, the quark kinetic term in (15) is shifted as

q i�
µ
@
µ
q ! q i�

µ
@
µ
q +

@
µ
a

2f
a

q�
µ
�
5
Q

a
q +O

✓
a
2

f 2
a

◆
, (21)

while the light quark mass term becomes

q
L
M

q
q
R

! q
L
M

a
q
R
, q

R
M

q
q
L
! q

R
M

†
a
q
L
, (22)

where M
a
⌘ R

a
M

q
R

a
, and up to the second order in a/f

a
we have

M
a
= M

q
� i

a

2f
a

�
M

q
,Q

a

 
�

a
2

8f 2
a

��
M

q
,Q

a

 
,Q

a

 
+O

✓
a
3

f 3
a

◆
. (23)

With Eqs. (17), (20), and (21), the resulting Lagrangian with only the axion and quark fields is

L
aq

=
1

2
@µa@

µ
a+ q i�

µ
@
µ
q +

⌦
M

a
q
R
q
L
+M

†
a
q
L
q
R

↵
+

@µa

f
a

⌦�
Xq +Q

a

�
t̂
A
↵
J

Aµ

q
, (24)

where
�
t̂
A
 
=
�
t
A
 
[
�
t
0
 

with t
0 = I3⇥3/

p
6 and

⌦
t̂
A
t̂
B
↵
= �

AB
/2, and J

Aµ

q
= q�

µ
�
5
t̂
A
q are

the quark axial vector currents. For the last term in the above expression, we have applied the
relation M3⇥3 = 2hM3⇥3 t̂

A
it̂

A for any 3 by 3 Hermitian matrix M3⇥3. Our next step is to replace
the light quark fields in Eq. (23) with the corresponding hadron fields in the HBChPT.

First, we can replace the q
L
q
R

in the third term of Eq. (23) with the ⇧ in Eq. (4) since
both have the same transformation properties, U †

L
(q

L
q
R
)U †

R
⇠ U

†
L
⇧ U

†
R
. With the correct mass

dimension, we can write down

La⇡ =
1

2
f
2
⇡
B0

⌦
M

a
⇧† +M

†
a
⇧
↵
, (25)

5 With the convention of ✏0123 = +1, the functional measure in the quark field functional integration gives [43]
Z
DqDq̄ !

Z
DqDq̄ exp


i

Z
d4x

✓
�

g
2
s

32⇡2

a

fa

G
c
µ⌫

eGcµ⌫
hQai

◆�
(19)

under the chiral transformation in (17), where we take hQai = 1 to cancel the axion-gluon interaction in (15).
6 Even with this customary choice of Qa, there is still an axion-⇡0 kinetic mixing in the Lagrangian. However,

since the strength of this kinetic mixing ✏a⇡ ⇠ O(ma/m⇡) ⌧ 1, it is usually ignored in the literature [11].
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where B0 is determined by the pion mass. Plugging Eq. (22) into Eq. (24), to the first order in
⇡/f

⇡
, one can show that the mass mixing of the axion and ⇡

0 is automatically eliminated with
the choice of Q

a
given in Eq. (17). On the other hand, the mass of the axion can be expressed

in terms of the light quark masses and the pion mass m
⇡

as

m
a
=

r
z

(1 + z)(1 + z + w)

f
⇡
m

⇡

f
a

' 6meV
✓
109 GeV

f
a

◆
, (26)

where [44], and z ⌘ m
u
/m

d
' 0.485, and w ⌘ m

u
/m

s
' 0.025 [33]. In the following sections,

we will assume that the axion is massless in our calculations since m
a
⌧ m

⇡
with the typical

values of f
a

(we will take f
a
= 109 GeV throughout this paper for our numerical calculations).

Similarly, we can replace the axial vector currents of the light quark fields in Eq. (23) with
those of the hadron fields in Eq. (4) as follows [39]

L
a⇡B

=
@µa

f
a

⌦�
Xq +Q

a

�
t
A
↵
J

Aµ

⇡B
+

1

3
S

⌦
Xq +Q

a

↵
J

0µ
⇡B

�
, (27)

where J
0µ
⇡B

=
⌦
B
v
S
µ

v
B
v

↵
is an iso-singlet axial vector current, and

L
a⇡BT

=
@µa

f
a

⌦�
Xq +Q

a

�
t
A
↵
J

Aµ

⇡BT
, (28)

which is written down for the first time in this study. Notice that there is no iso-singlet axial
vector current including the decuplet baryons since ✏

ijk

�
T

µ

v

�
ijm

�
B
v

�
mk

= 0. From Eq. (26), we
can obtain the interactions between the axion, pions, and nucleons. However, they have been
derived a number of times in the literature [29, 33, 45], thus we do not go into the detail of their
derivations in this paper. Here we simply write down these interactions in the HBChPT as7

La⇡N =
@µa

f
a


C

ap
p
v
S
µ

v
p
v
+ C

an
n
v
S
µ

v
n
v
+

i

2f
⇡

C
a⇡N

�
⇡
+
p
v
v
µ
n
v
� ⇡

�
n
v
v
µ
p
v

��
, (29)

where the axion couplings to the charged pions and nucleons are given by

C
ap

= X
u
�u+X

d
�d+X

s
�s+

�u+ z�d+ w�s

1 + z + w
, (30)

C
an

= X
d
�u+X

u
�d+X

s
�s+

z�u+�d+ w�s

1 + z + w
, (31)

C
a⇡N

=
1
p
2

✓
X

u
�X

d
+

1� z

1 + z + w

◆
=

C
ap
� C

an
p
2g

A

. (32)

In these axion couplings, �u = 0.847,�d = �0.407, and �s = �0.035 are the nucleon matrix
elements defined by hp|qS

µ

v
q
��pi = s

µ�q/2 with s
µ being the proton spin [33]. Notice that there

is a contact interaction for a-⇡-N , the C
a⇡N

term in Eq. (28), which was largely ignored in the
literature and should be present in order to respect the spontaneous chiral symmetry breaking
of QCD. Also, its relevance in the axion emission from the SNe was noted in Ref. [29].

7 This can be done by using the identities, Bv�
µ
Bv = v

µ
BvBv and Bv�

µ
�
5
Bv = 2BvS

µ
vBv [31].
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In these axion couplings, �u = 0.847,�d = �0.407, and �s = �0.035 are the nucleon matrix
elements defined by hp|qS
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��pi = s

µ�q/2 with s
µ being the proton spin [33]. Notice that there

is a contact interaction for a-⇡-N , the C
a⇡N

term in Eq. (28), which was largely ignored in the
literature and should be present in order to respect the spontaneous chiral symmetry breaking
of QCD. Also, its relevance in the axion emission from the SNe was noted in Ref. [29].

7 This can be done by using the identities, Bv�
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BvBv and Bv�
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Bv = 2BvS
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term in Eq. (28), which was largely ignored in the
literature and should be present in order to respect the spontaneous chiral symmetry breaking
of QCD. Also, its relevance in the axion emission from the SNe was noted in Ref. [29].

7 This can be done by using the identities, Bv�
µ
Bv = v

µ
BvBv and Bv�

µ
�
5
Bv = 2BvS

µ
vBv [31].

8

where B0 is determined by the pion mass. Plugging Eq. (22) into Eq. (24), to the first order in
⇡/f

⇡
, one can show that the mass mixing of the axion and ⇡

0 is automatically eliminated with
the choice of Q

a
given in Eq. (17). On the other hand, the mass of the axion can be expressed

in terms of the light quark masses and the pion mass m
⇡

as

m
a
=

r
z

(1 + z)(1 + z + w)

f
⇡
m

⇡

f
a

' 6meV
✓
109 GeV

f
a

◆
, (26)

where [44], and z ⌘ m
u
/m

d
' 0.485, and w ⌘ m

u
/m

s
' 0.025 [33]. In the following sections,

we will assume that the axion is massless in our calculations since m
a
⌧ m

⇡
with the typical

values of f
a

(we will take f
a
= 109 GeV throughout this paper for our numerical calculations).

Similarly, we can replace the axial vector currents of the light quark fields in Eq. (23) with
those of the hadron fields in Eq. (4) as follows [39]
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=
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where J
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⇡B

=
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B
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S
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v
B
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↵
is an iso-singlet axial vector current, and
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a⇡BT
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⌦�
Xq +Q

a

�
t
A
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J

Aµ

⇡BT
, (28)

which is written down for the first time in this study. Notice that there is no iso-singlet axial
vector current including the decuplet baryons since ✏

ijk

�
T

µ

v

�
ijm

�
B
v

�
mk

= 0. From Eq. (26), we
can obtain the interactions between the axion, pions, and nucleons. However, they have been
derived a number of times in the literature [29, 33, 45], thus we do not go into the detail of their
derivations in this paper. Here we simply write down these interactions in the HBChPT as7
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where the axion couplings to the charged pions and nucleons are given by
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In these axion couplings, �u = 0.847,�d = �0.407, and �s = �0.035 are the nucleon matrix
elements defined by hp|qS

µ

v
q
��pi = s

µ�q/2 with s
µ being the proton spin [33]. Notice that there

is a contact interaction for a-⇡-N , the C
a⇡N

term in Eq. (28), which was largely ignored in the
literature and should be present in order to respect the spontaneous chiral symmetry breaking
of QCD. Also, its relevance in the axion emission from the SNe was noted in Ref. [29].

7 This can be done by using the identities, Bv�
µ
Bv = v

µ
BvBv and Bv�

µ
�
5
Bv = 2BvS

µ
vBv [31].
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where B0 is determined by the pion mass. Plugging Eq. (22) into Eq. (24), to the first order in
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, (26)

where [44], and z ⌘ m
u
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d
' 0.485, and w ⌘ m

u
/m

s
' 0.025 [33]. In the following sections,

we will assume that the axion is massless in our calculations since m
a
⌧ m

⇡
with the typical

values of f
a

(we will take f
a
= 109 GeV throughout this paper for our numerical calculations).

Similarly, we can replace the axial vector currents of the light quark fields in Eq. (23) with
those of the hadron fields in Eq. (4) as follows [39]
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where J
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is an iso-singlet axial vector current, and
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=
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f
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, (28)

which is written down for the first time in this study. Notice that there is no iso-singlet axial
vector current including the decuplet baryons since ✏

ijk

�
T

µ

v
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�
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= 0. From Eq. (26), we
can obtain the interactions between the axion, pions, and nucleons. However, they have been
derived a number of times in the literature [29, 33, 45], thus we do not go into the detail of their
derivations in this paper. Here we simply write down these interactions in the HBChPT as7
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where the axion couplings to the charged pions and nucleons are given by
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In these axion couplings, �u = 0.847,�d = �0.407, and �s = �0.035 are the nucleon matrix
elements defined by hp|qS

µ

v
q
��pi = s

µ�q/2 with s
µ being the proton spin [33]. Notice that there

is a contact interaction for a-⇡-N , the C
a⇡N

term in Eq. (28), which was largely ignored in the
literature and should be present in order to respect the spontaneous chiral symmetry breaking
of QCD. Also, its relevance in the axion emission from the SNe was noted in Ref. [29].

7 This can be done by using the identities, Bv�
µ
Bv = v

µ
BvBv and Bv�

µ
�
5
Bv = 2BvS

µ
vBv [31].
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where B0 is determined by the pion mass. Plugging Eq. (22) into Eq. (24), to the first order in
⇡/f

⇡
, one can show that the mass mixing of the axion and ⇡

0 is automatically eliminated with
the choice of Q

a
given in Eq. (17). On the other hand, the mass of the axion can be expressed

in terms of the light quark masses and the pion mass m
⇡

as

m
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=

r
z

(1 + z)(1 + z + w)

f
⇡
m

⇡

f
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' 6meV
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109 GeV

f
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, (26)

where [44], and z ⌘ m
u
/m

d
' 0.485, and w ⌘ m

u
/m

s
' 0.025 [33]. In the following sections,

we will assume that the axion is massless in our calculations since m
a
⌧ m

⇡
with the typical

values of f
a

(we will take f
a
= 109 GeV throughout this paper for our numerical calculations).

Similarly, we can replace the axial vector currents of the light quark fields in Eq. (23) with
those of the hadron fields in Eq. (4) as follows [39]
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=
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+
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, (27)

where J
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=
⌦
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is an iso-singlet axial vector current, and
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=
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f
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J

Aµ

⇡BT
, (28)

which is written down for the first time in this study. Notice that there is no iso-singlet axial
vector current including the decuplet baryons since ✏

ijk
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T

µ

v
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ijm

�
B
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mk

= 0. From Eq. (26), we
can obtain the interactions between the axion, pions, and nucleons. However, they have been
derived a number of times in the literature [29, 33, 45], thus we do not go into the detail of their
derivations in this paper. Here we simply write down these interactions in the HBChPT as7
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where the axion couplings to the charged pions and nucleons are given by
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, (30)
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In these axion couplings, �u = 0.847,�d = �0.407, and �s = �0.035 are the nucleon matrix
elements defined by hp|qS

µ

v
q
��pi = s

µ�q/2 with s
µ being the proton spin [33]. Notice that there

is a contact interaction for a-⇡-N , the C
a⇡N

term in Eq. (28), which was largely ignored in the
literature and should be present in order to respect the spontaneous chiral symmetry breaking
of QCD. Also, its relevance in the axion emission from the SNe was noted in Ref. [29].

7 This can be done by using the identities, Bv�
µ
Bv = v

µ
BvBv and Bv�

µ
�
5
Bv = 2BvS

µ
vBv [31].
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nucleon matrix element 

where B0 is determined by the pion mass. Plugging Eq. (22) into Eq. (24), to the first order in
⇡/f

⇡
, one can show that the mass mixing of the axion and ⇡

0 is automatically eliminated with
the choice of Q

a
given in Eq. (17). On the other hand, the mass of the axion can be expressed
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where [44], and z ⌘ m
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/m

d
' 0.485, and w ⌘ m

u
/m

s
' 0.025 [33]. In the following sections,

we will assume that the axion is massless in our calculations since m
a
⌧ m

⇡
with the typical

values of f
a

(we will take f
a
= 109 GeV throughout this paper for our numerical calculations).

Similarly, we can replace the axial vector currents of the light quark fields in Eq. (23) with
those of the hadron fields in Eq. (4) as follows [39]
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where J
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=
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, (28)

which is written down for the first time in this study. Notice that there is no iso-singlet axial
vector current including the decuplet baryons since ✏

ijk

�
T

µ

v

�
ijm

�
B
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mk

= 0. From Eq. (26), we
can obtain the interactions between the axion, pions, and nucleons. However, they have been
derived a number of times in the literature [29, 33, 45], thus we do not go into the detail of their
derivations in this paper. Here we simply write down these interactions in the HBChPT as7
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where the axion couplings to the charged pions and nucleons are given by
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In these axion couplings, �u = 0.847,�d = �0.407, and �s = �0.035 are the nucleon matrix
elements defined by hp|qS

µ

v
q
��pi = s

µ�q/2 with s
µ being the proton spin [33]. Notice that there

is a contact interaction for a-⇡-N , the C
a⇡N

term in Eq. (28), which was largely ignored in the
literature and should be present in order to respect the spontaneous chiral symmetry breaking
of QCD. Also, its relevance in the axion emission from the SNe was noted in Ref. [29].

7 This can be done by using the identities, Bv�
µ
Bv = v

µ
BvBv and Bv�

µ
�
5
Bv = 2BvS

µ
vBv [31].
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where B0 is determined by the pion mass. Plugging Eq. (22) into Eq. (24), to the first order in
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where [44], and z ⌘ m
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' 0.485, and w ⌘ m

u
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s
' 0.025 [33]. In the following sections,

we will assume that the axion is massless in our calculations since m
a
⌧ m

⇡
with the typical

values of f
a

(we will take f
a
= 109 GeV throughout this paper for our numerical calculations).

Similarly, we can replace the axial vector currents of the light quark fields in Eq. (23) with
those of the hadron fields in Eq. (4) as follows [39]
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which is written down for the first time in this study. Notice that there is no iso-singlet axial
vector current including the decuplet baryons since ✏

ijk
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= 0. From Eq. (26), we
can obtain the interactions between the axion, pions, and nucleons. However, they have been
derived a number of times in the literature [29, 33, 45], thus we do not go into the detail of their
derivations in this paper. Here we simply write down these interactions in the HBChPT as7
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where the axion couplings to the charged pions and nucleons are given by
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In these axion couplings, �u = 0.847,�d = �0.407, and �s = �0.035 are the nucleon matrix
elements defined by hp|qS

µ

v
q
��pi = s

µ�q/2 with s
µ being the proton spin [33]. Notice that there

is a contact interaction for a-⇡-N , the C
a⇡N

term in Eq. (28), which was largely ignored in the
literature and should be present in order to respect the spontaneous chiral symmetry breaking
of QCD. Also, its relevance in the axion emission from the SNe was noted in Ref. [29].

7 This can be done by using the identities, Bv�
µ
Bv = v

µ
BvBv and Bv�

µ
�
5
Bv = 2BvS

µ
vBv [31].
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on the light quark fields as [39]

q ! R
a
q = exp

✓
�i�

5 a

2f
a

Q
a

◆
q , hQ

a
i = 1 , (18)

where Q
a

is a real 3 by 3 matrix acting on the quark flavor space.5 To avoid the axion-⇡0 mass
mixing, the convenient choice of Q

a
is given by6 [39]

Q
a
=
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◆
. (20)

On the other hand, under this chiral transformation, the quark kinetic term in (15) is shifted as
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µ
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µ
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while the light quark mass term becomes
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L
, (22)

where M
a
⌘ R

a
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q
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a
, and up to the second order in a/f

a
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◆
. (23)

With Eqs. (17), (20), and (21), the resulting Lagrangian with only the axion and quark fields is

L
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2
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where
�
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[
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0 = I3⇥3/

p
6 and

⌦
t̂
A
t̂
B
↵
= �

AB
/2, and J

Aµ

q
= q�

µ
�
5
t̂
A
q are

the quark axial vector currents. For the last term in the above expression, we have applied the
relation M3⇥3 = 2hM3⇥3 t̂

A
it̂

A for any 3 by 3 Hermitian matrix M3⇥3. Our next step is to replace
the light quark fields in Eq. (23) with the corresponding hadron fields in the HBChPT.

First, we can replace the q
L
q
R

in the third term of Eq. (23) with the ⇧ in Eq. (4) since
both have the same transformation properties, U †
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L
q
R
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R
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†
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†
R
. With the correct mass

dimension, we can write down

La⇡ =
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2
f
2
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⌦
M

a
⇧† +M

†
a
⇧
↵
, (25)

5 With the convention of ✏0123 = +1, the functional measure in the quark field functional integration gives [43]
Z
DqDq̄ !

Z
DqDq̄ exp
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◆�
(19)

under the chiral transformation in (17), where we take hQai = 1 to cancel the axion-gluon interaction in (15).
6 Even with this customary choice of Qa, there is still an axion-⇡0 kinetic mixing in the Lagrangian. However,

since the strength of this kinetic mixing ✏a⇡ ⇠ O(ma/m⇡) ⌧ 1, it is usually ignored in the literature [11].
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where B0 is determined by the pion mass. Plugging Eq. (22) into Eq. (24), to the first order in
⇡/f

⇡
, one can show that the mass mixing of the axion and ⇡

0 is automatically eliminated with
the choice of Q

a
given in Eq. (17). On the other hand, the mass of the axion can be expressed

in terms of the light quark masses and the pion mass m
⇡

as

m
a
=

r
z

(1 + z)(1 + z + w)

f
⇡
m

⇡

f
a

' 6meV
✓
109 GeV

f
a

◆
, (26)

where [44], and z ⌘ m
u
/m

d
' 0.485, and w ⌘ m

u
/m

s
' 0.025 [33]. In the following sections,

we will assume that the axion is massless in our calculations since m
a
⌧ m

⇡
with the typical

values of f
a

(we will take f
a
= 109 GeV throughout this paper for our numerical calculations).

Similarly, we can replace the axial vector currents of the light quark fields in Eq. (23) with
those of the hadron fields in Eq. (4) as follows [39]

L
a⇡B

=
@µa

f
a

⌦�
Xq +Q

a

�
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⇡B
+
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�
, (27)

where J
0µ
⇡B

=
⌦
B
v
S
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v
B
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↵
is an iso-singlet axial vector current, and

L
a⇡BT

=
@µa

f
a

⌦�
Xq +Q

a

�
t
A
↵
J

Aµ

⇡BT
, (28)

which is written down for the first time in this study. Notice that there is no iso-singlet axial
vector current including the decuplet baryons since ✏

ijk

�
T

µ

v

�
ijm

�
B
v

�
mk

= 0. From Eq. (26), we
can obtain the interactions between the axion, pions, and nucleons. However, they have been
derived a number of times in the literature [29, 33, 45], thus we do not go into the detail of their
derivations in this paper. Here we simply write down these interactions in the HBChPT as7

La⇡N =
@µa

f
a
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+ C
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⇡
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p
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p
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, (29)

where the axion couplings to the charged pions and nucleons are given by

C
ap

= X
u
�u+X

d
�d+X

s
�s+

�u+ z�d+ w�s

1 + z + w
, (30)

C
an

= X
d
�u+X

u
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s
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z�u+�d+ w�s

1 + z + w
, (31)

C
a⇡N
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1
p
2

✓
X

u
�X

d
+

1� z

1 + z + w

◆
=

C
ap
� C

an
p
2g

A

. (32)

In these axion couplings, �u = 0.847,�d = �0.407, and �s = �0.035 are the nucleon matrix
elements defined by hp|qS

µ

v
q
��pi = s

µ�q/2 with s
µ being the proton spin [33]. Notice that there

is a contact interaction for a-⇡-N , the C
a⇡N

term in Eq. (28), which was largely ignored in the
literature and should be present in order to respect the spontaneous chiral symmetry breaking
of QCD. Also, its relevance in the axion emission from the SNe was noted in Ref. [29].

7 This can be done by using the identities, Bv�
µ
Bv = v

µ
BvBv and Bv�

µ
�
5
Bv = 2BvS

µ
vBv [31].
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In these axion couplings, �u = 0.847,�d = �0.407, and �s = �0.035 are the nucleon matrix
elements defined by hp|qS

µ

v
q
��pi = s

µ�q/2 with s
µ being the proton spin [33]. Notice that there

is a contact interaction for a-⇡-N , the C
a⇡N

term in Eq. (28), which was largely ignored in the
literature and should be present in order to respect the spontaneous chiral symmetry breaking
of QCD. Also, its relevance in the axion emission from the SNe was noted in Ref. [29].

7 This can be done by using the identities, Bv�
µ
Bv = v

µ
BvBv and Bv�
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5
Bv = 2BvS

µ
vBv [31].

8

On the other hand, one can extract the interactions of the axion, nucleons and � decuplet
baryons from Eq. (27) as

LaN� =
@µa

2f
a

h
C

ap�

�
p
v
�+

µ
+�+

µ
p
v

�
+ C

an�

�
n
v
�0

µ
+�0

µ
n
v

�i
, (33)

where the axion couplings to the nucleons and � baryons are given by

C
ap� = C

an� ⌘ CaN� = �
C
p
3

✓
X

u
�X

d
+

1� z

1 + z + w

◆
= �

p
3

2

�
C

ap
� C

an

�
. (34)

Note that this interaction Lagrangian describing �(1232) ! n + a is derived for the first time
in the HBChPT. We shall utilize Eqs. (8) and (32), and the corresponding couplings in order to
calculate the SN axion emission rate from the underlying process ⇡� + p ! �(1232) ! n+ a.

Notice that in our calculation of the axion to hadron couplings, the relative sign between the
SM and new physics contributions is opposite to most of the literature [29, 33, 45].8 This relative
sign is corresponding to the one between Xq and Q

a
in Eq. (23) which originates from the sign

in the exponent of the chiral transformation in Eq. (17) and is associated with the convention
of ✏0123 = +1. If one adopts ✏

0123 = �1, the prefactor signs of the aG eG terms in Eqs. (15) and
(18) are both flipped, which keeps the elimination of the aG eG term in Eq. (15), while the sign
in the exponent of the chiral transformation in Eq. (17) remains unchanged. That is to say, the
convention of the Levi-Civita tensor has nothing to do with this relative sign.

Finally, one can also note that the Ca⇡N and CaN� are not independent parameters as they
can be expressed in terms of C

ap
� C

an
as shown in Eqs. (31) and (33), respectively. The values

of these axion-hadron couplings are fixed in the KSVZ model and only vary with � in the DFSZ
model. With Eq. (16) and the above numerical inputs, we obtain9

C
ap

=

(
+0.430 KSVZ model
+0.712� 0.430 sin2

� DFSZ model
, (35)

C
an

=

(
+0.002 KSVZ model
� 0.134 + 0.406 sin2

� DFSZ model
, (36)

Ca⇡N =

(
+0.241 KSVZ model
+0.477� 0.471 sin2

� DFSZ model
, (37)

CaN� =

(
� 0.370 KSVZ model
� 0.732 + 0.724 sin2

� DFSZ model
. (38)

In the later section, we will use these couplings of the axion and hadrons, especially the axion-
nucleon-� couplings, to evaluate the supernova energy loss rate induced by the axion emission
process ⇡

� + p ! n + a. On top of that, we will discuss the effect of the � resonance on the
supernova axion emission rate compared to the case without the � resonance.

8 Our relative sign of the SM and new physics contributions in the axion-hadron couplings agrees with Ref. [39].
9 Here we have ignored the heavy quark (c, b, t) contributions to the axion-hadron couplings.
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FIG. 1: Feynman diagrams for ⇡
� + p ! n+ a with the � baryon contributions.

IV. SCATTERING CROSS SECTION OF ⇡� + p ! n + a

Before evaluating the supernova axion emission rate, let us first see the resonance behavior
in the cross section of the scattering process ⇡

� + p ! n+ a due to the �(1232) baryon. With
the interactions in Eqs. (8), (12), (28) and (32), the Feynman diagrams of the scattering process
⇡
� + p ! n+ a are depicted in Fig. 1, and the corresponding squared matrix element averaged

over the initial spin of the proton is given by10

��M⇡�p!na

��2 =
2m2

N

f 2
⇡
f 2
a

⌦
P+⌦

†
P+⌦

↵
, (39)

where m
N
= (m

n
+m

p
)/2 ' 938.9MeV is the averaged nucleon mass, P+ = diag(1, 1, 0, 0), and

⌦ =

p
2g

A
|k

⇡
||k

a
|

4E⇡

�
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ap
⇥� C

an
⇥†

�
+

Ca⇡N |ka
|

2
I4⇥4

+
C|k

⇡
||k

a
|

6
p
6

"
C

an�

�
3cos✓ I4⇥4 �⇥†

�

E
⇡
��m+ i��/2

+
C

ap�

�
3cos✓ I4⇥4 �⇥

�

E
⇡
+�m� i��/2

#
, (40)

where ⇥ = diag
�
e
+i✓

, e
�i✓

, e
+i✓

, e
�i✓

�
with ✓ being the scattering angle between k

⇡
and k

a
the

three momenta of the pion and axion, respectively, E
⇡
=

p
|k

⇡
|2 +m2

⇡
is the energy of the pion,

�m = m��m
N
' 293MeV is the mass difference between � decuplet baryon and nucleon, and

�� ' 117MeV is the decay width of the �(1232) baryon [47]. Using the following formula of
the cross section in the laboratory frame, where an incident charged pion collides with a proton
at rest

�
⇡�p!na

=

Z
d3k

a

(2⇡)32E
a

d3k
n

(2⇡)32E
n

(2⇡)4�(4)
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(41)

with k
j
= (E

j
,k

j
) is the four-momentum of particle species j, the resultant cross section of

⇡
� + p ! n+ a calculated in the HBChPT at large m

N
expansion is then

�
⇡�p!na

=
E⇡m

2
N

16⇡f 2
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f 2
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|k

⇡
|
G
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(|k
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|) , (42)

10 Here we have normalized the matrix element in the nonrelativistic limit to the one in the relativistic limit by
M⇡�p!na = 2mN (M⇡�p!na)NR [46].
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10 Here we have normalized the matrix element in the nonrelativistic limit to the one in the relativistic limit by
M⇡�p!na = 2mN (M⇡�p!na)NR [46].
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FIG. 1: Feynman diagrams for ⇡
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with C± ⌘
�
C

ap
± C

an

�
/2, and �̄� = ��/2.11 Notice that the first, second, and fourth terms

in Eq. (42) come from the nucleon-mediated, contact, and �-mediated diagrams in Fig. 1, re-
spectively, and the other terms are the interference terms of those contributions. Further, the
third term (last term) which is the interference term of the contact and nucleon-mediated (�-
mediated) diagrams is the subleading term (⇠ 1/m3

N
) in Eq. (42) at large m

N
expansion.

We show in Fig. 2 the scattering cross section of ⇡� + p ! n + a as a function of E
⇡

in the
KSVZ and DFSZ models, where solid (dashed) curves are evaluated with (without) large m

N

expansion. As anticipated, there is a resonance in the cross section when E
⇡
⇠ �m and this is

due to the �0-mediated diagram in Fig. 1. In the case of the DFSZ model, one can see that the
magnitude of the resonance becomes weaker as sin2

� ! 1. This can be easily understood based
on our calculation of the axion couplings to the decuplet baryons and nucleons in Eq. (37), where
|CaN�(sin

2
� ! 1)| ⇠ 0.01 which is suppressed compared to |CaN�(sin

2
� ! 0)| ⇠ 0.1. It is worth

11 To make our calculation result more reliable, we have also checked that Ga at leading order in 1/mN using the
Rarita-Schwinger propagator [48] is consisitent with the decuplet propagator in the HBChPT [32].
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On the other hand, one can extract the interactions of the axion, nucleons and � decuplet
baryons from Eq. (27) as

LaN� =
@µa

2f
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h
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+�+

µ
p
v

�
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�
n
v
�0

µ
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µ
n
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�i
, (33)

where the axion couplings to the nucleons and � baryons are given by

C
ap� = C

an� ⌘ CaN� = �
C
p
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d
+

1� z
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◆
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p
3
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�
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� C
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�
. (34)

Note that this interaction Lagrangian describing �(1232) ! n + a is derived for the first time
in the HBChPT. We shall utilize Eqs. (8) and (32), and the corresponding couplings in order to
calculate the SN axion emission rate from the underlying process ⇡� + p ! �(1232) ! n+ a.

Notice that in our calculation of the axion to hadron couplings, the relative sign between the
SM and new physics contributions is opposite to most of the literature [29, 33, 45].8 This relative
sign is corresponding to the one between Xq and Q

a
in Eq. (23) which originates from the sign

in the exponent of the chiral transformation in Eq. (17) and is associated with the convention
of ✏0123 = +1. If one adopts ✏

0123 = �1, the prefactor signs of the aG eG terms in Eqs. (15) and
(18) are both flipped, which keeps the elimination of the aG eG term in Eq. (15), while the sign
in the exponent of the chiral transformation in Eq. (17) remains unchanged. That is to say, the
convention of the Levi-Civita tensor has nothing to do with this relative sign.

Finally, one can also note that the Ca⇡N and CaN� are not independent parameters as they
can be expressed in terms of C

ap
� C

an
as shown in Eqs. (31) and (33), respectively. The values

of these axion-hadron couplings are fixed in the KSVZ model and only vary with � in the DFSZ
model. With Eq. (16) and the above numerical inputs, we obtain9

C
ap

=

(
+0.430 KSVZ model
+0.712� 0.430 sin2

� DFSZ model
, (35)

C
an

=

(
+0.002 KSVZ model
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� DFSZ model
, (36)

Ca⇡N =
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+0.477� 0.471 sin2

� DFSZ model
, (37)

CaN� =

(
� 0.370 KSVZ model
� 0.732 + 0.724 sin2

� DFSZ model
. (38)

In the later section, we will use these couplings of the axion and hadrons, especially the axion-
nucleon-� couplings, to evaluate the supernova energy loss rate induced by the axion emission
process ⇡

� + p ! n + a. On top of that, we will discuss the effect of the � resonance on the
supernova axion emission rate compared to the case without the � resonance.

8 Our relative sign of the SM and new physics contributions in the axion-hadron couplings agrees with Ref. [39].
9 Here we have ignored the heavy quark (c, b, t) contributions to the axion-hadron couplings.
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with C± ⌘
�
C

ap
± C

an

�
/2, and �̄� = ��/2.11 Notice that the first, second, and fourth terms

in Eq. (43) come from the nucleon-mediated, contact, and �-mediated diagrams in Fig. 1, re-
spectively, and the other terms are the interference terms of those contributions. Further, the
third term (last term) which is the interference term of the contact and nucleon-mediated (�-
mediated) diagrams is the subleading term (⇠ 1/m3

N
) in Eq. (43) at large m

N
expansion.

We show in Fig. 2 the scattering cross section of ⇡� + p ! n + a as a function of E
⇡

in the
KSVZ and DFSZ models, where solid (dashed) curves are evaluated with (without) large m

N

expansion. As anticipated, there is a resonance in the cross section when E
⇡
⇠ �m and this is

due to the �0-mediated diagram in Fig. 1. In the case of the DFSZ model, one can see that the
magnitude of the resonance becomes weaker as sin2

� ! 1. This can be easily understood based
on our calculation of the axion couplings to the decuplet baryons and nucleons in Eq. (38), where
|CaN�(sin

2
� ! 1)| ⇠ 0.01 which is suppressed compared to |CaN�(sin

2
� ! 0)| ⇠ 0.1. It is worth

11 To make our calculation result more reliable, we have also checked that Ga at leading order in 1/mN using the
Rarita-Schwinger propagator [48] is consisitent with the decuplet propagator in the HBChPT [32].
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mentioning that the ⇡
� + p ! n+ a cross section in the KSVZ model is roughly corresponding

to that in the DFSZ model with sin2
� ⇠ 1/2 as can be observed in Fig. 2. We expect that this

correspondence will also occur in the supernova axion emissivity discussed in the next section.

V. SUPERNOVA AXION EMISSION RATE WITH �(1232) RESONANCE

Given the axion-nucleon-� couplings derived in Sec. III, we can now evaluate the supernova
axion emissivity of the process ⇡

� + p ! n + a with the contribution from the � resonance as
shown in Fig. 2. The Feynman graphs of this axion emission process are the same as in Fig. 1.
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per unit volume and time) via the process ⇡
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Ėa =

Z
d3k

⇡

(2⇡)32E
⇡

d3k
p

(2⇡)32E
p

d3k
a

(2⇡)32E
a

d3k
n

(2⇡)32E
n

(2⇡)4�(4)
�
k
⇡
+ k

p
� k

a
� k

n

�

⇥ f
⇡
(|k

⇡
|)f

p
(|k

p
|)
⇥
1� f

n
(|k

n
|)
⇤��M

⇡�p!na

��2E
a
, (44)

where f
j
(|k

j
|) = 1/

⇥
e
(Ej�µj)/T )

±1
⇤
is the Bose-Einstein (�) or Fermi-Dirac (+) distribution func-

tion with µ
j

being the chemical potential of particle species j, and |M⇡�p!na |
2 = 2 |M⇡�p!na |

2

is the squared matrix element summing over the initial and final nucleon spins. In the 1/m
N

expansion, the supernova axion emissivity with the � resonance contribution is calculated as12
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here we have made use of Eq. (34) to simplify the above expression.
We show in Fig. 3 the supernova axion emission rate as a function of sin2

� for T = 30MeV
and 40MeV in the DFSZ model, where the distinction of the solid and dashed curves has been
mentioned in the previous section. In these two figures, the gray band is excluded by tree-level
unitarity of fermion scattering, where only 0.25 . tan � . 170 is allowed [42]. Notice that the
upper bound of sin2

� is not evident in the figures since it is extremely close to 1. These bounds
on tan � also prevent the SM quarks to be massless in the DFSZ model, where m

u
⇠ y

u
� sin �

12 Our resulting supernova axion emission rate at leading order in 1/mN agrees with Ref. [29] without the axion
to � interactions and slightly disagrees with Ref. [27] without the axion contact and axion to � interactions.
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Ėa =
z
⇡
z
p

f 2
⇡
f 2
a

r
m

7
N
T 11

128⇡10

Z 1

0

dx
p

x
2
p
e
x
2
p

�
e
x2
p + z

n

��
e
x2
p + z

p

�
Z 1

0

dx
⇡

x
2
⇡
✏
⇡

⇥
G
a
(x

⇡
) +�G

a
(x

⇡
)
⇤

e✏⇡�y⇡ � z
⇡

, (45)

where z
j
= e

(µj�mj)/T is the fugacity of particle species j,

x
p
=

|k
p
|

p
2m

N
T

, x
⇡
=

|k
⇡
|

T
, ✏

⇡
=

E
⇡

T
, y

⇡
=

m
⇡

T
(46)

with ✏
2
⇡
= x

2
⇡
+ y

2
⇡
, G

a
(x

⇡
) = G

a
(|k

⇡
|) is given in Eq. (43), and

�G
a
(x

⇡
) =

p
2g

A
C

a⇡N
C�

3

E
4
⇡
� 3

�
�m

2
� �̄2

�

�
E

2
⇡
+ 2

�
�m

2 + �̄2
�

�
2

⇥�
�m� E

⇡

�
2 + �̄2

�

⇤⇥�
�m+ E

⇡

�
2 + �̄2

�

⇤
✓
|k

⇡
|

m
N

◆2✓
E

⇡

m
N

◆
, (47)

here we have made use of Eq. (34) to simplify the above expression.
We show in Fig. 3 the supernova axion emission rate as a function of sin2

� for T = 30MeV
and 40MeV in the DFSZ model, where the distinction of the solid and dashed curves has been
mentioned in the previous section. In these two figures, the gray band is excluded by tree-level
unitarity of fermion scattering, where only 0.25 . tan � . 170 is allowed [42]. Notice that the
upper bound of sin2

� is not evident in the figures since it is extremely close to 1. These bounds
on tan � also prevent the SM quarks to be massless in the DFSZ model, where m

u
⇠ y

u
� sin �

12 Our resulting supernova axion emission rate at leading order in 1/mN agrees with Ref. [29] without the axion
to � interactions and slightly disagrees with Ref. [27] without the axion contact and axion to � interactions.

12

mentioning that the ⇡
� + p ! n+ a cross section in the KSVZ model is roughly corresponding

to that in the DFSZ model with sin2
� ⇠ 1/2 as can be observed in Fig. 2. We expect that this

correspondence will also occur in the supernova axion emissivity discussed in the next section.

V. SUPERNOVA AXION EMISSION RATE WITH �(1232) RESONANCE

Given the axion-nucleon-� couplings derived in Sec. III, we can now evaluate the supernova
axion emissivity of the process ⇡

� + p ! n + a with the contribution from the � resonance as
shown in Fig. 2. The Feynman graphs of this axion emission process are the same as in Fig. 1.

Following Ref. [29], the supernova axion emission rate (the energy loss by axion radiations
per unit volume and time) via the process ⇡

� + p ! a+ n is given by

Ėa =

Z
d3k

⇡

(2⇡)32E
⇡

d3k
p

(2⇡)32E
p

d3k
a

(2⇡)32E
a

d3k
n

(2⇡)32E
n

(2⇡)4�(4)
�
k
⇡
+ k

p
� k

a
� k

n

�

⇥ f
⇡
(|k

⇡
|)f

p
(|k

p
|)
⇥
1� f

n
(|k

n
|)
⇤��M

⇡�p!na

��2E
a
, (44)

where f
j
(|k

j
|) = 1/

⇥
e
(Ej�µj)/T )

±1
⇤
is the Bose-Einstein (�) or Fermi-Dirac (+) distribution func-

tion with µ
j

being the chemical potential of particle species j, and |M⇡�p!na |
2 = 2 |M⇡�p!na |

2

is the squared matrix element summing over the initial and final nucleon spins. In the 1/m
N

expansion, the supernova axion emissivity with the � resonance contribution is calculated as12
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here we have made use of Eq. (34) to simplify the above expression.
We show in Fig. 3 the supernova axion emission rate as a function of sin2

� for T = 30MeV
and 40MeV in the DFSZ model, where the distinction of the solid and dashed curves has been
mentioned in the previous section. In these two figures, the gray band is excluded by tree-level
unitarity of fermion scattering, where only 0.25 . tan � . 170 is allowed [42]. Notice that the
upper bound of sin2

� is not evident in the figures since it is extremely close to 1. These bounds
on tan � also prevent the SM quarks to be massless in the DFSZ model, where m

u
⇠ y

u
� sin �

12 Our resulting supernova axion emission rate at leading order in 1/mN agrees with Ref. [29] without the axion
to � interactions and slightly disagrees with Ref. [27] without the axion contact and axion to � interactions.
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mentioning that the ⇡
� + p ! n+ a cross section in the KSVZ model is roughly corresponding

to that in the DFSZ model with sin2
� ⇠ 1/2 as can be observed in Fig. 2. We expect that this

correspondence will also occur in the supernova axion emissivity discussed in the next section.

V. SUPERNOVA AXION EMISSION RATE WITH �(1232) RESONANCE

Given the axion-nucleon-� couplings derived in Sec. III, we can now evaluate the supernova
axion emissivity of the process ⇡

� + p ! n + a with the contribution from the � resonance as
shown in Fig. 2. The Feynman graphs of this axion emission process are the same as in Fig. 1.
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here we have made use of Eq. (34) to simplify the above expression.
We show in Fig. 3 the supernova axion emission rate as a function of sin2

� for T = 30MeV
and 40MeV in the DFSZ model, where the distinction of the solid and dashed curves has been
mentioned in the previous section. In these two figures, the gray band is excluded by tree-level
unitarity of fermion scattering, where only 0.25 . tan � . 170 is allowed [42]. Notice that the
upper bound of sin2

� is not evident in the figures since it is extremely close to 1. These bounds
on tan � also prevent the SM quarks to be massless in the DFSZ model, where m
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12 Our resulting supernova axion emission rate at leading order in 1/mN agrees with Ref. [29] without the axion
to � interactions and slightly disagrees with Ref. [27] without the axion contact and axion to � interactions.
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here we have made use of Eq. (34) to simplify the above expression.
We show in Fig. 3 the supernova axion emission rate as a function of sin2

� for T = 30MeV
and 40MeV in the DFSZ model, where the distinction of the solid and dashed curves has been
mentioned in the previous section. In these two figures, the gray band is excluded by tree-level
unitarity of fermion scattering, where only 0.25 . tan � . 170 is allowed [42]. Notice that the
upper bound of sin2

� is not evident in the figures since it is extremely close to 1. These bounds
on tan � also prevent the SM quarks to be massless in the DFSZ model, where m

u
⇠ y

u
� sin �

12 Our resulting supernova axion emission rate at leading order in 1/mN agrees with Ref. [29] without the axion
to � interactions and slightly disagrees with Ref. [27] without the axion contact and axion to � interactions.
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!The gray band is excluded by tree-level unitarity of fermion 
scattering :
!Supernova axion emissivity can be enhanced at most by a 
factor of    5 for             compared to the earlier studies.
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Summary
!We have estimated the supernova axion emissivity with the
∆(1232) resonance in the HBChPT.
!We have noticed that the supernova axion emissivity was 
overestimated by                     in DFSZ and KSVZ models.
!We have shown that the supernova axion emissivity can be
enhanced by a factor of 4 in the KSVZ model and up to a
factor of 5 in the DFSZ model with compared
to the case without the and d.
!We have found that the ∆ resonance can give a destructive
contribution to the supernova axion emissivity at high . 


