

Discovery of a Higgs boson in 2012

➤ In 2012 SUSY people were happy to say that h(125) can be the first discovered SUSY particle

10 years after the Higgs discovery

- > Higgs mass: 125.38 V with 0.1% precision
- Couplings to the SM particles: consistent with the SM predictions

Room for new physics

- Higgs to invisible decay mode:< 13%</p>
- Higgs to undetected decay mode: <12%</p>

Nature 607, 52 (2022)

With the most successuful SM, why care for BSM?

- Evidence for Beyond SM (BSM)
 - Dark matter, matter-antimatter asymmetry, neutrino mass
 - Naturalness

BSM Higgs

- Many BSM theories predict extended Higgs sector
- > Two-Higgs-Doublet models (2HDM) such as in SUSY: five Higgs bosons
 - 2 neutral CP even (h, H), 1 neutral CP odd (A), 2 charged Higgs (H^{+/-})
 - MSSM (m_A , tan β): h=h₁₂₅, 2HDM Type-I/II: h/H=h₁₂₅
- \rightarrow NMSSM: 2HDM + Singlet: h_1 , h_2 , h_3 , a_1 , a_2 , h^{+-} (h_1 / h_2 = h_{125})
- Triplet model : double charged Higgs bosons (H++/-)
- Find additional Higgs bosons
- > Find non-SM decay of h(125) particle
- Precision measurements of h(125) particle

Neutral Higgs Production

Charged Higgs Production

Searches for Heavy Neutral Higgs

- Recent Run 2 results on direct decays of H/A
- Mostly focused on MSSM and generic 2HDM

2020

2023

A/H → ττ	
$A \rightarrow \mu\mu$ (+ b)	
$bb\; (\phi \to bb)$	
$X \rightarrow HH \rightarrow WW^{(*)}WW^{(*)}$	
$X \rightarrow Z/W/H \rightarrow qq\gamma/qq\gamma/bb\gamma$	
$A \to ZH \to IIbb$	
$H \rightarrow ZZ \rightarrow 4I / IIvv$	
$A \rightarrow Zh \rightarrow Ilbb/vvbb$	
$A \rightarrow WW/WZ \rightarrow Ivqq$	

$A \to h Z \to \tau \tau I I$
$H \rightarrow ZA \rightarrow IIbb$
$X \rightarrow WW \rightarrow 2I2v / Iv2q$
$A \rightarrow \mu\mu$
H/A → tt
$A \rightarrow Zh$
$A/H \rightarrow \pi$
A/H →bb
$X \rightarrow ZZ \rightarrow 4I / 2I2q / 2I2v$

$H o$ multilepton $H/A o au au$ $ au$ $ttH/ttH o\ell\ell au au$ $ttH/A o tttt$ FCNC $t o qX o qbb$	ATLAS CMS CMS ATLAS ATLAS
$A \to ah \to \chi \chi \tau \tau$	ATLAS
$A \to Zh \to Zbb$	ATLAS
$H \to WW \to \ell\nu\ell\nu$	CMS
$H \to WW \to e\nu\mu\nu$	ATLAS
$WH \to WWW$	ATLAS
$VH \to \ell\ell hh/\ell\nu hh$	ATLAS
$H \to hh \to bb\gamma\gamma$	CMS
$H \to hh \to bbbb$	CMS
$H \to \phi \phi \to bbbb$	CMS
$H \to hh \to WW/WW\tau\tau/\tau\tau\tau\tau$	CMS
$H \to hh \to bbWW/bb\tau\tau$	CMS
$X \to \gamma \gamma$	ATLAS

Neutral Higgs, $\phi(H/A) \rightarrow \tau \tau$

- ATLAS full Run 2 result with 139 fb⁻¹
- > $\tau_{\text{lep}} \tau_{\text{had}}$ and $\tau_{\text{had}} \tau_{\text{had}}$ channels: b-veto and b-tag category

- Small excess observed at m=400 GeV:
 2.2 σ (ggF), 2.7 σ (bbH) at m=400 GeV
- But no excess from '16 CMS data (full results?)

PRL 125 (2020) 051801

Updated results on $\phi(H/A) \rightarrow \tau \tau$

- > Include $\tau_e \tau_{\mu}$, $\tau_{lep} \tau_{had}$, $\tau_{had} \tau_{had}$ channels:
- Use number of b-tagged jets
- Low / High mass search: m_{ττ}, m_T tot
- No ATLAS excess shown at 400 GeV, but two excesses: at 3.1 σ 100 GeV and 2.8 σ at 1.2 TeV
- Limits are interpreted in the MSSM scenarios and heavy Higgs boson below 350 GeV excluded.

$H\rightarrow WW (\rightarrow 212 \nu)$

- Search for heavy Higgs in ggF and VBF production in a mass range:150-5000 GeV
- Dilepton channels (ee,μμ. eμ + MET): updated to Run2 from '16 data
- Dominant bkgds: top, DY, WW
- Use two DNNs to classify signal ggF, VBF, and bkgds and to regress H mass (DNN m_T) that is fitted
- \triangleright No significant excess over SM predictions, exclusion limit on $\sigma x B$
- > Largest excess 3.8 σ at 650 GeV (only VBF) and 2.6 σ (ggF) at 950 GeV

$H\rightarrow WW (\rightarrow 212 \nu)$

- Search in e-μ channel only in a mass range: 200 6000 GeV
- 3 event category: ggF (2l), VBF (2l+ 1 jet), VBF (2l+ 2 jets)
- Dominant bkgds in tt,Wt, WW
- Use transverse mass, m_T for signal extraction
- \triangleright No significant excess over SM predictions, exclusion limit on $\sigma x B$

VH/ttH (H→II/ττ)

- Search for high mass H in ZH, WH, ttH in dielepton channels
- Use 3I or 4I (e,μ,τ)
- Dilepton channels (ee,μμ. eμ + MET)
- Dominant bkgds: WW, WZ, ZZ, ttZ,
- Discriminating variable: min M_{II} (low), max M_{II} (high)
- No significant excess over SM predictions

VH/ttH (H→II/ττ)

- No significant excess over SM predictions
- Set on exclusion limit on σxB
- Largest excess 2.9 σ at 156 GeV in ee channel

$H(A) \rightarrow ah_{125} \rightarrow bb\gamma\gamma$

- Search for heavy Higgs decaying to a light Higgs and SM Higgs boson in NMSSM: 2HDM+S
- Dominant bkgds in ttH, bbH, γ+jets
- Use BDT and MX variable to categories events
- A parametric fit in the (m_y, m_{ij})
- No significant excess over SM predictions
- ► Largest excess 3.8 σ at (m_H, m_a) = (650, 90) GeV

CMS-PAS-EXO-21-011

$A \rightarrow ah_{125} \rightarrow \chi \chi \tau \tau$

- Search for high mass H in dark matter decay channels with two tau leptons
- Additional pseudo-scalar singlet couples to DM candidate (m_x=10 GeV) in 2HDM+S model
- Dominant bkgds in ττ and multi-jets
- ightharpoonup Discriminating variable: transverse mass $\mathbf{m}_{\mathrm{T}}^{\tau 1}$ + $\mathbf{m}_{\mathrm{T}}^{\tau 2}$
- No significant excess over SM predictions

$A \rightarrow ah \rightarrow \chi \chi \tau \tau$

- No significant excess over SM predictions
- > Set on model independent limit on σ : <0.04~0.08 fb
- Limits interpreted in 2HDM+a model scenario
- Pseudo-scalar singlets with masses up to 300 GeV are excluded for m_A=800 GeV
- > Signals in tan β <1 are excluded for m_A =900 GeV

H > yy (boosted)

- First LHC search for generic γγ resonance in the mass range from 10 to 70 GeV
- Use special type of events with pt(yy)>50 GeV to reach down to 10 GeV
- Complex analytic function to model bkgds (low mass turn-on & falling region)
- Discriminating variable: m_w
- No significant excess over SM predictions
- Largest excess 3.1 σ at 19.4 GeV shown
- Observed limits are interpreted as a limit for axion-like-particle

Searches for charged Higgs

- > Two single charged Higgs in 2HDM
- Other models extend to Higgs triplet: double charged Higgs

2023

2020

H⁺⁺H⁻⁻
$$\rightarrow$$
 4W
H⁺ \rightarrow tb
H⁺ \rightarrow τ ν
H⁺⁺H⁻⁻ \rightarrow 4I

$$H^+ \rightarrow tb$$
 (hadronic)

 $H^+ \rightarrow tb$
 $H^+ \rightarrow \tau \nu$
 $H^+ \rightarrow cb$
 $H^+ \rightarrow WA$
 $H^{++}H^{--} \rightarrow 4I$

Heavy $H^+\rightarrow h_{125}W$, $(h\rightarrow \tau\tau)$

- Search for heavy Higgs in the region of 300-700 GeV
- \triangleright Use e/ $\mu \tau_{had}$, e $\tau_{had} \tau_{had}$, $\mu \tau_{had} \tau_{had}$ channels
- Hadronic top decays identified using NN-based tagger
- Dominant bkgds in tt, V+jets
- \triangleright Discriminating variable: e/ μ τ had (BDT:MVA output), e/ μ τ had τ had (m_T)
- No significant excess over SM predictions

arXiv:2207.01046

Heavy H⁺→WZ→I_VII

- Search for heavy Higgs to WZ decay in fully leptonic channel
- This channel is more sensitive for mass < ~ 1 TeV</p>
- SR selection: 31, MET, 2 VBF jets, m_{ii}>100 GeV, ANN>0.82
- Discriminating variable: m(WZ)
- No significant excess over SM predictions
- Largest excess 2.8 σ at 375 GeV

arXiv:2207.03925

Summary

- > LHC CMS, ATLAS experiments have done much better than expected in understanding detector and analysis technique
- So far, no evidence of BSM Higgs in extensive and vigorous searches.
- ▶ LHC stated new run, Run 3 from Feb 2022, with expected data of 300fb⁻¹
- We expect to have an another discovery after h₁₂₅ with Run II, Run III and HL-LHC data
- > So, Higgs potential is still GREAT!