Detecting axion dark matter with chiral magnetic effects

Deog Ki Hong

Pusan National University

Feb. 22, 2023, CAU, Seoul

Based on arXiv:2207.06884 done with

Sang Hui Im (CTPU), Kwang Sik Jeong and Dong-han Yeom (PNU)

Introduction

Motivation

A proposal for new experiment for axion DM

The Chiral Magnetic Effects

Chiral magnetic effects in medium

Axial anomaly, CME in medium

Conclusion

The Chiral Magnetic Effects Axial anomaly, CME in medium Conclusion Motivation A proposal for new experiment for axion DM

Axion as a window to BSM

Axion is one of the prime candidates for BSM.

- It could solve the strong CP problem.
- It is also an excellent candidate for Dark matter.

The Chiral Magnetic Effects Axial anomaly, CME in medium Conclusion Motivation A proposal for new experiment for axion DM

Axion as a window to BSM

- Axion is one of the prime candidates for BSM.
- It could solve the strong CP problem.
- It is also an excellent candidate for Dark matter.

The Chiral Magnetic Effects Axial anomaly, CME in medium Conclusion

A proposal for new experiment for axion DM

Motivation

Axion as a window to BSM

- Axion is one of the prime candidates for BSM.
- It could solve the strong CP problem.
- It is also an excellent candidate for Dark matter.

The Chiral Magnetic Effects Axial anomaly, CME in medium Conclusion Motivation A proposal for new experiment for axion DM

The strong CP and axions

• QCD contains the θ term that breaks CP:

$$\mathcal{L}_{
m QCD} \supset rac{ heta}{16\pi^2} \epsilon^{\mu
ulphaeta} \, {
m Tr} \, F_{\mu
u} F_{lphaeta} \, .$$

The physical parameter for strong CP-violation

 $\bar{\theta} = \theta + \operatorname{Arg} \operatorname{Det} M_q$.

The strong interaction preserves CP. Its bound comes from

$$d_n = \left(rac{{
m const.}}{m_N}
ight) \left(rac{m_q\,ar{ heta}}{m_N}
ight) \, < 2.9 imes 10^{-26}\,e\cdot{
m cm}$$

hQCD calculation (DKH+Kim+Siwach+Yee, 2007):

 $d_n = 1.08 \times 10^{-16} \overline{\theta} \ e \cdot \mathrm{cm}$

The Chiral Magnetic Effects Axial anomaly, CME in medium Conclusion Motivation A proposal for new experiment for axion DM

The strong CP and axions

• QCD contains the θ term that breaks CP:

$$\mathcal{L}_{
m QCD} \supset rac{ heta}{16\pi^2} \epsilon^{\mu
ulphaeta} \, {
m Tr} \, F_{\mu
u} F_{lphaeta} \, .$$

The physical parameter for strong CP-violation

 $\bar{\theta} = \theta + \operatorname{Arg} \operatorname{Det} M_q \; .$

The strong interaction preserves CP. Its bound comes from

$$d_n = \left(rac{\mathrm{const.}}{m_N}
ight) \left(rac{m_q\,ar{ heta}}{m_N}
ight) < 2.9 imes10^{-26}\,e\cdot\mathrm{cm}$$

hQCD calculation (DKH+Kim+Siwach+Yee, 2007):

 $d_n = 1.08 \times 10^{-16} \bar{\theta} \ e \cdot \mathrm{cm}$

The Chiral Magnetic Effects Axial anomaly, CME in medium Conclusion Motivation A proposal for new experiment for axion DM

The strong CP and axions

• QCD contains the θ term that breaks CP:

$$\mathcal{L}_{
m QCD} \supset rac{ heta}{16\pi^2} \epsilon^{\mu
ulphaeta} \, {
m Tr} \, F_{\mu
u} F_{lphaeta} \, .$$

The physical parameter for strong CP-violation

 $\bar{\theta} = \theta + \operatorname{Arg} \operatorname{Det} M_q \; .$

The strong interaction preserves CP. Its bound comes from

$$d_n = \left(rac{\mathrm{const.}}{m_N}
ight) \left(rac{m_q\,ar{ heta}}{m_N}
ight) \, < 2.9 imes 10^{-26}\,e\cdot\mathrm{cm}$$

hQCD calculation (DKH+Kim+Siwach+Yee, 2007):

 $d_n = 1.08 \times 10^{-16} \bar{\theta} \ e \cdot \mathrm{cm}$

The Chiral Magnetic Effects Axial anomaly, CME in medium Conclusion Motivation A proposal for new experiment for axion DM

The strong CP and axions

• QCD contains the θ term that breaks CP:

$$\mathcal{L}_{
m QCD} \supset rac{ heta}{16\pi^2} \epsilon^{\mu
ulphaeta} \, {
m Tr} \, F_{\mu
u} F_{lphaeta} \, .$$

The physical parameter for strong CP-violation

 $\bar{\theta} = \theta + \operatorname{Arg} \operatorname{Det} M_q \; .$

The strong interaction preserves CP. Its bound comes from

$$d_n = \left(rac{\mathrm{const.}}{m_N}
ight) \left(rac{m_q\,ar{ heta}}{m_N}
ight) \, < 2.9 imes 10^{-26} \, e \cdot \mathrm{cm}$$

hQCD calculation (DKH+Kim+Siwach+Yee, 2007):

 $d_n = 1.08 \times 10^{-16} \overline{\theta} \ e \cdot \mathrm{cm}$

Motivation A proposal for new experiment for axion DM

The strong CP and axions

- The strong CP problem is solved if θ is a dynamical field, θ = a(x)/f, because ε_{vac}(θ) ≥ ε_{vac}(0) by Vafa-Witten.
- Since the θ shifts under U(1)_A rotation of colored fermions, the axions can be realized as the NG boson of PQ mechanism.
- When QCD confines, the axion potential develops:

 $V(a/f) \sim m_q \Lambda_{
m QCD}^3 F(a/f)$

The axion mass is then

$$m_a \sim \sqrt{rac{m_q \Lambda_{
m QCD}^3}{f}}$$

Motivation A proposal for new experiment for axion DM

The strong CP and axions

- The strong CP problem is solved if θ is a dynamical field, θ = a(x)/f, because E_{vac}(θ) ≥ E_{vac}(0) by Vafa-Witten.
- Since the θ shifts under $U(1)_A$ rotation of colored fermions, the axions can be realized as the NG boson of PQ mechanism.
- When QCD confines, the axion potential develops:

 $V(a/f) \sim m_q \Lambda_{
m QCD}^3 F(a/f)$

The axion mass is then

$$m_a \sim \sqrt{rac{m_q \Lambda_{
m QCD}^3}{f}}$$

Motivation A proposal for new experiment for axion DM

The strong CP and axions

- The strong CP problem is solved if θ is a dynamical field, θ = a(x)/f, because E_{vac}(θ) ≥ E_{vac}(0) by Vafa-Witten.
- Since the θ shifts under U(1)_A rotation of colored fermions, the axions can be realized as the NG boson of PQ mechanism.
- When QCD confines, the axion potential develops:

 $V(a/f) \sim m_q \Lambda_{
m QCD}^3 F(a/f)$

The axion mass is then

$$m_a \sim \sqrt{rac{m_q \Lambda_{
m QCD}^3}{f}}$$

Motivation A proposal for new experiment for axion DM

The strong CP and axions

- The strong CP problem is solved if θ is a dynamical field, θ = a(x)/f, because E_{vac}(θ) ≥ E_{vac}(0) by Vafa-Witten.
- Since the θ shifts under U(1)_A rotation of colored fermions, the axions can be realized as the NG boson of PQ mechanism.
- When QCD confines, the axion potential develops:

 $V(a/f) \sim m_q \Lambda_{
m QCD}^3 F(a/f)$

The axion mass is then

$$m_a \sim \sqrt{rac{m_q \Lambda_{
m QCD}^3}{f}}$$

イロト 不得 トイヨト イヨト ニヨー

The Chiral Magnetic Effects Axial anomaly, CME in medium Conclusion Motivation A proposal for new experiment for axion DM

Axion as Dark matter

The axion solves the strong CP problem dynamically.

Motivation A proposal for new experiment for axion DM

Axion as Dark matter

For T ≪ f and H ≪ m_a, the axions are homogeneous and behave collectively as CDM, assuming inflation occurs after PQ symmetry breaking (Preskill+Wise+Wilczek, Abbott+Sikivie, Dine+Fischler 1983):

$$a(t) = \frac{\sqrt{2\rho_a}}{m_a}\sin\left(m_a t\right)$$

For a large decay constant, axions are weakly coupled to SM particles and may constitue DM, $\rho_a \approx \rho_{\rm DM}$. (Turner 1986)

$$\Omega_a h^2 \approx 0.23 \times 10^{\pm 0.6} \left(\frac{f}{10^{12} \text{ GeV}} \right)^{1.175} \theta_i^2 F(\theta_i) \,,$$

Motivation A proposal for new experiment for axion DM

Axion as Dark matter

For T ≪ f and H ≪ m_a, the axions are homogeneous and behave collectively as CDM, assuming inflation occurs after PQ symmetry breaking (Preskill+Wise+Wilczek, Abbott+Sikivie, Dine+Fischler 1983):

$$a(t) = \frac{\sqrt{2\rho_a}}{m_a} \sin\left(m_a t\right)$$

► For a large decay constant, axions are weakly coupled to SM particles and may constitue DM, $\rho_a \approx \rho_{DM}$. (Turner 1986)

$$\Omega_a h^2 \approx 0.23 \times 10^{\pm 0.6} \left(rac{f}{10^{12} \ {
m GeV}}
ight)^{1.175} heta_i^2 F(heta_i) \, ,$$

Motivation A proposal for new experiment for axion DM

Existing experiments and proposals

- From its coupling to SM particles we can measure them.
- For example, axions couple to photons: Sikivie '83, RBF-UF, ADMX, HAYSTAC, CAPP, ···.

$$\mathcal{L}_{\mathrm{int}} \ni g_{a\gamma\gamma} \frac{a}{2f} \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma} \,.$$

∃⇒

Motivation A proposal for new experiment for axion DM

Existing experiments and proposals

- From its coupling to SM particles we can measure them.
- For example, axions couple to photons: Sikivie '83, RBF-UF, ADMX, HAYSTAC, CAPP, ···.

$$\mathcal{L}_{\mathrm{int}} \ni g_{a\gamma\gamma} \frac{a}{2f} \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma} \,.$$

The Chiral Magnetic Effects Axial anomaly, CME in medium Conclusion Motivation A proposal for new experiment for axion DM

Existing experiments and proposals

 Axions couple to photons, modifying Maxwell equations: ABRACADABRA '16, DMRadio, ···

 $abla imes ec{B} = g_{a\gamma\gamma} \dot{a} ec{B}$.

Motivation A proposal for new experiment for axion DM

Existing experiments and proposals

. . .

Axions couple to gluons and hadrons: CASPER, spin torsion,

$$\mathcal{L}_{\mathrm{int}} \ni rac{c_{\mathcal{N}}}{f} \partial_{\mu} a \bar{\mathcal{N}} \gamma^{\mu} \gamma_5 \mathcal{N} + i rac{g_d}{2} a(t) \bar{\mathcal{N}} \sigma_{\mu\nu} \gamma_5 \mathcal{N} F^{\mu\nu}$$

Motivation A proposal for new experiment for axion DM

Existing experiments and proposals

Axions couple to both electrons and photons: CAST

$$\mathcal{L}_{\mathrm{int}} \ni g_{a\gamma} rac{a}{2f} \epsilon^{\mu
u
ho\sigma} F_{\mu
u} F_{
ho\sigma} + rac{g_{ae}}{2m} \partial_{\mu} a \bar{\psi} \gamma^{\mu} \gamma_5 \psi$$

Motivation A proposal for new experiment for axion DM

Existing experiments and proposals

Axions couple to electrons: QUAX-ae (2019)

$${\cal L}_{
m int}
i rac{g_{ extsf{aee}}}{2m} \partial_\mu a \, ar\psi \gamma^\mu \gamma_5 \psi \, .$$

Motivation A proposal for new experiment for axion DM

Low temperature Axion Chiral Magnetic Effect

Electrons couple to axion DM: LACME (our proposal)

$$\mathcal{L}_{\mathrm{int}} = C_{e} rac{\partial_{\mu} a}{f} \bar{\psi} \gamma^{\mu} \gamma_{5} \psi pprox rac{C_{e}}{f} \sqrt{2
ho_{\mathrm{DM}}} \cos(m_{a} t) \psi^{\dagger} \gamma_{5} \psi \,.$$

Axion DM acts as an axial chemical potential for electrons.

$$\mu_5 = C_e \frac{\sqrt{2\rho_{\rm DM}}}{f} \cos\left(m_a t\right)$$

The axial chemical potential induces a helicity imbalance if B ≠ 0. ⇒ Chiral Magnetic Effects (Fukushima+Kharzeev+Warringa 2008).

Motivation A proposal for new experiment for axion DM

Low temperature Axion Chiral Magnetic Effect

Electrons couple to axion DM: LACME (our proposal)

$$\mathcal{L}_{\mathrm{int}} = C_{e} rac{\partial_{\mu} a}{f} \bar{\psi} \gamma^{\mu} \gamma_{5} \psi pprox rac{C_{e}}{f} \sqrt{2\rho_{\mathrm{DM}}} \cos(m_{a}t) \psi^{\dagger} \gamma_{5} \psi \,.$$

Axion DM acts as an axial chemical potential for electrons.

$$\mu_5 = C_{\rm e} \frac{\sqrt{2\rho_{\rm DM}}}{f} \cos{(m_a t)}$$

The axial chemical potential induces a helicity imbalance if B ≠ 0. ⇒ Chiral Magnetic Effects (Fukushima+Kharzeev+Warringa 2008).

Motivation A proposal for new experiment for axion DM

Low temperature Axion Chiral Magnetic Effect

Electrons couple to axion DM: LACME (our proposal)

$$\mathcal{L}_{\mathrm{int}} = C_{e} rac{\partial_{\mu} a}{f} \bar{\psi} \gamma^{\mu} \gamma_{5} \psi pprox rac{C_{e}}{f} \sqrt{2\rho_{\mathrm{DM}}} \cos(m_{a}t) \psi^{\dagger} \gamma_{5} \psi \,.$$

Axion DM acts as an axial chemical potential for electrons.

$$\mu_5 = C_{\rm e} \frac{\sqrt{2\rho_{\rm DM}}}{f} \cos{(m_a t)}$$

► The axial chemical potential induces a helicity imbalance if B ≠ 0. ⇒ Chiral Magnetic Effects (Fukushima+Kharzeev+Warringa 2008).

Motivation A proposal for new experiment for axion DM

chiral magnetic effects in chiral medium

 CME is a current flow due to the helicity imbalance in (polarized) medium by the axial chemical potential µ₅ and B:

Figure: chiral medium

In the original formula by (FKW 2008) the v_F dependence is missing (DKH+Im+Jeong+Yeom 2022).

Motivation A proposal for new experiment for axion DM

chiral magnetic effects in chiral medium

 CME is a current flow due to the helicity imbalance in (polarized) medium by the axial chemical potential µ₅ and B:

Figure: chiral medium

In the original formula by (FKW 2008) the v_F dependence is missing (DKH+Im+Jeong+Yeom 2022).

Motivation A proposal for new experiment for axion DM

Axionic Chiral Magnetic Effects

We propose a new experiment (LACME) to detect this non-dissipative currents in a conductor:

$$j^{3} = 6.8 \times 10^{-15} \mathrm{Am}^{-2} \left(\frac{v_{F}}{0.01c}\right) \left(\frac{\rho_{\mathrm{DM}}}{0.4 \, \mathrm{GeV cm}^{-3}}\right)^{1/2} \left(\frac{10^{12} \, \mathrm{GeV}}{f/C_{e}}\right) \left(\frac{B}{10 \, \mathrm{Tesla}}\right)$$

Motivation A proposal for new experiment for axion DM

Axionic Chiral Magnetic Effects

Projection of LACME, assuming 10⁻¹³Am⁻² sensitivity and v_F = 0.01 (g_{ae} = 2C_em_e/f):

B b

Motivation A proposal for new experiment for axion DM

Normal medium: What is the chemical potential?

The chemical potential couples to a conserved number density to keep the average number constant.

$$\mathcal{L} = \mathcal{L}_{\mathrm{vac}} + \mu \bar{\psi} \gamma_0 \psi \Rightarrow \frac{\delta}{\delta \mu} \mathcal{Z} = \left\langle \psi^{\dagger} \psi \right\rangle = \rho_0 \,.$$

This is a normal medium, which has a finite fermion number density,

$$\rho_0 = \frac{p_F^3}{3\pi^2} \,.$$

Motivation A proposal for new experiment for axion DM

(日)

17/40

Normal medium: What is the chemical potential?

The chemical potential couples to a conserved number density to keep the average number constant.

$$\mathcal{L} = \mathcal{L}_{\rm vac} + \mu \bar{\psi} \gamma_0 \psi \Rightarrow \frac{\delta}{\delta \mu} \mathcal{Z} = \left\langle \psi^{\dagger} \psi \right\rangle = \rho_0 \,.$$

 This is a normal medium, which has a finite fermion number density,

$$\rho_0 = \frac{p_F^3}{3\pi^2} \,.$$

The Chiral Magnetic Effects Axial anomaly, CME in medium Conclusion Motivation A proposal for new experiment for axion DM

Normal medium

Consider a cold medium of (free) electrons :

Figure: normal medium

<ロト < 部ト < 目ト < 目ト 目 のQで 18/40

The Chiral Magnetic Effects Axial anomaly, CME in medium Conclusion Motivation

A proposal for new experiment for axion DM

Normal medium

• The current density in cold medium: $j^{\mu} = \bar{\psi}\gamma^{\mu}\psi$ with $\vec{\alpha} = \gamma^{0}\vec{\gamma}$

$$\begin{aligned} \langle j^{\mu} \rangle &= -ie \int \frac{\mathrm{d}^{4} p}{(2\pi)^{4}} \mathrm{Tr} \left[\gamma^{\mu} \gamma^{0} \frac{1}{(1+i\epsilon) p_{0} - \vec{p} \cdot \vec{\alpha} - m\gamma^{0} + \mu} \right] \\ &= \int_{0}^{\mu} \mathrm{d} \mu' \frac{\partial}{\partial \mu'} \left\langle j^{\mu}(\mu') \right\rangle \end{aligned}$$

Since the integration is finite, we shift $p_0 \rightarrow p_0' = p_0 + \mu'$ and use

$$\frac{1}{x+i\epsilon} = P\frac{1}{x} - \pi i \operatorname{sgn}(\epsilon) \,\delta(x)$$

• The μ' dependence appears only in

$$-\pi i \operatorname{sgn}\left(p_0'-\mu'\right)\delta\left(\mu'-\vec{\alpha}\cdot\vec{p}-m\gamma^0\right)$$

The Chiral Magnetic Effects Axial anomaly, CME in medium Conclusion Motivation

A proposal for new experiment for axion DM

Normal medium

• The current density in cold medium: $j^{\mu} = \bar{\psi}\gamma^{\mu}\psi$ with $\vec{\alpha} = \gamma^{0}\vec{\gamma}$

$$\begin{aligned} \langle j^{\mu} \rangle &= -ie \int \frac{\mathrm{d}^{4} p}{(2\pi)^{4}} \mathrm{Tr} \left[\gamma^{\mu} \gamma^{0} \frac{1}{(1+i\epsilon) p_{0} - \vec{p} \cdot \vec{\alpha} - m\gamma^{0} + \mu} \right] \\ &= \int_{0}^{\mu} \mathrm{d} \mu' \frac{\partial}{\partial \mu'} \left\langle j^{\mu}(\mu') \right\rangle \end{aligned}$$

Since the integration is finite, we shift $p_0 \rightarrow p_0' = p_0 + \mu'$ and use

$$\frac{1}{x+i\epsilon} = P\frac{1}{x} - \pi i \text{sgn}(\epsilon) \,\delta(x)$$

• The μ' dependence appears only in

$$-\pi i \mathrm{sgn}\left(p_{0}^{\prime}-\mu^{\prime}
ight)\delta\left(\mu^{\prime}-ec{lpha}\cdotec{
ho}-m\gamma^{0}
ight)$$

The Chiral Magnetic Effects Axial anomaly, CME in medium Conclusion Motivation

A proposal for new experiment for axion DM

Normal medium

• The current density in cold medium: $j^{\mu} = \bar{\psi}\gamma^{\mu}\psi$ with $\vec{\alpha} = \gamma^{0}\vec{\gamma}$

$$\begin{aligned} \langle j^{\mu} \rangle &= -ie \int \frac{\mathrm{d}^{4} p}{(2\pi)^{4}} \mathrm{Tr} \left[\gamma^{\mu} \gamma^{0} \frac{1}{(1+i\epsilon) p_{0} - \vec{p} \cdot \vec{\alpha} - m\gamma^{0} + \mu} \right] \\ &= \int_{0}^{\mu} \mathrm{d} \mu' \frac{\partial}{\partial \mu'} \left\langle j^{\mu}(\mu') \right\rangle \end{aligned}$$

Since the integration is finite, we shift $p_0 \rightarrow p_0' = p_0 + \mu'$ and use

$$\frac{1}{x+i\epsilon} = P\frac{1}{x} - \pi i \operatorname{sgn}(\epsilon) \,\delta(x)$$

• The μ' dependence appears only in

$$-\pi i \mathrm{sgn}\left(\mathbf{p}_{0}^{\prime}-\mu^{\prime}\right)\delta\left(\mu^{\prime}-\vec{\alpha}\cdot\vec{\mathbf{p}}-\mathbf{m}\gamma^{0}\right)$$

The Chiral Magnetic Effects Axial anomaly, CME in medium Conclusion Motivation A proposal for new experiment for axion DM

Normal medium

 Taking derivative with respect to µ' and integrating over p'₀, we get

$$\begin{split} \langle j^{\mu}(\mu) \rangle &= e \int_{0}^{\mu} \mathrm{d}\mu' \int \frac{\mathrm{d}^{3}p}{(2\pi)^{3}} \mathrm{Tr} \left[\gamma^{\mu} \gamma^{0} \delta \left(\mu' - \vec{\alpha} \cdot \vec{p} - m \gamma^{0} \right) \right] \\ &= e \int_{0 < |\vec{p}| < p_{F}} \frac{\mathrm{d}^{3}p}{(2\pi)^{3}} \mathrm{Tr} \left[\gamma^{\mu} \gamma^{0} \frac{1 + \gamma^{0}}{2} \right] = e \frac{p_{F}^{3}}{3\pi^{2}} \delta^{\mu 0} \,, \end{split}$$

where we have performed the Foldy-Wouthysen transformation for the δ function and the positive energy projection.
Motivation A proposal for new experiment for axion DM

chiral chiral medium: What is the axial chemical potential?

- Now let us consider a chiral medium with $\mu_5 \neq 0$ and $\mu \neq 0$.
- Since the axial current is not conserved because of the anomaly and the mass term, what is the meaning of the axial chemical potential?

$$\partial_\mu j^\mu_5 = 2m \bar\psi \psi + rac{e^2}{8\pi^2} F_{\mu
u} \tilde F^{\mu
u}
eq 0 \, .$$

Unlike µ, the axial chemical potential can not keep the axial number density constant. The mass term always flips the chirality.

$$\rho_{\mathcal{A}} = \left\langle \psi^{\dagger} \gamma_5 \psi \right\rangle = \frac{\delta \mathcal{Z}}{\delta \mu_5} = \rho_L - \rho_R \neq \text{constant} .$$

Motivation A proposal for new experiment for axion DM

chiral chiral medium: What is the axial chemical potential?

- Now let us consider a chiral medium with $\mu_5 \neq 0$ and $\mu \neq 0$.
- Since the axial current is not conserved because of the anomaly and the mass term, what is the meaning of the axial chemical potential?

$$\partial_{\mu}j^{\mu}_{5}=2m\bar{\psi}\psi+\frac{e^{2}}{8\pi^{2}}F_{\mu\nu}\tilde{F}^{\mu\nu}\neq0\,.$$

Unlike µ, the axial chemical potential can not keep the axial number density constant. The mass term always flips the chirality.

$$\rho_{\mathcal{A}} = \left\langle \psi^{\dagger} \gamma_5 \psi \right\rangle = \frac{\delta \mathcal{Z}}{\delta \mu_5} = \rho_L - \rho_R \neq \text{constant} \,.$$

Motivation A proposal for new experiment for axion DM

chiral chiral medium: What is the axial chemical potential?

- Now let us consider a chiral medium with $\mu_5 \neq 0$ and $\mu \neq 0$.
- Since the axial current is not conserved because of the anomaly and the mass term, what is the meaning of the axial chemical potential?

$$\partial_\mu j^\mu_5 = 2m \bar\psi\psi + rac{e^2}{8\pi^2}F_{\mu
u}\tilde F^{\mu
u}
eq 0\,.$$

Unlike µ, the axial chemical potential can not keep the axial number density constant. The mass term always flips the chirality.

$$\rho_{A} = \left\langle \psi^{\dagger} \gamma_{5} \psi \right\rangle = \frac{\delta \mathcal{Z}}{\delta \mu_{5}} = \rho_{L} - \rho_{R} \neq \text{constant}.$$

Motivation A proposal for new experiment for axion DM

chiral chiral medium: What is the axial chemical potential?

• To see the meaning of μ_5 , let's consider the medium with μ_5 .

$$\mathcal{L}=ar{\Psi}\left(i\partial\!\!\!/-m+\mu\gamma^{0}+\mu_{5}\gamma^{0}\gamma_{5}
ight)\Psi$$

Now, we take a non-relativistic limit by subtracting out the rest mass and integrating out the negative states, χ:

$$\Psi \equiv \begin{pmatrix} \psi \\ \chi \end{pmatrix} e^{-imt} \quad (\mu_{\rm NR} \equiv \mu - m)$$

$$\Rightarrow \mathcal{L}_{\rm NR} = \psi^{\dagger} \left[i\partial_0 - \frac{(i\vec{\sigma}\cdot\vec{\nabla} + \mu_5)^2}{2m} \right] \psi + \mu_{\rm NR}\psi^{\dagger}\psi + \cdots$$

Motivation A proposal for new experiment for axion DM

chiral chiral medium: What is the axial chemical potential?

• To see the meaning of μ_5 , let's consider the medium with μ_5 .

$$\mathcal{L}=ar{\Psi}\left(i\partial\!\!\!/-m+\mu\gamma^{0}+\mu_{5}\gamma^{0}\gamma_{5}
ight)\Psi$$

Now, we take a non-relativistic limit by subtracting out the rest mass and integrating out the negative states, χ:

$$\Psi \equiv \begin{pmatrix} \psi \\ \chi \end{pmatrix} e^{-imt} \quad (\mu_{\rm NR} \equiv \mu - m)$$

$$\Rightarrow \mathcal{L}_{\rm NR} = \psi^{\dagger} \left[i\partial_0 - \frac{(i\vec{\sigma}\cdot\vec{\nabla}+\mu_5)^2}{2m} \right] \psi + \mu_{\rm NR}\psi^{\dagger}\psi + \cdots$$

Motivation A proposal for new experiment for axion DM

chiral chiral medium: What is the axial chemical potential?

Now since we are interested in modes near the Fermi surface, we expand the electron field as, following HDET (DKH '00),

$$\psi(x) = \sum_{\vec{v}_F} \psi(\vec{v}_F, x) e^{i\vec{p}_F \cdot \vec{x}}.$$

The effective Lagrangian for modes near the Fermi sea becomes

$$\mathcal{L}_{\text{eff}} = \sum_{\vec{v}_F} \left[\psi^{\dagger} \left(i \partial_0 - i \vec{\sigma} \cdot \vec{v}_F \vec{\sigma} \cdot \vec{\nabla} \right) \psi + \mu_5 \vec{v}_F \cdot \psi^{\dagger} \vec{\sigma} \psi \right] + \cdots,$$

where we used $\mu_{\rm NR}\equiv p_F^2/2m$.

Motivation A proposal for new experiment for axion DM

chiral chiral medium: What is the axial chemical potential?

Now since we are interested in modes near the Fermi surface, we expand the electron field as, following HDET (DKH '00),

$$\psi(x) = \sum_{\vec{v}_F} \psi(\vec{v}_F, x) e^{i \vec{p}_F \cdot \vec{x}}$$

 The effective Lagrangian for modes near the Fermi sea becomes

$$\mathcal{L}_{\text{eff}} = \sum_{\vec{v}_{F}} \left[\psi^{\dagger} \left(i \partial_{0} - i \vec{\sigma} \cdot \vec{v}_{F} \vec{\sigma} \cdot \vec{\nabla} \right) \psi + \mu_{5} \vec{v}_{F} \cdot \psi^{\dagger} \vec{\sigma} \psi \right] + \cdots,$$

where we used $\mu_{
m NR}\equiv p_F^2/2m$.

The Chiral Magnetic Effects Axial anomaly, CME in medium Conclusion Motivation A proposal for new experiment for axion DM

chiral chiral medium: What is the axial chemical potential?

- We now clearly see that the axial chemical potential µ₅ controls the spin density along the Fermi velocity.
- Since the spin symmetry is conserved in the NR limit, we see that µ₅v_F is the spin chemical potential in NR medium that keeps constant the number of spins along the Fermi momentum direction.
- The axial chemical potential therefore generates the helicity imbalance in medium for a given momentum.

Motivation A proposal for new experiment for axion DM

chiral chiral medium: What is the axial chemical potential?

- We now clearly see that the axial chemical potential µ₅ controls the spin density along the Fermi velocity.
- Since the spin symmetry is conserved in the NR limit, we see that µ₅v_F is the spin chemical potential in NR medium that keeps constant the number of spins along the Fermi momentum direction.
- The axial chemical potential therefore generates the helicity imbalance in medium for a given momentum.

Motivation A proposal for new experiment for axion DM

chiral chiral medium: What is the axial chemical potential?

- We now clearly see that the axial chemical potential µ₅ controls the spin density along the Fermi velocity.
- Since the spin symmetry is conserved in the NR limit, we see that µ₅v_F is the spin chemical potential in NR medium that keeps constant the number of spins along the Fermi momentum direction.
- The axial chemical potential therefore generates the helicity imbalance in medium for a given momentum.

Motivation A proposal for new experiment for axion DM

chiral magnetic effects

In normal Fermi liquid the Fermi surface is isotropic and we do not see any net helicity imbalance even if µ₅ ≠ 0.

However, if we apply magnetic fields, the spectrum of electrons in medium is quantized (n = 1, 2, ···):

$$E_n(p_z) = \pm \sqrt{p_z^2 + m^2 + 2|eB|n},$$

where $2n = 2n_r + 1 + |m_L| - \text{sign}(eB)(m_L + 2s_z)$.

For the lowest Landau level (LLL) electrons, the spins are always anti-parallel to the magnetic field. The axial chemical potential then generates net helicity imbalance:

$$\rho_{h=+1}^{n=0} - \rho_{h=-1}^{n=0} = \frac{|eB|}{4\pi^2} \left(p_F^+ - p_F^- \right) = \frac{|eB|}{2\pi^2} \mu_5.$$

Motivation A proposal for new experiment for axion DM

chiral magnetic effects

- In normal Fermi liquid the Fermi surface is isotropic and we do not see any net helicity imbalance even if µ₅ ≠ 0.
- ► However, if we apply magnetic fields, the spectrum of electrons in medium is quantized (n = 1, 2, · · ·):

$$E_n(p_z) = \pm \sqrt{p_z^2 + m^2 + 2|eB|n}$$

where $2n = 2n_r + 1 + |m_L| - \text{sign}(eB)(m_L + 2s_z)$.

 For the lowest Landau level (LLL) electrons, the spins are always anti-parallel to the magnetic field. The axial chemical potential then generates net helicity imbalance:

$$\rho_{h=+1}^{n=0} - \rho_{h=-1}^{n=0} = \frac{|eB|}{4\pi^2} \left(\rho_F^+ - \rho_F^- \right) = \frac{|eB|}{2\pi^2} \mu_5.$$

Motivation A proposal for new experiment for axion DM

chiral magnetic effects

- In normal Fermi liquid the Fermi surface is isotropic and we do not see any net helicity imbalance even if µ₅ ≠ 0.
- ► However, if we apply magnetic fields, the spectrum of electrons in medium is quantized (n = 1, 2, · · ·):

$$E_n(p_z) = \pm \sqrt{p_z^2 + m^2 + 2|eB|n}$$

where $2n = 2n_r + 1 + |m_L| - \text{sign}(eB)(m_L + 2s_z)$.

For the lowest Landau level (LLL) electrons, the spins are always anti-parallel to the magnetic field. The axial chemical potential then generates net helicity imbalance:

$$\rho_{h=+1}^{n=0} - \rho_{h=-1}^{n=0} = \frac{|eB|}{4\pi^2} \left(p_F^+ - p_F^- \right) = \frac{|eB|}{2\pi^2} \mu_5$$

(日)

The Chiral Magnetic Effects Axial anomaly, CME in medium Conclusion Motivation A proposal for new experiment for axion DM

chiral magnetic effects

• Summing up all currents, we find with $r = \mu_5/\mu$

$$\begin{split} \langle j^{3} \rangle &= \frac{e^{2}B}{4\pi^{2}} \left[\int_{0}^{p_{F}^{+}} \frac{p_{z} \mathrm{d} p_{z}}{\sqrt{p_{z}^{2} + m^{2}}} - \int_{0}^{p_{F}^{-}} \frac{p_{z} \mathrm{d} p_{z}}{\sqrt{p_{z}^{2} + m^{2}}} \right] \\ &= \frac{e^{2}B}{2\pi^{2}} \cdot \frac{2v_{F}\mu_{5}}{\sqrt{1 + r^{2} + 2v_{F}r} + \sqrt{1 + r^{2}2v_{F}r}} \\ &\approx v_{F} \frac{e^{2}B}{2\pi^{2}} \mu_{5} \,, \end{split}$$

<ロト<部ト<単ト<単ト<単ト 26/40

The Chiral Magnetic Effects Axial anomaly, CME in medium Conclusion

Motivation A proposal for new experiment for axion DM

Axion-electron coupling

The axion-electron coupling depends on the UV model.

The strength of the axion-electron coupling varies as

 $C_e \simeq egin{cases} \mathcal{O}(1) & ext{DFSZ-like models} \ \mathcal{O}(10^{-4} \sim 10^{-3}) & ext{KSVZ-like models} \ \mathcal{O}(10^{-3} \sim 10^{-2}) & ext{String-theoretic axions} \,. \end{cases}$

The precise measurement of the axion-electron coupling can uncover its microscopic origin.

The Chiral Magnetic Effects Axial anomaly, CME in medium Conclusion

Motivation A proposal for new experiment for axion DM

Axion-electron coupling

- The axion-electron coupling depends on the UV model.
- The strength of the axion-electron coupling varies as

 $C_e \simeq \begin{cases} \mathcal{O}(1) & \mathrm{DFSZ-like\ models} \\ \mathcal{O}(10^{-4} \sim 10^{-3}) & \mathrm{KSVZ-like\ models} \\ \mathcal{O}(10^{-3} \sim 10^{-2}) & \mathrm{String-theoretic\ axions} \,. \end{cases}$

The precise measurement of the axion-electron coupling can uncover its microscopic origin.

The Chiral Magnetic Effects Axial anomaly, CME in medium Conclusion

Motivation A proposal for new experiment for axion DM

Axion-electron coupling

- The axion-electron coupling depends on the UV model.
- The strength of the axion-electron coupling varies as

 $C_e \simeq \begin{cases} \mathcal{O}(1) & \mathrm{DFSZ-like\ models} \\ \mathcal{O}(10^{-4} \sim 10^{-3}) & \mathrm{KSVZ-like\ models} \\ \mathcal{O}(10^{-3} \sim 10^{-2}) & \mathrm{String-theoretic\ axions} \,. \end{cases}$

The precise measurement of the axion-electron coupling can uncover its microscopic origin.

Motivation A proposal for new experiment for axion DM

Axion-electron coupling (A slide from Sang Hui Im)

Distinguishing the models of an axion by coupling ratios

Green : DFSZ-like model Red : String-theoretic model Black : KSVZ-like model (dashed : $m_{\Psi} = 10^{-3} f_{a'}$ solid : $m_{\Psi} = f_a$)

The Chiral Magnetic Effects Axial anomaly, CME in medium Conclusion Motivation A proposal for new experiment for axion DM

Axionic Chiral Magnetic Effects

Figure: ABRACADABRA

Figure: LACME

Motivation A proposal for new experiment for axion DM

Axionic Chiral Magnetic Effects

ABRACADABRA-10 cm has put a bound (2021)

 $g_{a\gamma\gamma} < 3.2\times 10^{-11} {\rm GeV}^{-1}$

If we assume the same sensitivity for LACME,

 $rac{f}{C_e} > 10^6 {
m GeV}$

It will be then comparable to or better than QUAX sensitivity:

$$g_{aee}\equiv m_e\cdot rac{C_e}{f}\sim 10^{-9}$$
 .

<ロト < 部ト < 目ト < 目ト 目 のので 30/40

Motivation A proposal for new experiment for axion DM

Axionic Chiral Magnetic Effects

ABRACADABRA-10 cm has put a bound (2021)

 $g_{a\gamma\gamma} < 3.2 imes 10^{-11} {
m GeV^{-1}}$

If we assume the same sensitivity for LACME,

 $\frac{f}{C_e} > 10^6 {\rm GeV}$

It will be then comparable to or better than QUAX sensitivity:

$$g_{aee}\equiv m_e\cdot rac{C_e}{f}\sim 10^{-9}$$
 .

<ロト < 部 ト < 言 ト < 言 ト ミ の < で 30/40

Motivation A proposal for new experiment for axion DM

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ●

Axionic Chiral Magnetic Effects

ABRACADABRA-10 cm has put a bound (2021)

 $g_{a\gamma\gamma} < 3.2\times 10^{-11} {\rm GeV}^{-1}$

If we assume the same sensitivity for LACME,

 $\frac{f}{C_e} > 10^6 {\rm GeV}$

It will be then comparable to or better than QUAX sensitivity:

$$g_{aee} \equiv m_e \cdot rac{C_e}{f} \sim 10^{-9}$$
 .

Chiral magnetic effects in medium

Chiral magnetic effects in medium

Now consider chirally imbalanced medium:

$$\mathcal{L} = \bar{\psi} \left(i \partial \!\!\!/ - m + \mu \gamma^{0} + \mu_{5} \gamma^{0} \gamma_{5} \right) \psi$$

- While the vector chemical potential shifts the ground state energy to populate the electrons up to the Fermi momentum p_F, the axial chemical potential shifts the momentum in the direction of spin to populate more the positive helicity states.
- ▶ If we transform the electron field, $\psi \rightarrow \psi' = e^{-i\mu_5 \hat{\Sigma} \cdot \vec{X}} \psi$, we absorb μ_5 into the momentum along the spin direction :

$$\mathcal{L} = \bar{\psi}' \left(i \gamma' \cdot \partial - m + \mu \gamma^0 \right) \psi'$$

Chiral magnetic effects in medium

Chiral magnetic effects in medium

Now consider chirally imbalanced medium:

$$\mathcal{L} = \bar{\psi} \left(i \partial \!\!\!/ - m + \mu \gamma^{0} + \mu_{5} \gamma^{0} \gamma_{5} \right) \psi$$

- While the vector chemical potential shifts the ground state energy to populate the electrons up to the Fermi momentum *p_F*, the axial chemical potential shifts the momentum in the direction of spin to populate more the positive helicity states.
- ▶ If we transform the electron field, $\psi \rightarrow \psi' = e^{-i\mu_5 \Sigma \cdot \vec{x}} \psi$, we absorb μ_5 into the momentum along the spin direction :

$$\mathcal{L} = \bar{\psi}' \left(i \gamma' \cdot \partial - m + \mu \gamma^0 \right) \psi'$$

Chiral magnetic effects in medium

Chiral magnetic effects in medium

Now consider chirally imbalanced medium:

$$\mathcal{L} = \bar{\psi} \left(i \partial \!\!\!/ - m + \mu \gamma^{0} + \mu_{5} \gamma^{0} \gamma_{5} \right) \psi$$

- While the vector chemical potential shifts the ground state energy to populate the electrons up to the Fermi momentum *p_F*, the axial chemical potential shifts the momentum in the direction of spin to populate more the positive helicity states.
- ▶ If we transform the electron field, $\psi \rightarrow \psi' = e^{-i\mu_5 \vec{\Sigma} \cdot \vec{X}} \psi$, we absorb μ_5 into the momentum along the spin direction :

$$\mathcal{L} = \bar{\psi}' \left(i \gamma' \cdot \partial - m + \mu \gamma^0 \right) \psi'$$

Chiral magnetic effects in medium

Chiral magnetic effects in medium

Figure: chiral medium

Chiral magnetic effects in medium

Chiral magnetic effects in medium

- Because of the spin symmetry in the rest frame of medium, the axial chemical potential alone does not create net chiral imbalance unless mass vanishes, m = 0.
- ► However, under the magnetic field the spin degeneracy is lifted. The electrons in LLL states have their spin always anti-parallel to the magnetic field and indeed we have helicity imbalance under the magnetic field if µ₅ ≠ 0.
- The LLL propagator with $ilde{p}_{||} = (p_0 + \mu + \mu_5 \gamma_5, 0, 0, p_z)$

 $S_{F}^{n=0} = \left[\frac{2i\left(\tilde{p}_{\parallel}+m\right)P_{-}H_{+}e^{-p_{\perp}^{2}/|eB|}}{\left[\left(1+i\epsilon\right)p_{0}+\mu_{+}\right]^{2}-p_{z}^{2}-m^{2}}+\frac{2i\left(\tilde{p}_{\parallel}+m\right)P_{-}H_{-}e^{-p_{\perp}^{2}/|eB|}}{\left[\left(1+i\epsilon\right)p_{0}+\mu_{-}\right]^{2}-p_{z}^{2}-m^{2}}\right]$

Chiral magnetic effects in medium

Chiral magnetic effects in medium

- Because of the spin symmetry in the rest frame of medium, the axial chemical potential alone does not create net chiral imbalance unless mass vanishes, m = 0.
- ► However, under the magnetic field the spin degeneracy is lifted. The electrons in LLL states have their spin always anti-parallel to the magnetic field and indeed we have helicity imbalance under the magnetic field if µ₅ ≠ 0.

• The LLL propagator with $\widetilde{p}_{\mu} = (p_0 + \mu + \mu_5 \gamma_5, 0, 0, p_z)$

 $S_{F}^{n=0} = \left[\frac{2i\left(\tilde{p}_{\parallel}+m\right)P_{-}H_{+}e^{-p_{\perp}^{2}/|eB|}}{\left[\left(1+i\epsilon\right)p_{0}+\mu_{+}\right]^{2}-p_{z}^{2}-m^{2}}+\frac{2i\left(\tilde{p}_{\parallel}+m\right)P_{-}H_{-}e^{-p_{\perp}^{2}/|eB|}}{\left[\left(1+i\epsilon\right)p_{0}+\mu_{-}\right]^{2}-p_{z}^{2}-m^{2}}\right]$

Chiral magnetic effects in medium

Chiral magnetic effects in medium

- Because of the spin symmetry in the rest frame of medium, the axial chemical potential alone does not create net chiral imbalance unless mass vanishes, m = 0.
- ► However, under the magnetic field the spin degeneracy is lifted. The electrons in LLL states have their spin always anti-parallel to the magnetic field and indeed we have helicity imbalance under the magnetic field if µ₅ ≠ 0.
- ▶ The LLL propagator with $\tilde{p}_{\shortparallel} = (p_0 + \mu + \mu_5 \gamma_5, 0, 0, p_z)$

$$S_{F}^{n=0} = \left[\frac{2i\left(\tilde{p}_{\parallel} + m\right)P_{-}H_{+}e^{-p_{\perp}^{2}/|eB|}}{\left[\left(1 + i\epsilon\right)p_{0} + \mu_{+}\right]^{2} - p_{z}^{2} - m^{2}} + \frac{2i\left(\tilde{p}_{\parallel} + m\right)P_{-}H_{-}e^{-p_{\perp}^{2}/|eB|}}{\left[\left(1 + i\epsilon\right)p_{0} + \mu_{-}\right]^{2} - p_{z}^{2} - m^{2}}\right]$$

Chiral magnetic effects in medium

Chiral magnetic effects in medium

At one-loop the current is given by

$$\langle j^{\mu}
angle = e \left\langle \bar{\Psi} \gamma^{\mu} \Psi
ight
angle = -e \int rac{\mathrm{d}^4 p}{(2\pi)^4} \operatorname{Tr} \left[\gamma^{\mu} S_F^{n=0}(p,\mu,\mu_5)
ight] \, .$$

The medium contribution is then

$$\begin{split} \langle j^{3} \rangle &= \int_{0}^{\mu} \mathrm{d}\mu' \frac{\partial}{\partial \mu'} \langle j^{\mu}(\mu') \rangle \\ &= \frac{e^{2}B}{4\pi^{2}} \Big[\int_{0}^{\mu_{+}} \mathrm{d}p_{0} \int_{p_{z}>0} |p_{z}| \delta \Big(p_{\parallel}^{2} - m^{2} \Big) - \int_{0}^{\mu_{-}} \mathrm{d}p_{0} \int_{p_{z}>0} |p_{z}| \delta \Big(p_{\parallel}^{2} - m^{2} \Big) \Big] \\ &= \frac{e^{2}B}{4\pi^{2}} \left[\sqrt{(p_{F} + \mu_{5})^{2} + m^{2}} - \sqrt{(p_{F} - \mu_{5})^{2} + m^{2}} \right] \\ &= \frac{e^{2}B}{2\pi^{2}} \mu_{5} v_{F} \left[1 + \mathcal{O}(v_{F}^{2}, r^{2}) \right] \,. \end{split}$$

Chiral magnetic effects in medium

Chiral magnetic effects in medium

At one-loop the current is given by

$$\langle j^{\mu}
angle = e \left\langle \bar{\Psi} \gamma^{\mu} \Psi \right\rangle = -e \int \frac{\mathrm{d}^4 p}{(2\pi)^4} \operatorname{Tr} \left[\gamma^{\mu} S_F^{n=0}(p,\mu,\mu_5) \right] \,.$$

The medium contribution is then

$$\begin{split} \langle j^{3} \rangle &= \int_{0}^{\mu} \mathrm{d}\mu' \frac{\partial}{\partial\mu'} \left\langle j^{\mu}(\mu') \right\rangle \\ &= \frac{e^{2}B}{4\pi^{2}} \bigg[\int_{0}^{\mu_{+}} \mathrm{d}p_{0} \int_{p_{z}>0} |p_{z}| \delta \Big(p_{\parallel}^{2} - m^{2} \Big) - \int_{0}^{\mu_{-}} \mathrm{d}p_{0} \int_{p_{z}>0} |p_{z}| \delta \Big(p_{\parallel}^{2} - m^{2} \Big) \bigg] \\ &= \frac{e^{2}B}{4\pi^{2}} \left[\sqrt{(p_{F} + \mu_{5})^{2} + m^{2}} - \sqrt{(p_{F} - \mu_{5})^{2} + m^{2}} \right] \\ &= \frac{e^{2}B}{2\pi^{2}} \mu_{5} v_{F} \left[1 + \mathcal{O}(v_{F}^{2}, r^{2}) \right] \,. \end{split}$$

34/40

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Axial anomaly in medium

CME is closely related to axial ABJ anomaly in 2D. To see this we consider the anomalous two-point function of LLL electrons in medium:

$$\Gamma^{\mu\nu}(q_1)\delta^{(2)}(q_1+q_2) \equiv \int \Pi_i d^2 x_i e^{iq_i \cdot x_i} \langle 0 | Tj^{\mu}(x_1) j_5^{\nu}(x_2) | 0 \rangle$$

Figure: ABJ anomaly in 2D

Axial anomaly in medium

▶ In the HDL approximation or for $q/\mu \rightarrow$ 0, we find

$$\Gamma^{\mu\nu}(q) = \frac{eB}{2\pi^2 v_F} \left[-\eta^{\mu 0} \epsilon^{\nu 0} + \frac{q^0}{2} \left(\frac{V^{\mu} \epsilon^{\nu \alpha} V_{\alpha}}{V \cdot q} + \frac{\bar{V}^{\mu} \epsilon^{\nu \alpha} \bar{V}_{\alpha}}{\bar{V} \cdot q} \right) \right] \,,$$

where $V^{\mu} = (1, 0, 0, v_F)$ and $\bar{V}^{\mu} = (1, 0, 0, -v_F)$.

The vector current is conserved:

 $q_{\mu}\Gamma^{\mu
u}(q)=0$.

The axial current is however anomalous:

 $\langle \partial_{\nu} j_5^{\nu} \rangle_A = ie \int \frac{\mathrm{d}^2 q}{4\pi^2} \lim_{q_0 \to 0} \lim_{q_3 \to 0} e^{iq \cdot x} q_{\nu} A_{\mu}(q) \Gamma^{\mu\nu}(q) = \frac{e^2 B}{4\pi^2} v_F \epsilon^{\mu\nu} F_{\mu\nu} \,.$

<ロト < 部ト < 目ト < 目ト 目 のので 36/40

Axial anomaly in medium

▶ In the HDL approximation or for $q/\mu \rightarrow$ 0, we find

$$\Gamma^{\mu\nu}(q) = \frac{eB}{2\pi^2 v_F} \left[-\eta^{\mu 0} \epsilon^{\nu 0} + \frac{q^0}{2} \left(\frac{V^{\mu} \epsilon^{\nu \alpha} V_{\alpha}}{V \cdot q} + \frac{\bar{V}^{\mu} \epsilon^{\nu \alpha} \bar{V}_{\alpha}}{\bar{V} \cdot q} \right) \right] \,,$$

where $V^{\mu} = (1, 0, 0, v_F)$ and $\bar{V}^{\mu} = (1, 0, 0, -v_F)$.

The vector current is conserved:

$$q_{\mu}\Gamma^{\mu
u}(q)=0$$
 .

The axial current is however anomalous:

 $\langle \partial_{\nu} j_5^{\nu} \rangle_A = ie \int \frac{\mathrm{d}^2 q}{4\pi^2} \lim_{q_0 \to 0} \lim_{q_3 \to 0} e^{iq \cdot x} q_{\nu} A_{\mu}(q) \Gamma^{\mu\nu}(q) = \frac{e^2 B}{4\pi^2} v_F \epsilon^{\mu\nu} F_{\mu\nu} \,.$

Axial anomaly in medium

▶ In the HDL approximation or for $q/\mu \rightarrow 0$, we find

$$\Gamma^{\mu\nu}(q) = \frac{eB}{2\pi^2 v_F} \left[-\eta^{\mu 0} \epsilon^{\nu 0} + \frac{q^0}{2} \left(\frac{V^{\mu} \epsilon^{\nu \alpha} V_{\alpha}}{V \cdot q} + \frac{\bar{V}^{\mu} \epsilon^{\nu \alpha} \bar{V}_{\alpha}}{\bar{V} \cdot q} \right) \right] \,,$$

where $V^{\mu} = (1, 0, 0, v_F)$ and $\bar{V}^{\mu} = (1, 0, 0, -v_F)$.

The vector current is conserved:

$$q_{\mu}\Gamma^{\mu
u}(q)=0$$
.

The axial current is however anomalous:

$$\langle \partial_{\nu} j_5^{\nu} \rangle_A = ie \int \frac{\mathrm{d}^2 q}{4\pi^2} \lim_{q_0 \to 0} \lim_{q_3 \to 0} e^{iq \cdot x} q_{\nu} A_{\mu}(q) \Gamma^{\mu\nu}(q) = \frac{e^2 B}{4\pi^2} \mathbf{v}_F \epsilon^{\mu\nu} F_{\mu\nu} \,.$$

Axial anomaly in medium

The ABJ anomaly becomes in the rest frame of the medium

$$\langle \partial_\nu j_5^\nu \rangle_{A} = \frac{\mathrm{e}^2}{16\pi^2} \mathbf{v_F} \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma} \, . \label{eq:phi_eq}$$

- The anomaly is due to the gapless modes at the Fermi sea, which exists even for $m \neq 0$. (Cf. Coleman+Grossman '82)
- The anomaly should survive in the superfluid phase, where the electrons are gapped, and the axial supercurrent should have the anomalous coupling. (DKH+Im to appear.)

$$\left\langle \psi_L^T \gamma^0 C \psi_L \right\rangle = \Delta_L(p_F), \ \left\langle \psi_R^T \gamma^0 C \psi_R \right\rangle = -\Delta_R(p_F),$$
Axial anomaly in medium

The ABJ anomaly becomes in the rest frame of the medium

$$\langle \partial_{\nu} j_{5}^{\nu} \rangle_{A} = \frac{e^{2}}{16\pi^{2}} v_{F} \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma} \, . \label{eq:phi_eq}$$

- ▶ The anomaly is due to the gapless modes at the Fermi sea, which exists even for $m \neq 0$. (Cf. Coleman+Grossman '82)
- The anomaly should survive in the superfluid phase, where the electrons are gapped, and the axial supercurrent should have the anomalous coupling. (DKH+Im to appear.)

$$\left\langle \psi_L^T \gamma^0 C \psi_L \right\rangle = \Delta_L(p_F), \ \left\langle \psi_R^T \gamma^0 C \psi_R \right\rangle = -\Delta_R(p_F).$$

Axial anomaly in medium

The ABJ anomaly becomes in the rest frame of the medium

$$\langle \partial_{\nu} j_{5}^{\nu} \rangle_{A} = \frac{e^{2}}{16\pi^{2}} v_{F} \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma} \, . \label{eq:phi_eq}$$

- ▶ The anomaly is due to the gapless modes at the Fermi sea, which exists even for $m \neq 0$. (Cf. Coleman+Grossman '82)
- The anomaly should survive in the superfluid phase, where the electrons are gapped, and the axial supercurrent should have the anomalous coupling. (DKH+Im to appear.)

$$\left\langle \psi_L^T \gamma^0 C \psi_L \right\rangle = \Delta_L(p_F), \ \left\langle \psi_R^T \gamma^0 C \psi_R \right\rangle = -\Delta_R(p_F).$$

Axial anomaly and CME in medium

From the anomalous two-point function one can calculate the CME, in the leading order in μ₅.

$$\langle j^3
angle = -e \mu_5 \lim_{q_0 \to 0} \lim_{q_3 \to 0} \Gamma^{30}(q) = rac{e^2 B}{2\pi^2} v_F \mu_5 \,,$$

イロト イロト イヨト イヨト 三日

38/40

which agrees with our direct calculations!

Conclusion

We show that dark matter axions or axion-like particles (ALP) induce non-dissipative alternating electric currents in conductors along the external magnetic fields due to the axial anomaly, realizing the chiral magnetic effects.

$$\vec{j} = v_F \frac{e^2}{2\pi^2} \frac{C_e}{f} \dot{a} \vec{B} \,. \quad \text{(LACME)} \,.$$

- We propose a new experiment to measure this current in medium to detect the dark matter axions or ALP. (LACME)
- This non-dissipative currents are the electron medium effects, directly proportional to the axion or ALP coupling to electrons, which depends on their microscopic physics.

Conclusion

We show that dark matter axions or axion-like particles (ALP) induce non-dissipative alternating electric currents in conductors along the external magnetic fields due to the axial anomaly, realizing the chiral magnetic effects.

$$\vec{j} = v_F \frac{e^2}{2\pi^2} \frac{C_e}{f} \dot{a} \vec{B}$$
. (LACME).

- We propose a new experiment to measure this current in medium to detect the dark matter axions or ALP. (LACME)
- This non-dissipative currents are the electron medium effects, directly proportional to the axion or ALP coupling to electrons, which depends on their microscopic physics.

Conclusion

We show that dark matter axions or axion-like particles (ALP) induce non-dissipative alternating electric currents in conductors along the external magnetic fields due to the axial anomaly, realizing the chiral magnetic effects.

$$\vec{j} = v_F \frac{e^2}{2\pi^2} \frac{C_e}{f} \dot{a} \vec{B}$$
. (LACME).

- We propose a new experiment to measure this current in medium to detect the dark matter axions or ALP. (LACME)
- This non-dissipative currents are the electron medium effects, directly proportional to the axion or ALP coupling to electrons, which depends on their microscopic physics.

Conclusion

Our experiment is complementary to existing experiments.

We also find the fermi liquid suffers from the axial ABJ anomaly

$$\langle \partial_{\mu} j_{5}^{\mu}
angle = v_{F} rac{e^{2}}{16\pi^{2}} \epsilon^{\mu
u
ho \sigma} F_{\mu
u} F_{
ho \sigma} \,.$$

(日)

40/40

 Its observational consequence in superfluid is under investigations. (DKH+Im to appear)

Conclusion

- Our experiment is complementary to existing experiments.
- We also find the fermi liquid suffers from the axial ABJ anomaly

$$\langle \partial_{\mu} j_5^{\mu}
angle = v_F rac{e^2}{16\pi^2} \epsilon^{\mu
u
ho\sigma} F_{\mu
u} F_{
ho\sigma} \,.$$

(日)

40/40

 Its observational consequence in superfluid is under investigations. (DKH+Im to appear)

Conclusion

- Our experiment is complementary to existing experiments.
- We also find the fermi liquid suffers from the axial ABJ anomaly

$$\langle \partial_{\mu} j_{5}^{\mu}
angle = v_{F} \frac{e^{2}}{16\pi^{2}} \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma} \,.$$

(日)

40/40

 Its observational consequence in superfluid is under investigations. (DKH+Im to appear)