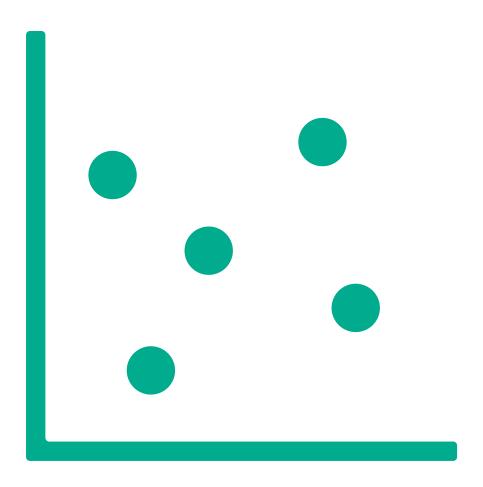
Entropy, Geometry and Collider Physics

Mutual Information and Machine Unlearning

2023. 2. 21 BSM workshop at CAU, Seoul, Korea W Cho S Han H D Kim

Information Theory motivation

- How much information is present in HEP data?
- How much information do collider variables share? Dependence and Independence
- What is the most relevant and efficient set of input data?
- Is it possible to construct machine learning (ML) models robust to the physical variables of interest?
- Or ... robust to the uncertainties introduced by unknown systematics?



Information Theory 101 Information

- An event with the probability 1 has no information
- An event with less probability has more information
- Total information from two independent events should be the sum of each information
- Shannon Information

satisfies all the conditions listed above

$$I = \log \frac{1}{p(x)} = -\log p(x)$$

Information Theory 101 Differential entropy

Entropy is the average of the inform

- Differential entropy (or continuous e
- We write it as an expectation value
- Joint entropy

mation
$$H(X) = \sum_{i} p_i \log \frac{1}{p_i}$$

entropy) $H(\Delta X) = \int_{\Delta X} dx \ p(x) \ \log \frac{1}{p(x)}$
with pdf p $H(X) = E_p[-\log p(x)]$
 $H(X, Y) = E_p[-\log p(x, y)]$

Information Theory 101 **Differential entropy**

Entropy is the average of the inform

- Differential entropy (or continuous e
- as $\Delta \rightarrow 0$
- Differential entropy is not positive definite

Thation
$$H(X) = \sum_{i} p_i \log \frac{1}{p_i}$$

Entropy) $H(\Delta X) = \int_{\Delta X} dx \ p(x) \ \log \frac{1}{p(x)}$

• Mapping $\bar{p}_{\chi_i} \Delta \to p_i$, we get $H(\Delta X) = H(X) + \log \Delta$ which can be negative

Information Theory 101 Entropy

- Cross entropy $H(f;g) = E_f[-\log g(x)] = \int dx f(x)$
- Conditional entropy $H(Y|X) = E_p[-\log p(y|x)] = \int dx$
- Joint entropy $H(X, Y) = E_p[-\log p(x, y)] = dx$

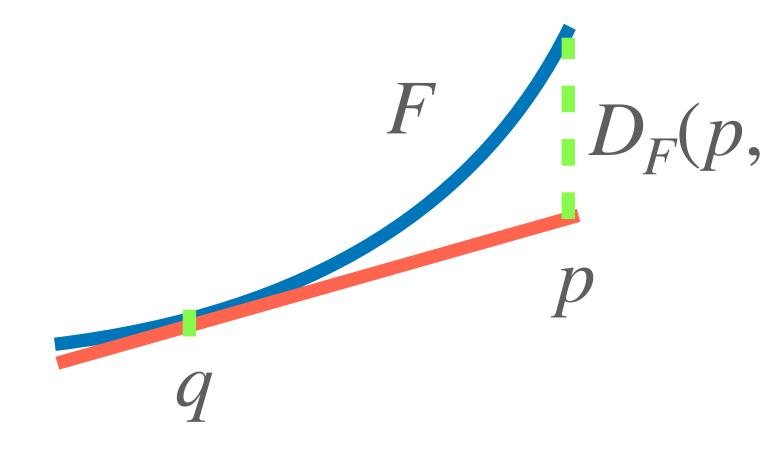
(x)
$$\log \frac{1}{g(x)}$$

$$lx \ dy \ p(x, y) \ \log \frac{1}{p(y | x)}$$

$$\frac{1}{x \ dy \ p(x, y)} \ \log \frac{1}{p(x, y)}$$

Information Theory 101 Bregman divergence

- Bregman divergence for a convex function F, $D_F(p,q) = F(p) - F(q) - \langle \nabla F(q), p - q \rangle$
- $D_F(p,q) \ge 0$ for all p,q
- $D_F(p,q) = 0$ iff p = q
- Taking $F(p) = \int dx \ p(x) \log p(x)$, we can define Kullback-Leibler divergence



Information Theory 101 Bregman divergence to Kullback-Leibler divergence

• Bregman divergence for convex function F, $D_F(p,q) = F(p) - F(q) - \langle \nabla F(q), p - q \rangle$

$$D_F(p,q) = \int dx \left(p \log p - q \log q \right)$$

•
$$D_F(p,q) = \int dx \left(p \log p - q \log q - (p-q) \log q - (p-q) \right)$$

• $D_{KL}(p,q) = \int dx \ p(x) \ \log \left(\frac{p(x)}{q(x)} \right) \ \text{if} \ \int dx \ p(x) = \int dx \ q(x) = 1$

Information Theory 101 **Kullback-Leibler divergence**

- Kullback-Leibler (KL) divergence $D_{KL}(p)$
- In terms of entropy, it is a combination of the cross entropy and the entropy $D_{KI}(p | q) = H(p; q) - H(p)$
- Sorry for inconvenience due to \rightarrow
 - ; for relative entropy and mutual information
 - is used for the conditional pdf/entropy but is used for KL divergence
 - , is used for joint pdf/entropy but is used for Bregman divergence

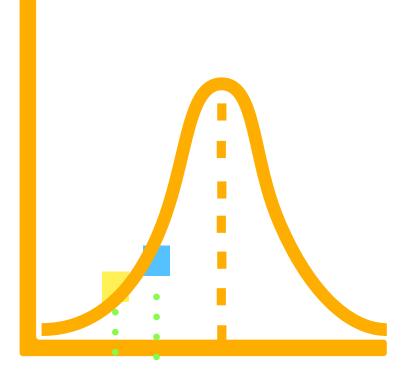
$$p|q) = \int dx \ p(x) \ \log \ \frac{p(x)}{q(x)} = E_f \left[\log \frac{p(x)}{q(x)}\right]$$

-]

Information Theory 101 Kullback-Leibler (KL) divergence

- Kullback-Leibler (KL) divergence $D_{KL}(p | q) = \int dx \ p(x) \ \log \ \frac{p(x)}{q(x)} =$
- $D_{KL}(p | q) = 0$ iff p(x) = q(x) for all x

$$E_f\left[\log\frac{p(x)}{q(x)}\right] \ge 0$$



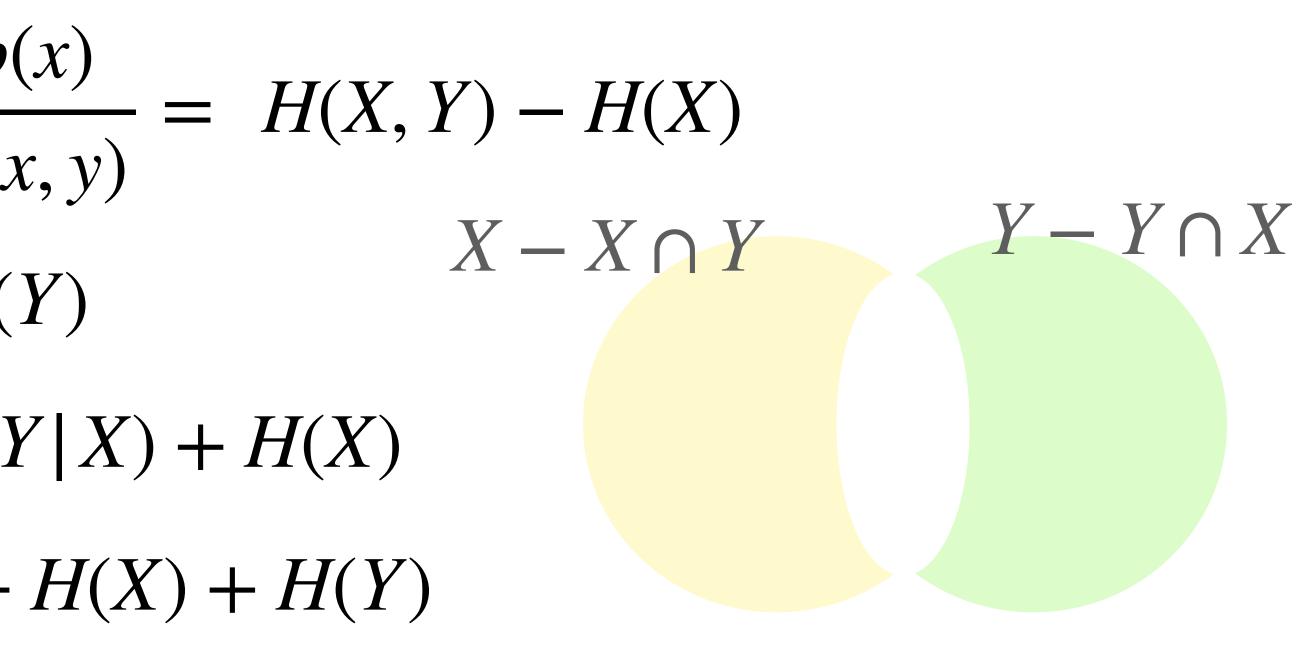
 $x_1 x_2$

• From q(x) = p(x), varying $q(x) : \Delta q(x_1)\Delta x = -\Delta q(x_2)\Delta x$ keeping $\int dx \ q(x) = 1$, $\delta D_{KL}(p \mid q) = \Delta x \left(-p_1 \log(1 + \frac{\Delta q}{p_1}) - p_2 \log(1 - \frac{\Delta q}{p_2})\right) = \sum_{i=1,2} \frac{\Delta^2}{p_i} \Delta x > 0$

Information Theory 101 **Conditional probability and entropy**

- Conditional probability
- Conditional entropy : $Y Y \cap X$ $H(Y|X) = \int dx \, dy \, p(x, y) \, \log \frac{p(x)}{p(x, y)} = H(X, Y) H(X)$
 - Similarly, H(X | Y) = H(X, Y) H(Y)
- H(X, Y) = H(X | Y) + H(Y) = H(Y | X) + H(X)
- 2H(X, Y) = H(X | Y) + H(Y | X) + H(X) + H(Y)

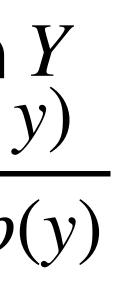
p(x, y) = p(x | y)p(y) = p(y | x)p(x)



Information Theory 101 Mutual information

- Mutual information : entropy of $X \cap Y$ $I(X;Y) = \int dx dy p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$
- Mutual information from KL divergence $I(X; Y) = D_{KI}(p(x, y) | p(x)p(y))$
- MI = diff. ent of X + diff. ent. of Y diff. ent. of $X \cup Y$

• I(X; Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) = H(X) + H(Y) - H(X, Y)



Information Theory 101 **Mutual information**

- Mutual information vs Pearson's correlation coefficient
- I(X; Y) = H(X) + H(Y) H(X, Y)

•
$$I(\Delta X; \Delta Y) = -\frac{1}{2}\log(1-r_{\Delta}^2)$$
 for

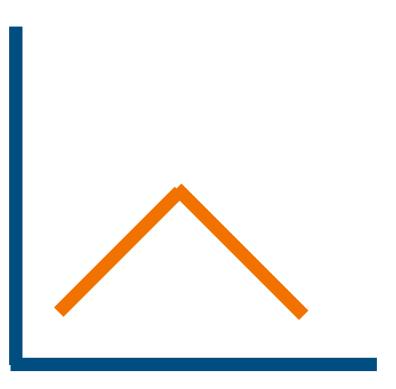
• $I(X; Y) \ge 0$ implies that I(X; Y) = 0 is achieved only when X and Y are independent, i.e., p(x, y) = p(x)p(y) for all x and y.

$$) = \int dxdy \ p(x, y) \ \log \frac{p(x, y)}{p(x)p(y)}$$

or the correlation r_{Λ} (bivariate normal pdf)

Information Theory 101 **MI vs Pearson's correlation coefficient**

- Covariance can be computed as a sum
- Zero covariance does not guarantee the independence
- If they have positive correlation in some parts and negative correlation in other parts, the total correlation can be zero (or small)
- On the other hand I(X; Y) = 0 guarantees the independence



Mutual Information for Machine Unlearning Independence of the variables

- When the integrand is positive definite, $f(x) \ge 0$, the vanishing integral provides a strong condition to the integrand, $F = \int dx \, f(x) = 0$
- Similarly, for MI as it is defined using KL divergence
- The variables are independent if I = 0

f(x) = 0 for all x

 $I = D_{KL}(p(x, y) | p(x)p(y)) = 0 \quad \rightarrow \qquad p(x, y) = p(x)p(y) \text{ for all } x, y$

Pointwise Mutual Information (PMI) (*Language model : PMI^k)

• Pointwise Mutual Information *x*, *y*

• $-1 \leq NPMI \leq 1$ (1:correlation)

$$PMI(x, y) = \log \frac{p(x, y)}{p(x)p(y)}$$
$$(y) = \max \left(\log \frac{p(x, y)}{p(x)p(y)}, 0 \right)$$
$$(y) = \frac{\log \frac{p(x, y)}{p(x)p(y)}}{\log \frac{1}{p(x, y)}}$$

(1:correlated, 0:independent, -1:exclusive)

Metric between pairs of points

- Metric negativity, indiscernability
- Normalized metric $D(X, Y) = \frac{d(X, Y)}{H(X)}$

d(X, Y) = H(X, Y) - I(X; Y) satisfies triangle inequality, non- $0 \le d(X, Y) \le H(X, Y)$

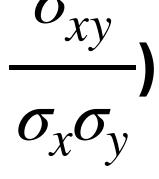
$$\frac{X, Y}{X, Y} = 1 - \frac{I(X; Y)}{H(X, Y)}, \quad 0 \le D(X, Y) \le 1$$

Information Quality Ratio (IQR)

- Redundancy
- Symmetric uncertainty
- Information Quality Ratio
- Normalized mutual information

Redundancy or uncertainty (ref: correlation from variance and covariance $r = \frac{\sigma_{xy}}{r}$)

 $R = \frac{I(X; Y)}{H(X) + H(Y)}$ $U = 2R = \frac{2I(X; Y)}{H(X) + H(Y)}$ $IQR(X, Y) = \frac{I(X; Y)}{H(X, Y)}$ NMI = -----H(X)H(Y)



How to estimate MI? Neural Estimators based on variational representation of D_{KL}

- MI is hard to compute unless the exact pdf is known
- In most cases, the underlying pdf is not known a priori
- Thus MI is hard to estimate, with finite data samples, in a non-parametric way
 without any assumptions on the pdf
- MINE: Mutual Information Neutral Estimation arXiv:1801.04062
- Finding tractable representation of MI to obtain a relevant gradient flow from a MI loss function to train down to the input connected models would be important for deep learning models

Mutual Information Neural Estimation (MINE) Donsker-Varadhan Representation of KL

- $D_{KL}(p | q) \ge E_p[T] \log(E_q[e^T])$
- (proof) $Z = E_q[e^T] = \int dx q(x) e^{T(x)}$ and g
 - $E_p[T] \log E_q[e^T] = E_p(T \log E_q[E^T])$ therefore, $E_p(\log \frac{p(x)}{q(x)} - \log \frac{g(x)}{q(x)}) = E_p$
- Equality holds for g(x) = p(x)

• Donsker-Varadhan (DV) representation $D_{KL}(p | q) = \sup_{T:\Omega \to \mathbb{R}} E_p[T] - \log(E_q[e^T])$

$$g(x) = \frac{1}{Z} e^{T(x)} q(x),$$

$$F[) = E_p(\log \frac{e^T q(x)}{E_q[e^T]} \frac{1}{q(x)}) = E_p(\log \frac{g(x)}{q(x)})$$

$$p(\log \frac{p(x)}{g(x)}) = D_{KL}(p \mid g) \ge 0$$

Mutual Information using Neural Estimation f-Divergence Representation of KL

•
$$E_q[e^{T-1}] \ge \log(E_q[e^T]) \text{ from } \frac{x}{e} \ge$$

• f-divergence representation $D_{KL}(p | q) \ge \sup_{T:\Omega \to \mathbb{R}} E_p[T] - (E_q[e^{T-1}])$

 $\log x$

• The bound is weaker but is easy to compute and can be useful practically

Mutual Information with DV DV Representation

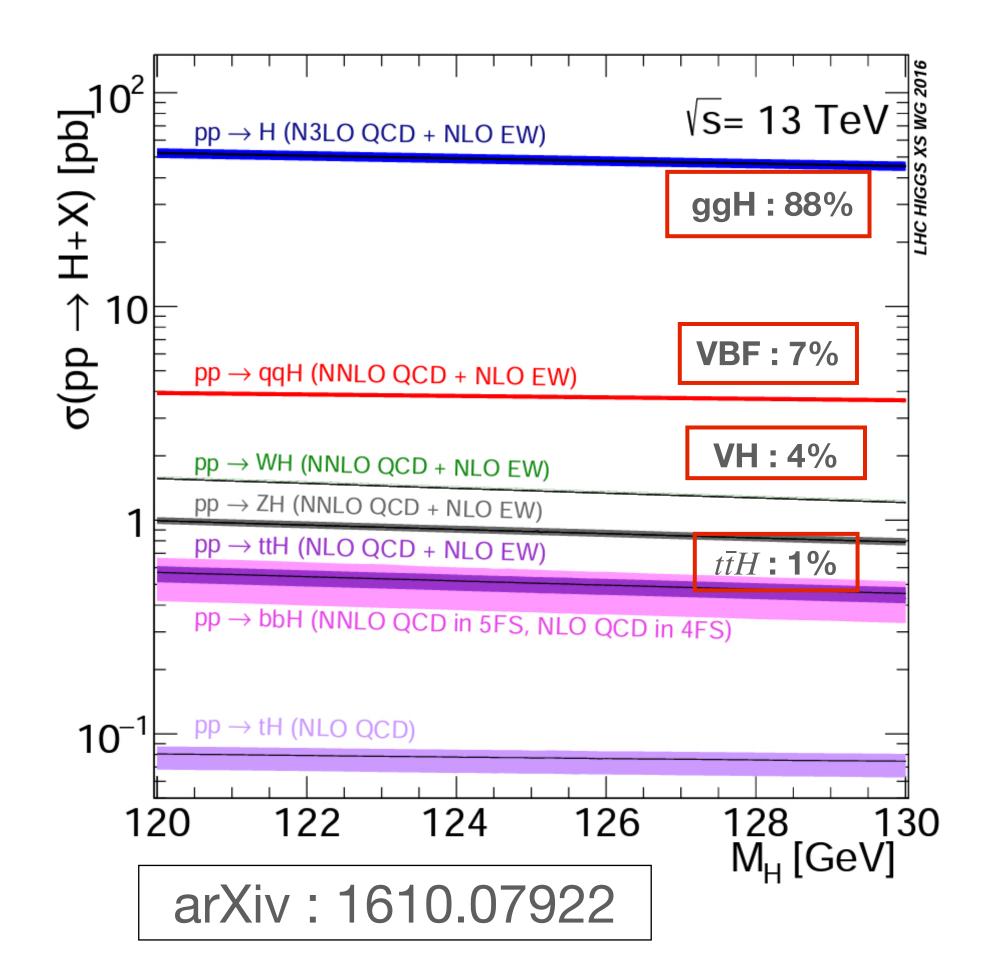
- $I(X; Y) \ge I_{\Theta}(X; Y) = \sup_{\theta \in \Theta} \left(E_{p(X)} \right)$ $T_{\Theta} : X \times Y \to \mathbb{R}$ is a neural network
- Using n samples of X, we can estimate MI which converges well
- The estimated gradient of θ in the network is $\hat{G}_B = E_B[\nabla_{\theta} T_{\theta}] - \frac{E_B[\nabla_{\theta} T_{\theta} e^{T_{\theta}}]}{E_B[e^{T_{\theta}}]}$ where *B* is a batch of data
- The first (second) term from the joint (marginal) distribution

$$_{x,y)}[T_{ heta}] - \log(E_{p(x)p(y)}[e^{T_{ heta}}]))$$
 where \mathbf{k}

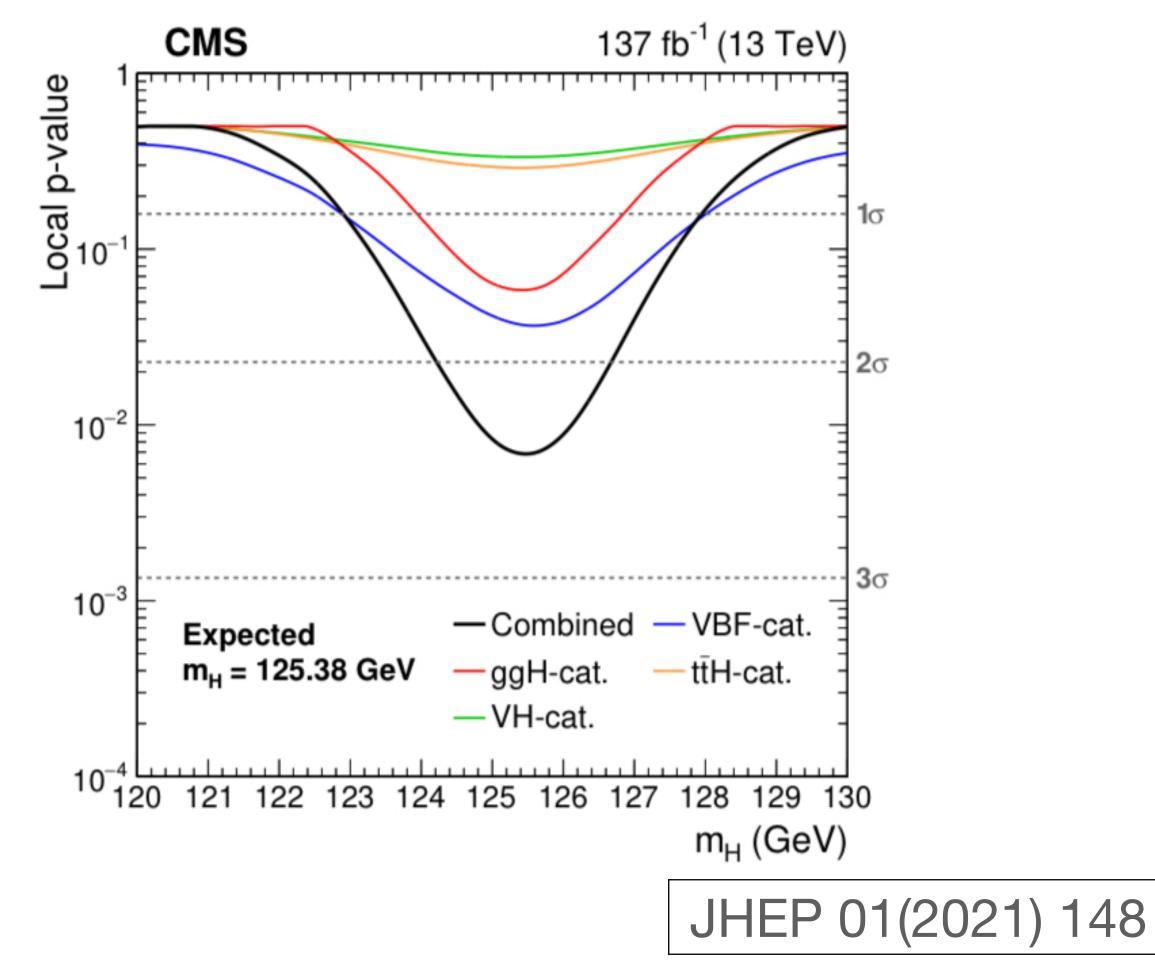
Application : Higgs to dimuon Machine not to learn invariant mass of dimuon

- VBF gives the best sensitivity while ggF has the larger cross section
- Mainly due to the background form DY for ggF
- VBF has a relatively clean background
- Initial state radiation (ISR) can be used to enhance signal to background ratio for ggF channel Higgs since ggF ISR is gluon rich while DY ISR is quark rich
- Process dependent discrimination would work using quark/gluon jet discrimination from deep learning
- However, invariant mass distribution is distorted by categorization

Motivation

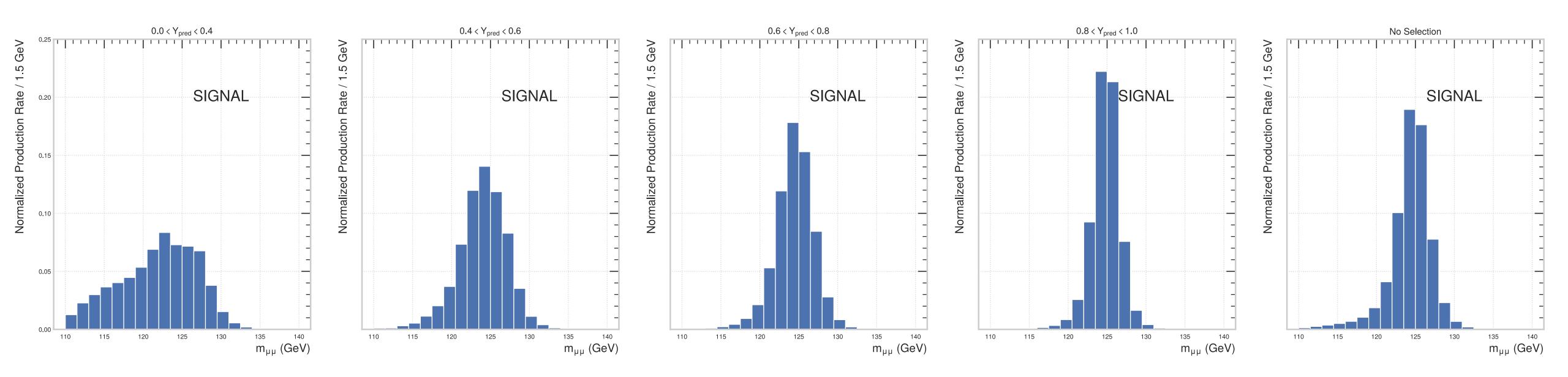


• CMS : 3.0σ excess (Expected : 2.5σ ; VBF ~ 1.8σ / ggH ~ 1.6σ)



Before

Invariant mass distribution signal



Invariant mass distribution background

σ

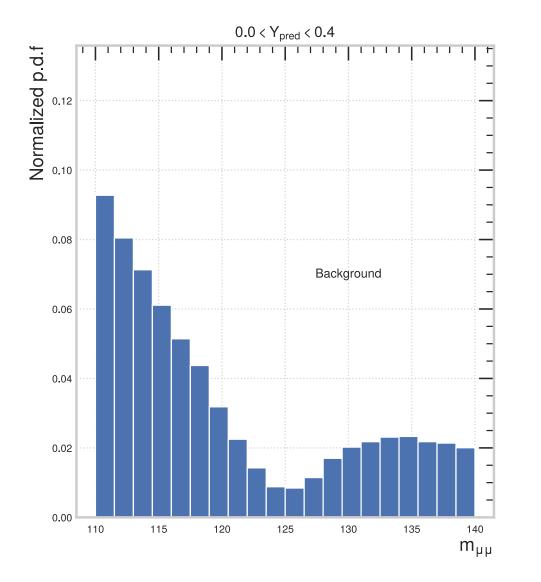
Q

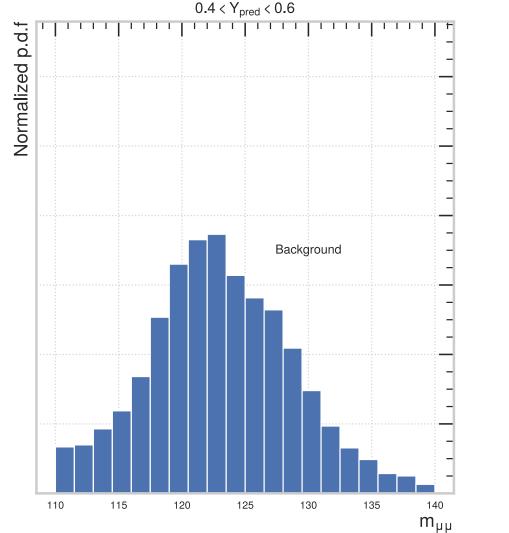
alized

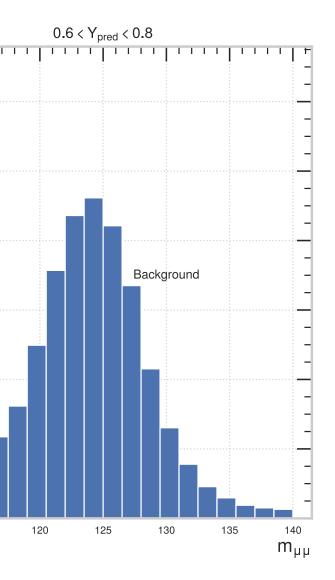
ōZ

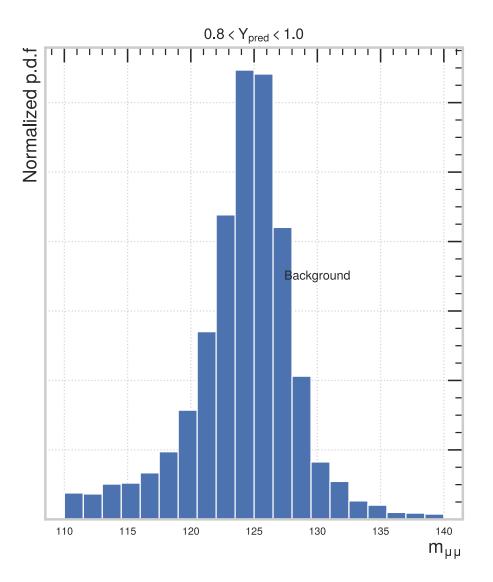
110

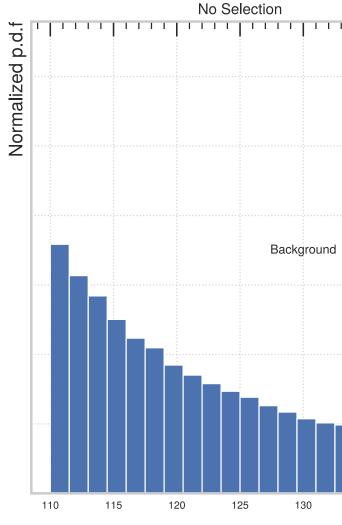
115



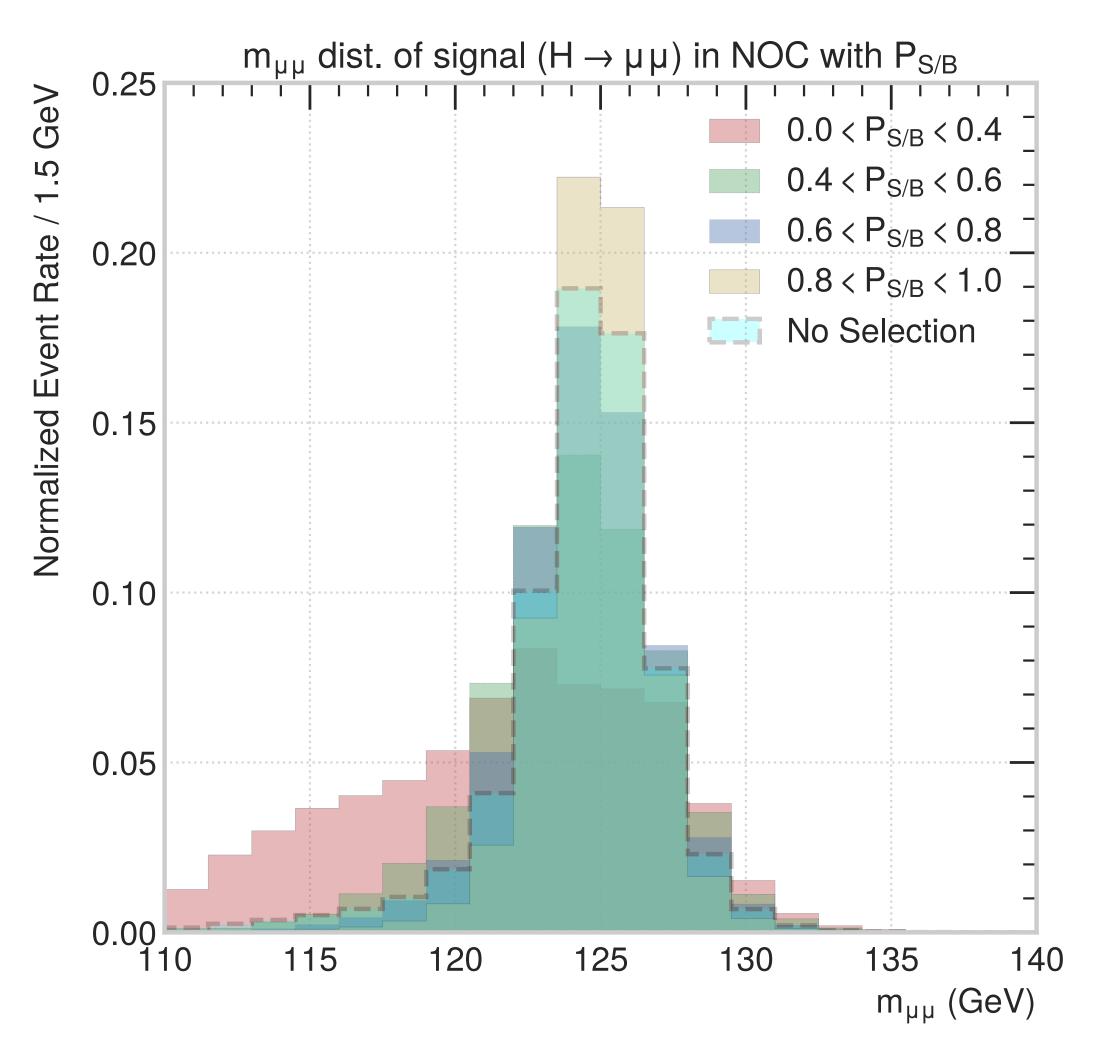




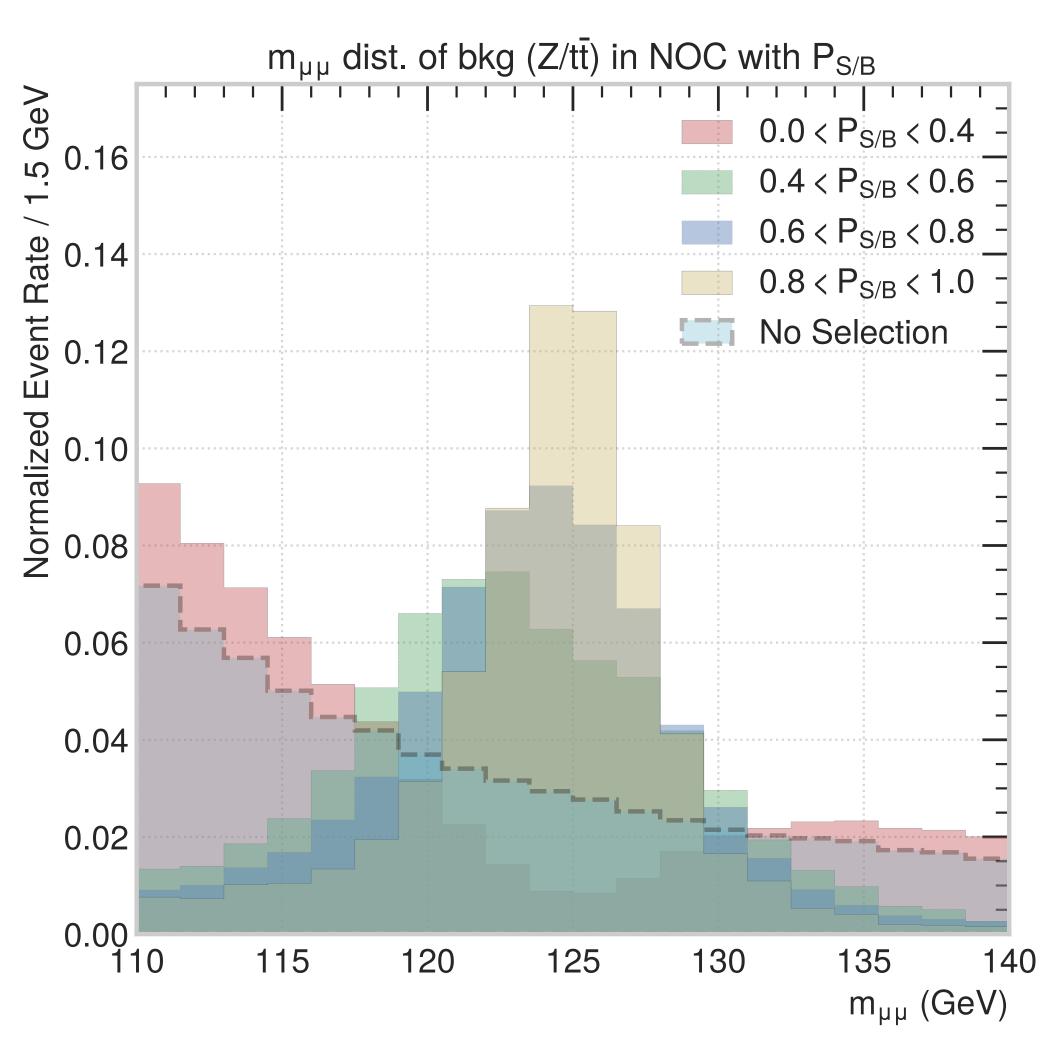




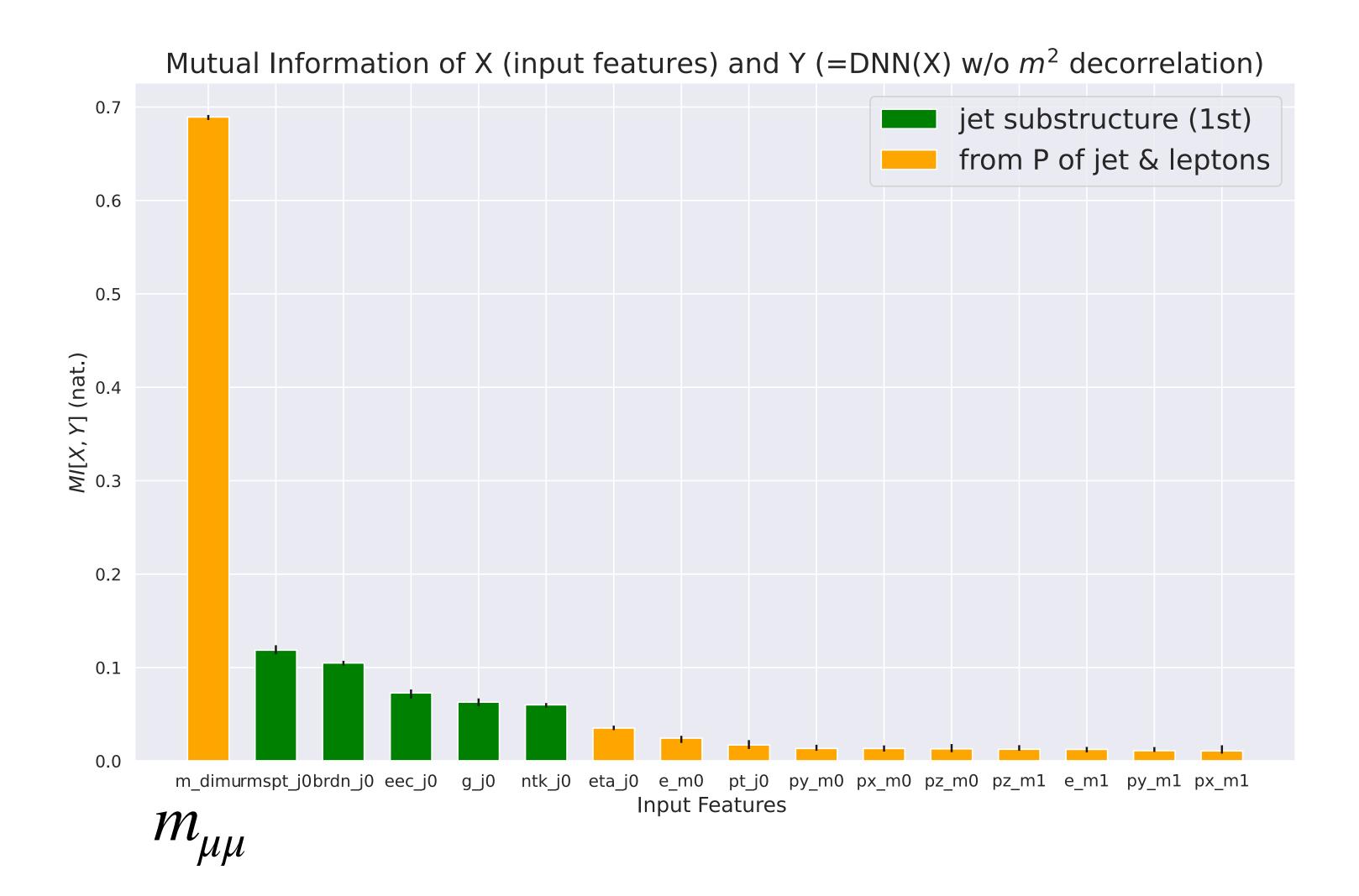
Invariant mass distribution signal



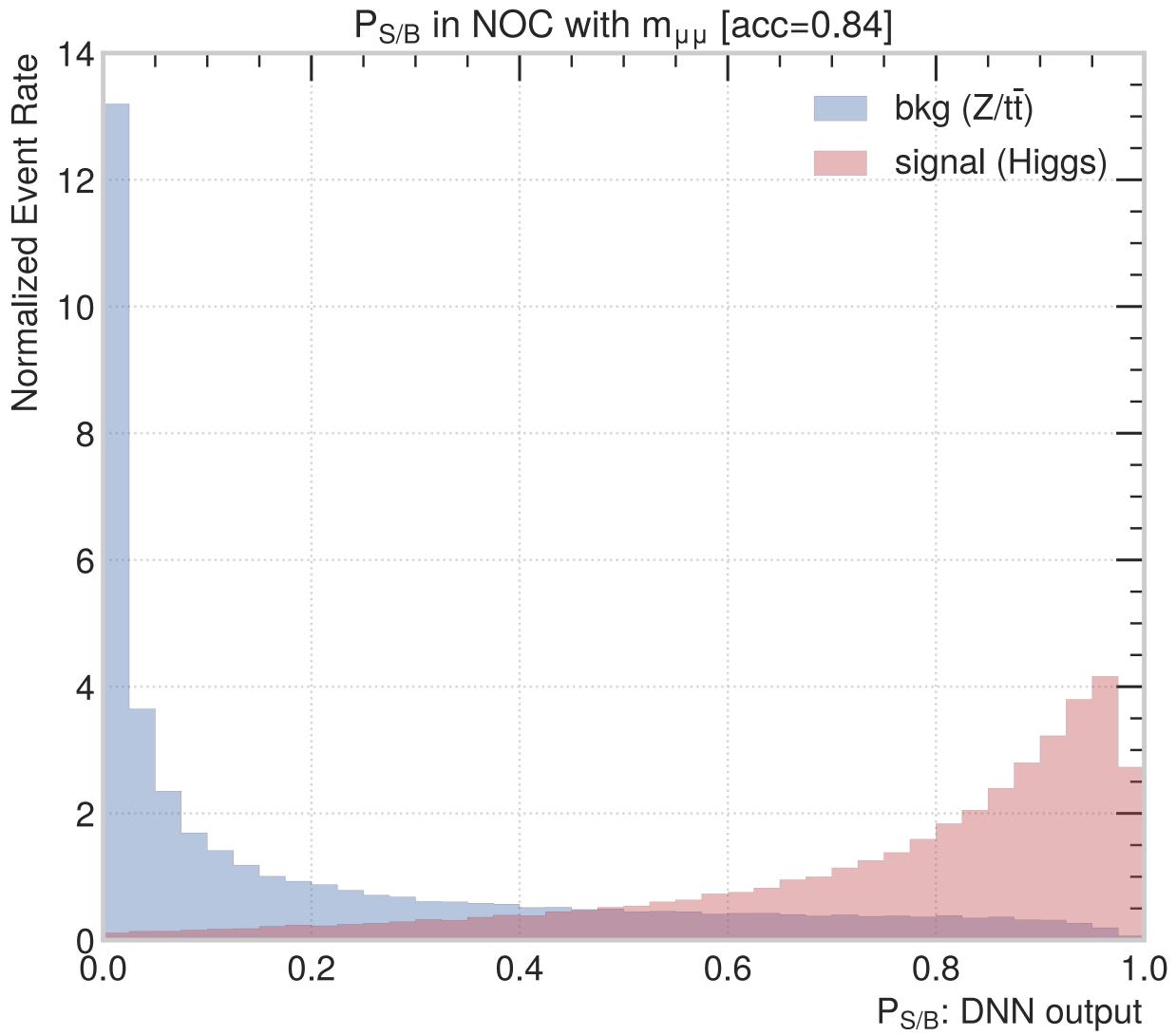
background



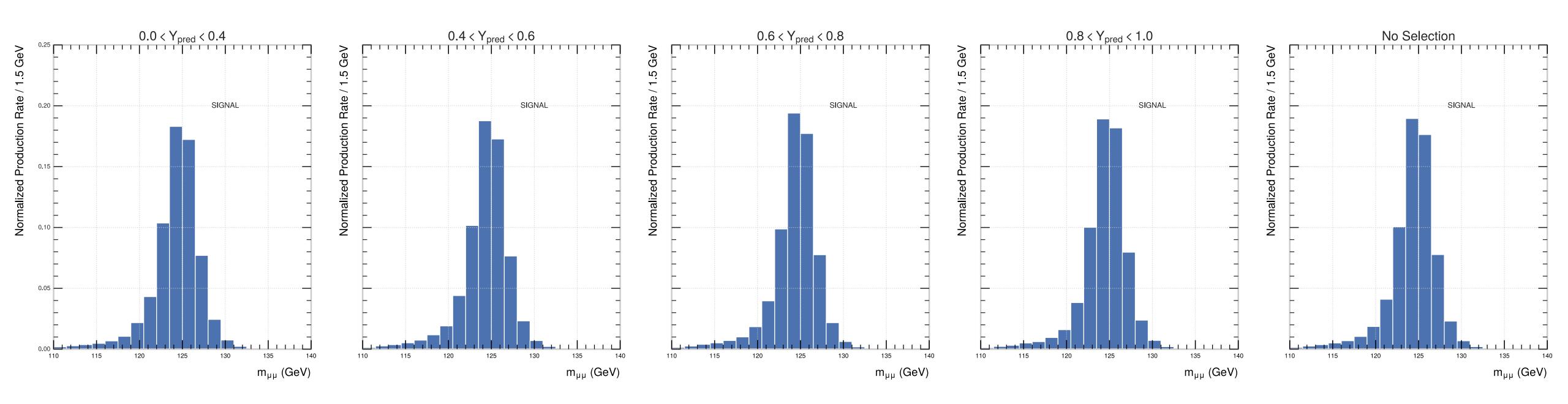
Mutual Information Figure out the most important observables in deep learning



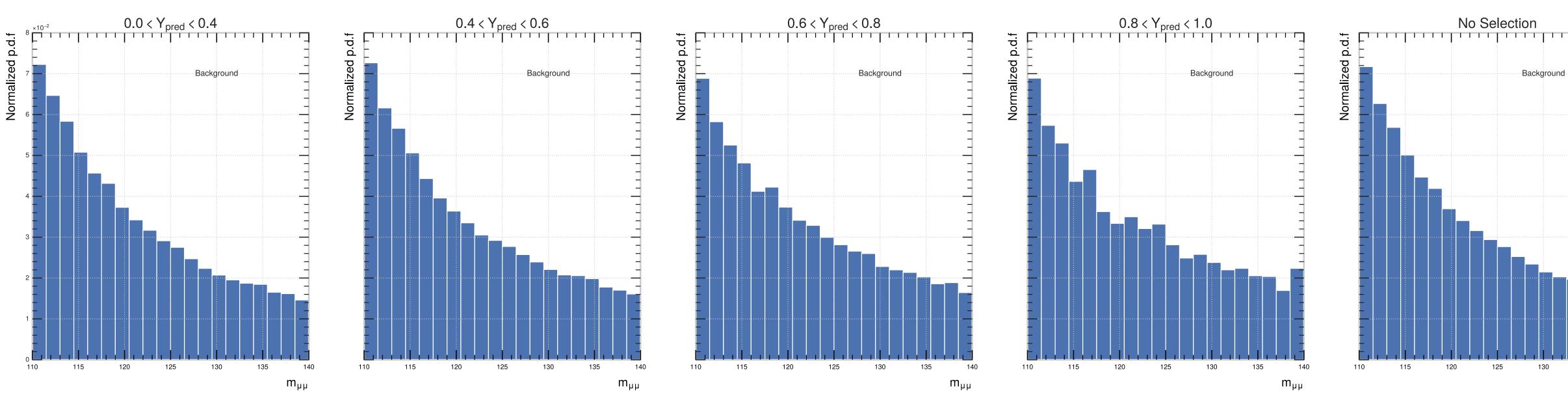
Scoreboard signal vs background



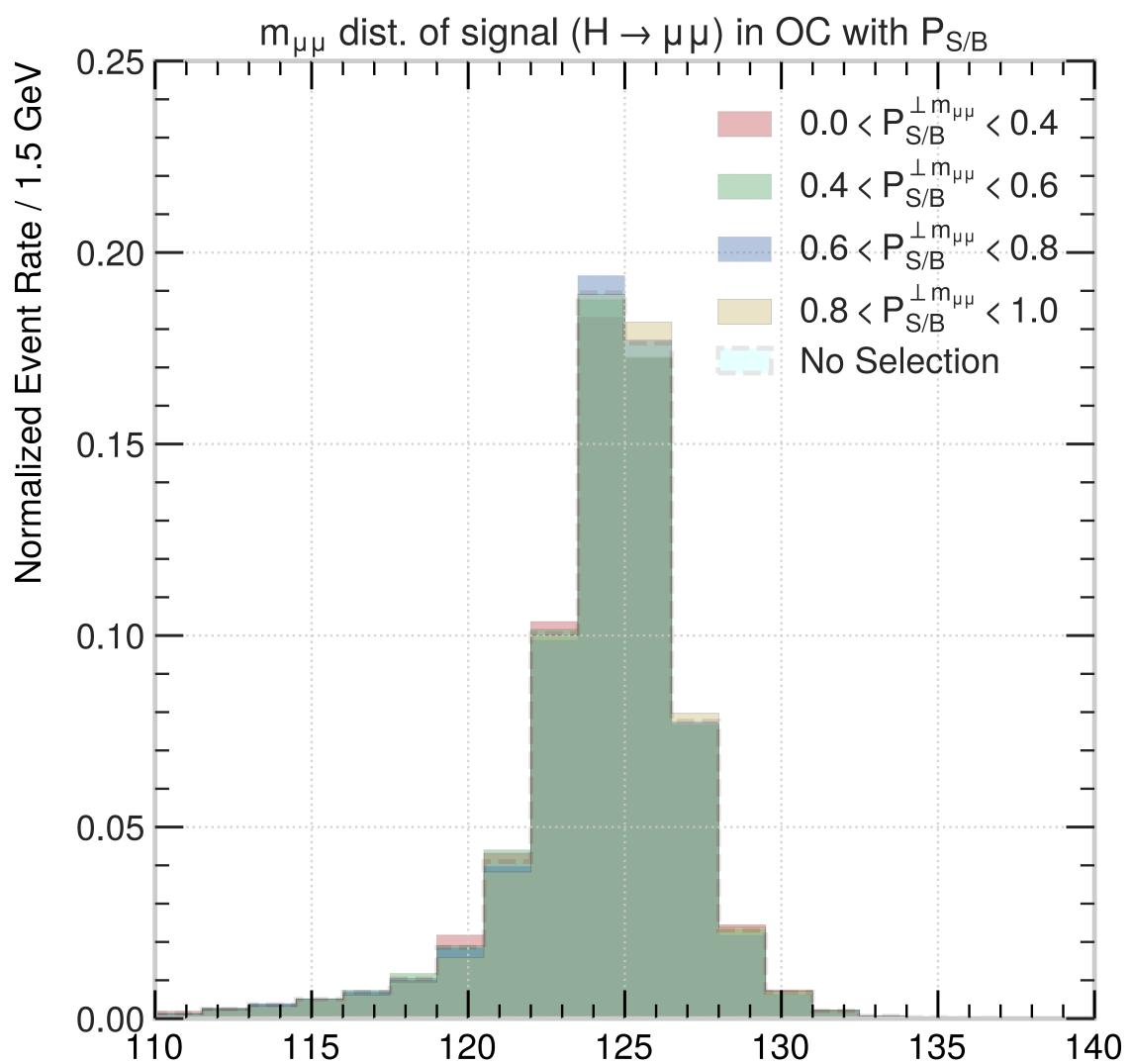
Invariant mass distribution signal



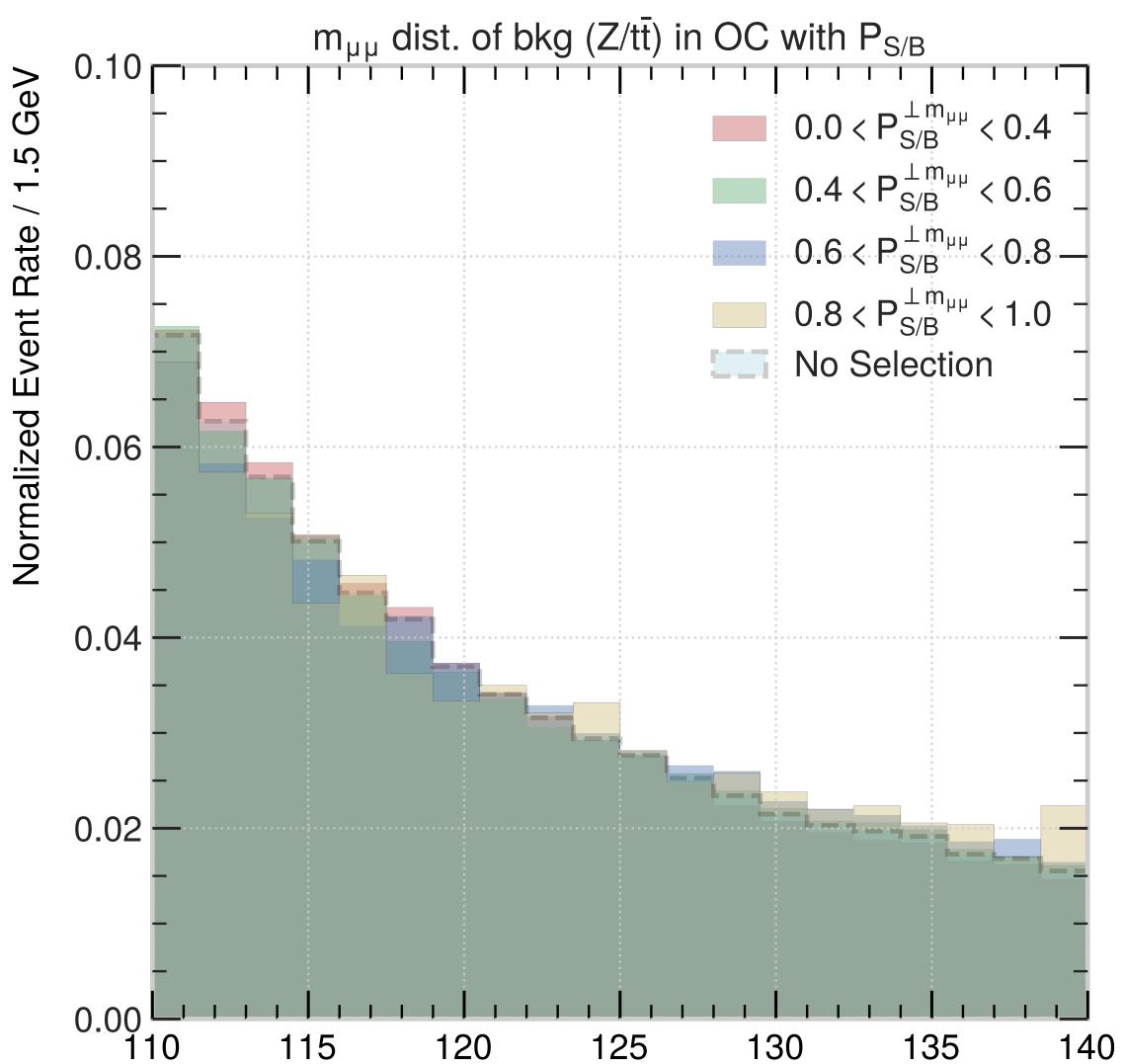
Invariant mass distribution background



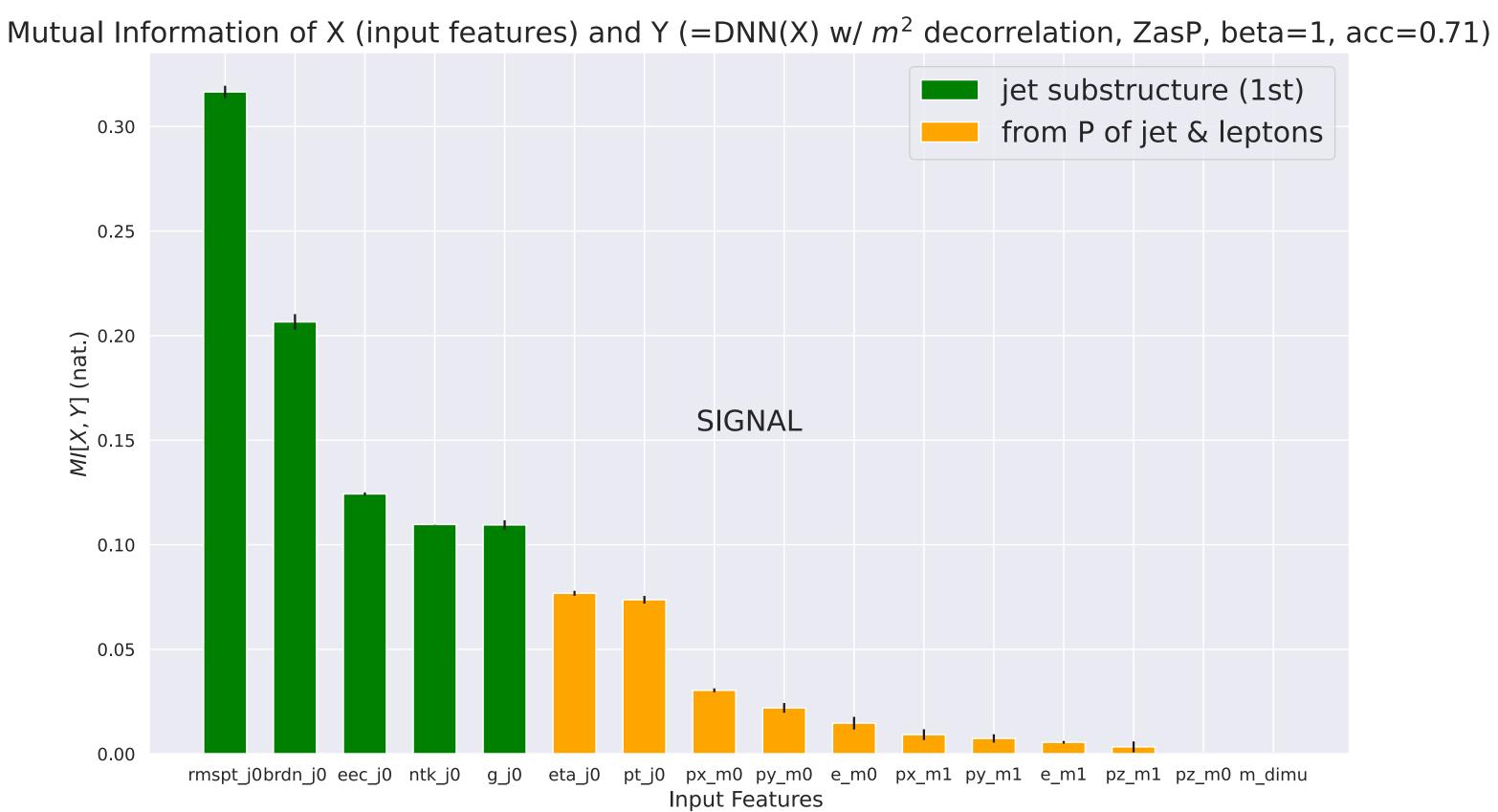
Invariant mass distribution signal



background

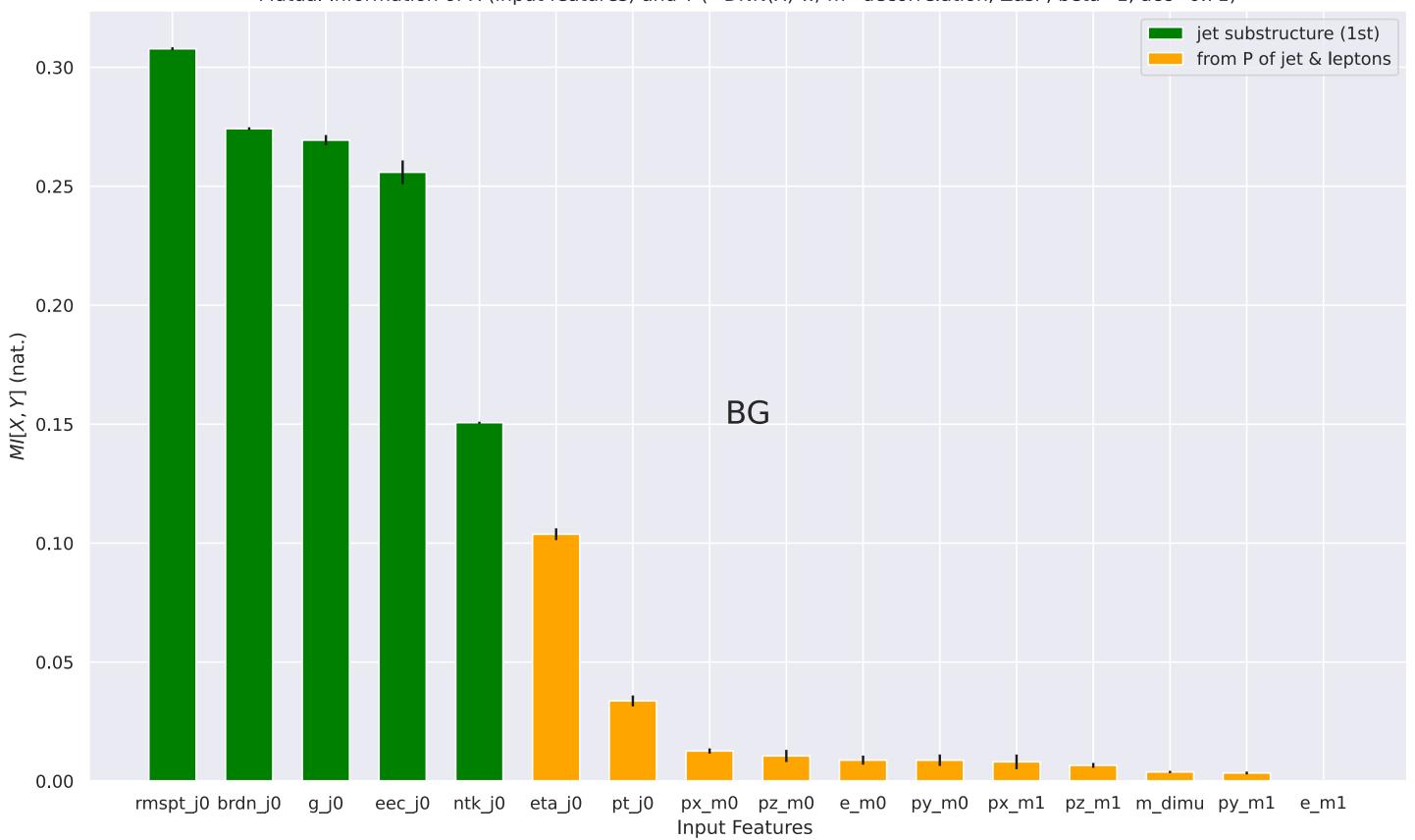


Mutual Information signal



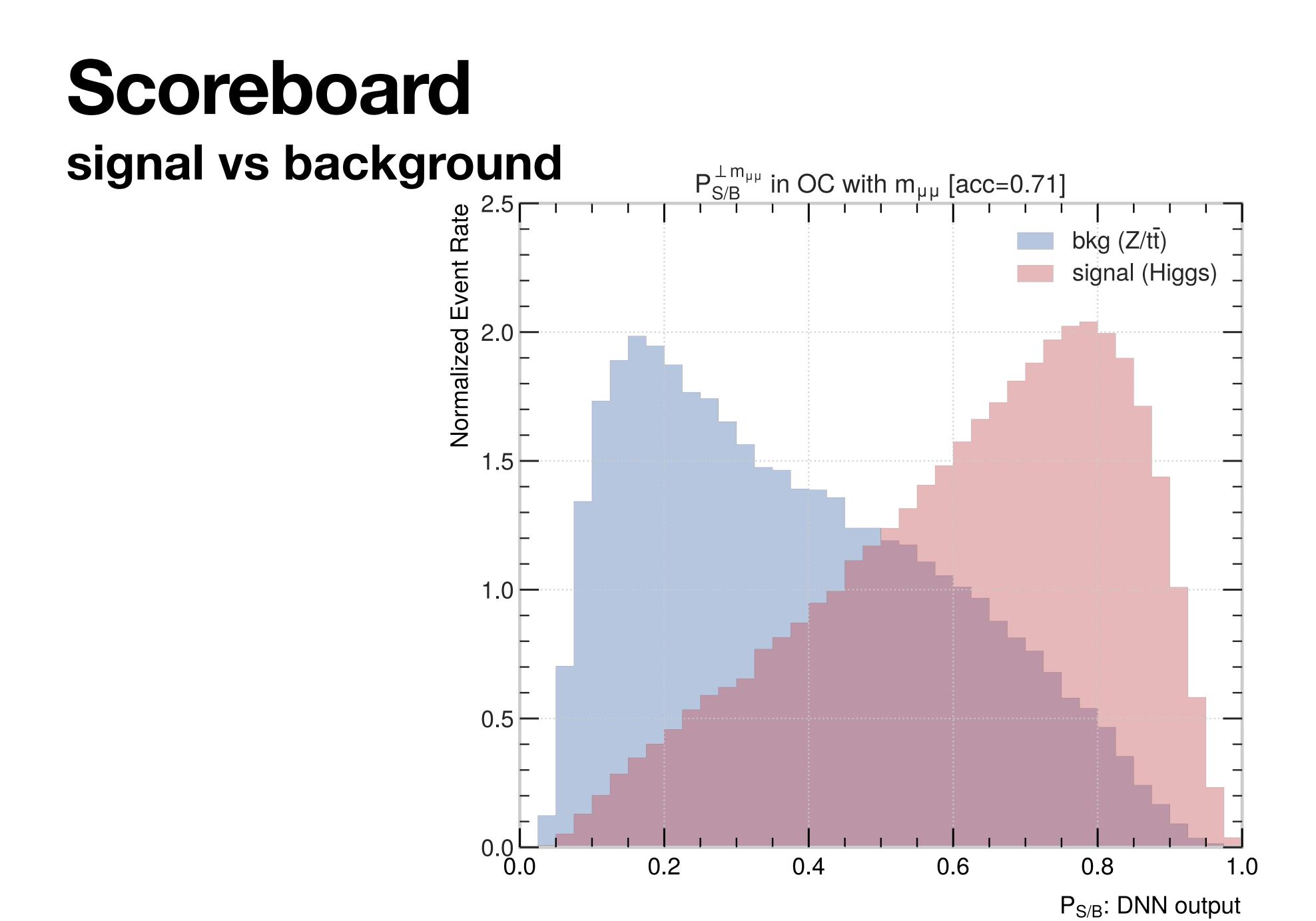
 $m_{\mu\mu}$

Mutual Information background



Mutual Information of X (input features) and Y (=DNN(X) w/ m^2 decorrelation, ZasP, beta=1, acc=0.71)

 $m_{\mu\mu}$



Summary Mutual Information as a tool for machine unlearning

- Deep learning is very helpful in many examples including jet substructure studies for signal and background discrimination
- Often it distorts the very nice invariant mass distribution of the signal
- Precision measurement is possible if the nice features are preserved
- Machine can unlearn certain input (dimuon invariant mass in the example) by minimizing MI of the output with certain input
- MI=0 guarantees the independence of two variables

Thank you!