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Information Theory
motivation

• How much information is present in HEP data?


• How much information do collider variables share?                        
Dependence and Independence


• What is the most relevant and efficient set of input data?


• Is it possible to construct machine learning (ML) models robust to the 
physical variables of interest?


• Or … robust to the uncertainties introduced by unknown systematics?



Information Theory 101
Information

• An event with the probability 1 has no information


• An event with less probability has more information


• Total information from two independent events should be the sum of each 
information


• Shannon Information                                                          

satisfies all the conditions listed above

I = log
1

p(x)
= − log p(x)



Information Theory 101
Differential entropy

• Entropy is the average of the information              


• Differential entropy (or continuous entropy)  


• We write it as an expectation value with pdf p         


• Joint entropy                                                         

H(X) = ∑
i

pi log
1
pi

H(ΔX) = ∫ΔX
dx p(x) log

1
p(x)

H(X) = Ep[−log p(x)]

H(X, Y) = Ep[−log p(x, y)]



Information Theory 101
Differential entropy

• Entropy is the average of the information              


• Differential entropy (or continuous entropy)  


• Mapping , we get  which can be negative 
as 


• Differential entropy is not positive definite

H(X) = ∑
i

pi log
1
pi

H(ΔX) = ∫ΔX
dx p(x) log

1
p(x)

p̄xi
Δ → pi H(ΔX) = H(X) + log Δ

Δ → 0



Information Theory 101
Entropy

• Cross entropy                                                             




• Conditional entropy                          




• Joint entropy                                                         

H( f; g) = Ef[−log g(x)] = ∫ dx f(x) log
1

g(x)

H(Y |X) = Ep[−log p(y |x)] = ∫ dx dy p(x, y) log
1

p(y |x)

H(X, Y) = Ep[−log p(x, y)] = ∫ dx dy p(x, y) log
1

p(x, y)



Information Theory 101
Bregman divergence

• Bregman divergence for a convex function ,             



•  for all 


•  iff 


• Taking , we can define Kullback-Leibler 
divergence

F
DF(p, q) = F(p) − F(q) − < ∇F(q), p − q >

DF(p, q) ≥ 0 p, q

DF(p, q) = 0 p = q

F(p) = ∫ dx p(x) log p(x)

q
p

DF(p, q)F



Information Theory 101
Bregman divergence to Kullback-Leibler divergence

• Bregman divergence for convex function ,             



• 


•   if 

F
DF(p, q) = F(p) − F(q) − < ∇F(q), p − q >

DF(p, q) = ∫ dx (p log p − q log q − (p − q)log q − (p − q))

DKL(p, q) = ∫ dx p(x) log (
p(x)
q(x)

) ∫ dx p(x) = ∫ dx q(x) = 1



Information Theory 101
Kullback-Leibler divergence

• Kullback-Leibler (KL) divergence 


• In terms of entropy, it is a combination of the cross entropy and the entropy



• Sorry for inconvenience due to 


• ; for relative entropy and mutual information


• | is used for the conditional pdf/entropy but is used for KL divergence


• , is used for joint pdf/entropy but is used for Bregman divergence

DKL(p |q) = ∫ dx p(x) log
p(x)
q(x)

= Ef [log
p(x)
q(x)

]

DKL(p |q) = H(p; q) − H(p)

→



Information Theory 101
Kullback-Leibler (KL) divergence

• Kullback-Leibler (KL) divergence 




•  iff  for all 


• From , varying  :  keeping , 

DKL(p |q) = ∫ dx p(x) log
p(x)
q(x)

= Ef [log
p(x)
q(x)

] ≥ 0

DKL(p |q) = 0 p(x) = q(x) x

q(x) = p(x) q(x) Δq(x1)Δx = − Δq(x2)Δx ∫ dx q(x) = 1

δDKL(p |q) = Δx (−p1 log(1 +
Δq
p1

) − p2 log(1 −
Δq
p2

)) = ∑
i=1,2

Δ2

pi
Δx > 0

x1x2



Information Theory 101
Conditional probability and entropy

• Conditional probability                                                   


• Conditional entropy :                         




• Similarly, 


• 


•

p(x, y) = p(x |y)p(y) = p(y |x)p(x)

Y − Y ∩ X
H(Y |X) = ∫ dx dy p(x, y) log

p(x)
p(x, y)

= H(X, Y) − H(X)

H(X |Y) = H(X, Y) − H(Y)

H(X, Y) = H(X |Y) + H(Y) = H(Y |X) + H(X)

2H(X, Y) = H(X |Y) + H(Y |X) + H(X) + H(Y)

X − X ∩ Y Y − Y ∩ X



Information Theory 101
Mutual information

•  


• Mutual information : entropy of        




• Mutual information from KL divergence         



• MI = diff. ent of  + diff. ent. of  - diff. ent. of 

I(X; Y) = H(X) − H(X |Y) = H(Y) − H(Y |X) = H(X) + H(Y) − H(X, Y)

X ∩ Y
I(X; Y) = ∫ dxdyp(x, y) log

p(x, y)
p(x)p(y)

I(X; Y) = DKL(p(x, y) |p(x)p(y))

X Y X ∪ Y

X ∩ Y



Information Theory 101
Mutual information

• Mutual information vs Pearson’s correlation coefficient                                                        


• 


•    for the correlation   (bivariate normal pdf)


•  implies that  is achieved only when                            
 and  are independent, i.e.,  for all  and .

I(X; Y) = H(X) + H(Y) − H(X, Y) = ∫ dxdy p(x, y) log
p(x, y)

p(x)p(y)

I(ΔX; ΔY) = −
1
2

log(1 − r2
Δ) rΔ

I(X; Y) ≥ 0 I(X; Y) = 0
X Y p(x, y) = p(x)p(y) x y



Information Theory 101
MI vs Pearson’s correlation coefficient

• Covariance can be computed as a sum


• Zero covariance does not guarantee the independence


• If they have positive correlation in some parts and negative correlation in 
other parts, the total correlation can be zero (or small)


• On the other hand  guarantees the independenceI(X; Y) = 0



Mutual Information for Machine Unlearning
Independence of the variables

• When the integrand is positive definite,  the vanishing integral 
provides a strong condition to the integrand,                                          

                                                         for all 


• Similarly, for MI as it is defined using KL divergence
                  for all 


• The variables are independent if 

f(x) ≥ 0,

F = ∫ dx f(x) = 0 → f(x) = 0 x

I = DKL(p(x, y) |p(x)p(y)) = 0 → p(x, y) = p(x)p(y) x, y

I = 0



Pointwise Mutual Information (PMI)
(*Language model : PMI^k)

• Pointwise Mutual Information               


• Positive PMI                        


•
Normalized PMI                  


•               (1:correlated,   0:independent,   -1:exclusive)

x, y PMI(x, y) = log
p(x, y)

p(x)p(y)

PPMI(x, y) = max ( log
p(x, y)

p(x)p(y)
, 0 )

NPMI(x, y) =
log p(x, y)

p(x)p(y)

log 1
p(x, y)

−1 ≤ NPMI ≤ 1



Metric
between pairs of points

• Metric       satisfies triangle inequality, non-
negativity, indiscernability                                     


• Normalized metric  ,    

d(X, Y) = H(X, Y) − I(X; Y)
0 ≤ d(X, Y) ≤ H(X, Y)

D(X, Y) =
d(X, Y)
H(X, Y)

= 1 −
I(X; Y)
H(X, Y)

0 ≤ D(X, Y) ≤ 1



Information Quality Ratio (IQR)
Redundancy or uncertainty (ref: correlation from variance and covariance )r =

σxy

σxσy

• Redundancy                                                                      


• Symmetric uncertainty                                            


• Information Quality Ratio                                              


• Normalized mutual information                                     

R =
I(X; Y)

H(X) + H(Y)

U = 2R =
2I(X; Y)

H(X) + H(Y)

IQR(X, Y) =
I(X; Y)
H(X, Y)

NMI =
I(X; Y)

H(X)H(Y)



How to estimate MI?
Neural Estimators based on variational representation of DKL

• MI is hard to compute unless the exact pdf is known


• In most cases, the underlying pdf is not known a priori


• Thus MI is hard to estimate, with finite data samples, in a non-parametric way 
without any assumptions on the pdf


• MINE: Mutual Information Neutral Estimation arXiv:1801.04062


• Finding tractable representation of MI to obtain a relevant gradient flow from a 
MI loss function to train down to the input connected models would be 
important for deep learning models



Mutual Information Neural Estimation (MINE)
Donsker-Varadhan Representation of KL

• Donsker-Varadhan (DV) representation 


• 


• (proof)  and , 

 

therefore, 


• Equality holds for 

DKL(p |q) = supT:Ω→ℝEp[T] − log(Eq[eT])

DKL(p |q) ≥ Ep[T] − log(Eq[eT])

Z = Eq[eT] = ∫ dxq(x)eT(x) g(x) =
1
Z

eT(x)q(x)

Ep[T] − log Eq[eT] = Ep(T − log Eq[ET]) = Ep(log
eTq(x)
Eq[eT]

1
q(x)

) = Ep(log
g(x)
q(x)

)

Ep(log
p(x)
q(x)

− log
g(x)
q(x)

) = Ep(log
p(x)
g(x)

) = DKL(p |g) ≥ 0

g(x) = p(x)



Mutual Information using Neural Estimation
f-Divergence Representation of KL

• f-divergence representation 


•  from 


• The bound is weaker but is easy to compute and can be useful practically

DKL(p |q) ≥ supT:Ω→ℝEp[T] − (Eq[eT−1])

Eq[eT−1] ≥ log(Eq[eT])
x
e

≥ log x



Mutual Information with DV
DV Representation

•  where 
 is a neural network


• Using n samples of X, we can estimate MI which converges well


• The estimated gradient of  in the network is 

 where  is a batch of data


• The first (second) term from the joint (marginal) distribution

I(X; Y) ≥ IΘ(X; Y) = supθ∈Θ (Ep(x,y)[Tθ] − log(Ep(x)p(y)[eTθ]))
TΘ : X × Y → ℝ

θ

ĜB = EB[∇θTθ] −
EB[∇θTθeTθ]

EB[eTθ]
B



Application : Higgs to dimuon
Machine not to learn invariant mass of dimuon

• VBF gives the best sensitivity while ggF has the larger cross section


• Mainly due to the background form DY for ggF


• VBF has a relatively clean background


• Initial state radiation (ISR) can be used to enhance signal to background ratio 
for ggF channel Higgs since ggF ISR is gluon rich while DY ISR is quark rich


• Process dependent discrimination would work using quark/gluon jet 
discrimination from deep learning


• However, invariant mass distribution is distorted by categorization



JHEP 01(2021) 148

• CMS : 3.0  excess ( Expected  : 2.5 ; VBF ~ 1.8  / ggH ~ 1.6  )σ σ σ σ

Motivation

 ggH : 88%

 : 1% tt̄H

VH : 4%

VBF : 7%

arXiv : 1610.07922

from SB Han, talk at KPS 2022



Before



Invariant mass distribution
signal



Invariant mass distribution
background



Invariant mass distribution
                     signal                                       background



Mutual Information
Figure out the most important observables in deep learning

mμμ



Scoreboard
signal vs background



After



Invariant mass distribution
signal



Invariant mass distribution
background



Invariant mass distribution
                     signal                                             background



Mutual Information
signal

mμμ



Mutual Information
background

mμμ



Scoreboard
signal vs background



Summary
Mutual Information as a tool for machine unlearning

• Deep learning is very helpful in many examples including jet substructure 
studies for signal and background discrimination


• Often it distorts the very nice invariant mass distribution of the signal


• Precision measurement is possible if the nice features are preserved


• Machine can unlearn certain input (dimuon invariant mass in the example) by 
minimizing MI of the output with certain input


• MI=0 guarantees the independence of two variables



Thank you!




