Discovery of a Higgs boson in 2012 ➤ In 2012 SUSY people were happy to say that h(125) can be the first discovered SUSY particle ### 10 years after the Higgs discovery - > Higgs mass: 125.38 V with 0.1% precision - Couplings to the SM particles: consistent with the SM predictions ### Room for new physics - Higgs to invisible decay mode:< 13%</p> - Higgs to undetected decay mode: <12%</p> Nature 607, 52 (2022) # With the most successuful SM, why care for BSM? - Evidence for Beyond SM (BSM) - Dark matter, matter-antimatter asymmetry, neutrino mass - Naturalness ### **BSM Higgs** - Many BSM theories predict extended Higgs sector - > Two-Higgs-Doublet models (2HDM) such as in SUSY: five Higgs bosons - 2 neutral CP even (h, H), 1 neutral CP odd (A), 2 charged Higgs (H^{+/-}) - MSSM (m_A , tan β): h=h₁₂₅, 2HDM Type-I/II: h/H=h₁₂₅ - \rightarrow NMSSM: 2HDM + Singlet: h_1 , h_2 , h_3 , a_1 , a_2 , h^{+-} (h_1 / h_2 = h_{125}) - Triplet model : double charged Higgs bosons (H++/-) - Find additional Higgs bosons - > Find non-SM decay of h(125) particle - Precision measurements of h(125) particle #### **Neutral Higgs Production** #### **Charged Higgs Production** #### Searches for Heavy Neutral Higgs - Recent Run 2 results on direct decays of H/A - Mostly focused on MSSM and generic 2HDM 2020 2023 | A/H → ττ | | |--|--| | $A \rightarrow \mu\mu$ (+ b) | | | $bb\; (\phi \to bb)$ | | | $X \rightarrow HH \rightarrow WW^{(*)}WW^{(*)}$ | | | $X \rightarrow Z/W/H \rightarrow qq\gamma/qq\gamma/bb\gamma$ | | | $A \to ZH \to IIbb$ | | | $H \rightarrow ZZ \rightarrow 4I / IIvv$ | | | $A \rightarrow Zh \rightarrow Ilbb/vvbb$ | | | $A \rightarrow WW/WZ \rightarrow Ivqq$ | | | $A \to h Z \to \tau \tau I I$ | |---| | $H \rightarrow ZA \rightarrow IIbb$ | | $X \rightarrow WW \rightarrow 2I2v / Iv2q$ | | $A \rightarrow \mu\mu$ | | H/A → tt | | $A \rightarrow Zh$ | | $A/H \rightarrow \pi$ | | A/H →bb | | $X \rightarrow ZZ \rightarrow 4I / 2I2q / 2I2v$ | | $H o$ multilepton $H/A o au au$ $ au$ $ttH/ttH o\ell\ell au au$ $ttH/A o tttt$ FCNC $t o qX o qbb$ | ATLAS
CMS
CMS
ATLAS
ATLAS | |--|---------------------------------------| | $A \to ah \to \chi \chi \tau \tau$ | ATLAS | | $A \to Zh \to Zbb$ | ATLAS | | $H \to WW \to \ell\nu\ell\nu$ | CMS | | $H \to WW \to e\nu\mu\nu$ | ATLAS | | $WH \to WWW$ | ATLAS | | $VH \to \ell\ell hh/\ell\nu hh$ | ATLAS | | $H \to hh \to bb\gamma\gamma$ | CMS | | $H \to hh \to bbbb$ | CMS | | $H \to \phi \phi \to bbbb$ | CMS | | $H \to hh \to WW/WW\tau\tau/\tau\tau\tau\tau$ | CMS | | $H \to hh \to bbWW/bb\tau\tau$ | CMS | | $X \to \gamma \gamma$ | ATLAS | ### Neutral Higgs, $\phi(H/A) \rightarrow \tau \tau$ - ATLAS full Run 2 result with 139 fb⁻¹ - > $\tau_{\text{lep}} \tau_{\text{had}}$ and $\tau_{\text{had}} \tau_{\text{had}}$ channels: b-veto and b-tag category - Small excess observed at m=400 GeV: 2.2 σ (ggF), 2.7 σ (bbH) at m=400 GeV - But no excess from '16 CMS data (full results?) PRL 125 (2020) 051801 #### Updated results on $\phi(H/A) \rightarrow \tau \tau$ - > Include $\tau_e \tau_{\mu}$, $\tau_{lep} \tau_{had}$, $\tau_{had} \tau_{had}$ channels: - Use number of b-tagged jets - Low / High mass search: m_{ττ}, m_T tot - No ATLAS excess shown at 400 GeV, but two excesses: at 3.1 σ 100 GeV and 2.8 σ at 1.2 TeV - Limits are interpreted in the MSSM scenarios and heavy Higgs boson below 350 GeV excluded. # $H\rightarrow WW (\rightarrow 212 \nu)$ - Search for heavy Higgs in ggF and VBF production in a mass range:150-5000 GeV - Dilepton channels (ee,μμ. eμ + MET): updated to Run2 from '16 data - Dominant bkgds: top, DY, WW - Use two DNNs to classify signal ggF, VBF, and bkgds and to regress H mass (DNN m_T) that is fitted - \triangleright No significant excess over SM predictions, exclusion limit on $\sigma x B$ - > Largest excess 3.8 σ at 650 GeV (only VBF) and 2.6 σ (ggF) at 950 GeV # $H\rightarrow WW (\rightarrow 212 \nu)$ - Search in e-μ channel only in a mass range: 200 6000 GeV - 3 event category: ggF (2l), VBF (2l+ 1 jet), VBF (2l+ 2 jets) - Dominant bkgds in tt,Wt, WW - Use transverse mass, m_T for signal extraction - \triangleright No significant excess over SM predictions, exclusion limit on $\sigma x B$ # VH/ttH (H→II/ττ) - Search for high mass H in ZH, WH, ttH in dielepton channels - Use 3I or 4I (e,μ,τ) - Dilepton channels (ee,μμ. eμ + MET) - Dominant bkgds: WW, WZ, ZZ, ttZ, - Discriminating variable: min M_{II} (low), max M_{II} (high) - No significant excess over SM predictions # VH/ttH (H→II/ττ) - No significant excess over SM predictions - Set on exclusion limit on σxB - Largest excess 2.9 σ at 156 GeV in ee channel # $H(A) \rightarrow ah_{125} \rightarrow bb\gamma\gamma$ - Search for heavy Higgs decaying to a light Higgs and SM Higgs boson in NMSSM: 2HDM+S - Dominant bkgds in ttH, bbH, γ+jets - Use BDT and MX variable to categories events - A parametric fit in the (m_y, m_{ij}) - No significant excess over SM predictions - ► Largest excess 3.8 σ at (m_H, m_a) = (650, 90) GeV #### CMS-PAS-EXO-21-011 # $A \rightarrow ah_{125} \rightarrow \chi \chi \tau \tau$ - Search for high mass H in dark matter decay channels with two tau leptons - Additional pseudo-scalar singlet couples to DM candidate (m_x=10 GeV) in 2HDM+S model - Dominant bkgds in ττ and multi-jets - ightharpoonup Discriminating variable: transverse mass $\mathbf{m}_{\mathrm{T}}^{\tau 1}$ + $\mathbf{m}_{\mathrm{T}}^{\tau 2}$ - No significant excess over SM predictions # $A \rightarrow ah \rightarrow \chi \chi \tau \tau$ - No significant excess over SM predictions - > Set on model independent limit on σ : <0.04~0.08 fb - Limits interpreted in 2HDM+a model scenario - Pseudo-scalar singlets with masses up to 300 GeV are excluded for m_A=800 GeV - > Signals in tan β <1 are excluded for m_A =900 GeV # H > yy (boosted) - First LHC search for generic γγ resonance in the mass range from 10 to 70 GeV - Use special type of events with pt(yy)>50 GeV to reach down to 10 GeV - Complex analytic function to model bkgds (low mass turn-on & falling region) - Discriminating variable: m_w - No significant excess over SM predictions - Largest excess 3.1 σ at 19.4 GeV shown - Observed limits are interpreted as a limit for axion-like-particle #### Searches for charged Higgs - > Two single charged Higgs in 2HDM - Other models extend to Higgs triplet: double charged Higgs 2023 2020 H⁺⁺H⁻⁻ $$\rightarrow$$ 4W H⁺ \rightarrow tb H⁺ \rightarrow τ ν H⁺⁺H⁻⁻ \rightarrow 4I $$H^+ \rightarrow tb$$ (hadronic) $H^+ \rightarrow tb$ $H^+ \rightarrow \tau \nu$ $H^+ \rightarrow cb$ $H^+ \rightarrow WA$ $H^{++}H^{--} \rightarrow 4I$ # Heavy $H^+\rightarrow h_{125}W$, $(h\rightarrow \tau\tau)$ - Search for heavy Higgs in the region of 300-700 GeV - \triangleright Use e/ $\mu \tau_{had}$, e $\tau_{had} \tau_{had}$, $\mu \tau_{had} \tau_{had}$ channels - Hadronic top decays identified using NN-based tagger - Dominant bkgds in tt, V+jets - \triangleright Discriminating variable: e/ μ τ had (BDT:MVA output), e/ μ τ had τ had (m_T) - No significant excess over SM predictions arXiv:2207.01046 ## Heavy H⁺→WZ→I_VII - Search for heavy Higgs to WZ decay in fully leptonic channel - This channel is more sensitive for mass < ~ 1 TeV</p> - SR selection: 31, MET, 2 VBF jets, m_{ii}>100 GeV, ANN>0.82 - Discriminating variable: m(WZ) - No significant excess over SM predictions - Largest excess 2.8 σ at 375 GeV #### arXiv:2207.03925 #### Summary - > LHC CMS, ATLAS experiments have done much better than expected in understanding detector and analysis technique - So far, no evidence of BSM Higgs in extensive and vigorous searches. - ▶ LHC stated new run, Run 3 from Feb 2022, with expected data of 300fb⁻¹ - We expect to have an another discovery after h₁₂₅ with Run II, Run III and HL-LHC data - > So, Higgs potential is still GREAT!