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Gravitational Lensing of Gravitational Waves

- Similar to light, gravitational waves (GWs) can be lensed when they propagate near massive objects.
« Strong, weak, and microlensing
« Lensing characteristics depend on the lensing configuration, i.e.,
- alignment between observer, lens, and source
« lens mass
«  We expect to detect
- multiple magnified/demagnified GW signals at different times (strong lensing)
- weakly magnified single GW signals (weak lensing)
-  GW signals superposed with < 1 sec time delays between multiple images (microlensing)

« Gravitational lensing will make us to detect more GWs from much farther sources beyond the detection limit
of the detectors’ sensitivities.

«  More detections will be beneficial in enriching our knowledge on various astrophysical/cosmological
phenomena.
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Search for Lensing Signatures from GW Events

* There have been several efforts to find lensing signatures from the GW events observed during the three
observing runs.

* No widely accepted compelling evidence was found thus far.
* Example: searches by LIGO-Virgo-KAGRA collaborations [Hannuksela+ (2019); Abbott+ (2021)]
* Detection criteria: Bayes factor

* Target: signatures of strong lensing and microlensing (no search for weak lensing signature)
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We search for signatures of gravitational lensing in the binary black hole events detected by Advanced LIGO and
Virgo during their first two observational runs. In particular, we look for three effects: (1) evidence of lensing
magnification in the individual signals due to galaxy lenses, (2) evidence of multiple images due to strong lensing
by galaxies, and (3) evidence of wave optics effects due to point-mass lens. We find no compelling evidence of any
of these signatures in the observed gravitational wave signals. However, as the sensitivities of gravitational wave
detectors improve in the future, detecting lensed events may become quite likely.

* Expected detection rates for future observing runs:

*  O(1) events per year for strongly lensed GWs w/ the design sensitivities of ground-based detectors
reaching the redshift z ~ 1. [Ng+ (2018), Li+ (2018), and Oguri (2018)]

*  O(1) events per year for microlensed GWs if the source is in 2 < z < 3 and the magnification is ~ 30.
[Diego+ (2019)]
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Strong Lensing

* Galaxies or galaxy clusters are typical lens system causing strong lensing.
* Strong lensing can produces multiple images (2+ images) on the lens plane.

« Strongly lensed GWs from the position of images may arrive at GW detector network w/ certain time delay
from days to months.
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Strong lensing aided Distance Estimation Improvement

*  Suppose

KK, E. Seo, C. Kim (in prep.)

« apoint-mass lens (PM) or a singular-isothermal-sphere lens (SIS) of M, = 1011'5M(D

might produce two lensed GW images for a GW150914-like signal.
* Dboth lensed GWs are detected by LIGO-Virgo network.

* detecting all lensed GWs may help to enhance the estimation on the distance to the source.

*  Conduct parameter estimation (PE) for the luminosity distance D, to the original source using two apparent
Dys,ie., D,{ and DI{I (or Dy, and D; _, respectively), to the two lensed GWs by inferring

a relative magnification factor p = |u_/pu, | = (D, /D;_)*.
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Results: Posteriors of D, ., D; _, and D,

KK, E. Seo, C. Kim (in prep.)

* Posteriors of D;, and D;_ from PE for lensed GWs in zero-noise

probabilty density

probabilty density

*  Posteriors of D; in different noises and/or network
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(c) HLV with O3a noise PSDs
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(d) HL with O3a noise PSDs
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HLYV with zero-noise model

Signal Woag [Mpc] Rog We7 [Mpc] Rer
Unlensed 2,697 1.00 1,085 1.00
Lensed (PM) 1,429 1.89 653 1.66
Lensed (SIS) 1,281 2.11 602 1.80

HLYV with O3a noise PSDs

Signal Wyg [Mpc] Rgg We7 [Mpc] Re7
Unlensed 2,000 1.00 871 1.00
Lensed (PM) 1,527 1.37 732 1.19
Lensed (SIS) 1,470 1.42 651 1.34

where R = WYL /Wl

“The width of credible intervals can be improved
about a few tens of percent!”



Microlensing

- Microlensing of GWs can be caused by stellar objects S 105M® embedded around macrolenses like

galaxies or galaxy clusters.
*  Microlensed GWs may arrive at detectors with O(1) ~ @(100) ms of time delays between multiply lensed

signals
=> superposition of those signals
=> interference patterns, a.k.a. beating patterns

le=21

3 aLLIGO noise
—— Microlensed GW

Strain
Frequency [Hz]
>

Time from merger [s] Time from merger [s]

Kyungmin Kim 2023 CAU BSM Workshop (Feb 23, 2023)



Microlensed GWs vs. Precessing GWs

* Can we discern microlensed GWs from precessing GWs?

le—22
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—— microlensed nonprecessing
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KK & A. Liu (arXiv:2301.07253)

Morphological similarity between microlensed GWs and GWs from precessing binaries (precessing GWs)
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Results: SNR-based Test KA. Lin (aXivea30107255)

*  Matched-filter signal-to-noise ratios (SNRs) w/ 4 different hypothesis for the template waveform

* unlensed vs. microlensed
*  nonprecessing vs. precessing
*  Homogeneous pairs vs. Heterogeneous pairs
* Homogeneous: the same nonprecessing or precessing source for both template and target

*  Heterogeneous: opposite sources (e.g., nonprecessing template to precessing target)

Homogeneous BBH pairs (template-target) Heterogeneous BBH pairs (template-target)
Noise Nonprecessing target Precessing target Nonprecessing target Precessing target
un—-un  un-In In—In up—up up-lp Ip-Ip up—un  up-In Ip—In un—-up  un-lp In-lp
Free 24.5 27.2 294 35.6 39.5 42.7 8.5 10.9 11.2 12.3 14.0 16.3
alLIGO 24.3 26.4 28.4 34.0 36.4 40.1 9.6 12.2 4.8 13.0 14.1 4.9

Note: unlensed nonprecessing (un), microlensed nonprecessing (In), unlensed precessing (up), microlensed precessing (Ip)
* Comparing SNRs of different templates for a given target enables us to distinguish the GWs of interest.
*  For “In” target, SNR(In-In)=28.4 > SNR(un-1n)=26 .4 > SNR(up-In)=12.2 > SNR(Ip-In)=4.8
*  For “up” target, SNR(up-up)=34.0 > SNR(un-up)=13.0
*  For “Ip” target, SNR(Ip-Ip)=40.1 > SNR (up-Ip)=36.4 > SNR(un-Ip)=14.1 > SNR(In-1p)=4.9

* The result implies we have to repeat computing SNR w/ regarding all possible hypothesis even for a single
target.

* It suggests that a complete template bank considering all possible hypothesis 1s required for the standard
template-based GW search methods/pipelines (e.g., PyCBC, GstLAL, SPIIR).
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Results: PE-based Test KK A Lin (arXive2301.07253)

10 le—22 i 10 le—22

¢ Parameter estimation (PE) —— microlensed nonprecessing
«  Focus on “In” and “lp” signals commonly showing

« waveform modulation or interference patterns

—— microlensed precessing

« double peaks
« Infer 4 selected parameters of injected simulated signals.

- number of lensed signals (K = 2)
. effective luminosity distance of 2nd signal (a,’gff ~ 1200 Mpc)
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« Recovering K lets us focus on the hypothesis related to precessional effect only. (beneficial than SNR-based

test)

- Precessional effect does not affect identifying mirolensed events.
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Search for Microlensed GW Events with Deep Learning

KK, J. Lee, R. Yuen, O. Hannuksela, T. Li (ApJ, 2021)

* Seeking beating patterns from GW signals of binary black hole KK, J. Lee, 0. Hannuksela, T. Li (ApJ, 2022)
(BBH) events.

The first deep learning (DL)-based search for any lensing signature.

Revisit the 46 BBH events in GWTC-1 and -2 already analyzed by LIGO-Virgo-KAGRA collaboration
to search lensing signatures in GWs via the Bayes factor-based analysis
[Hannuksela+ (ApJL, 2019); Abbott+ (ApJ, 2021)].

Search the signature from spectrograms of BBH signals to bring the excellence of state-of-the-art DL
models [Kim+ (AplJ, 2021)].

Assume microlensing occurs with lenses of masses T \
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Results: Classes of Tested Events

« Initial class < classified by the probability predicted by the DL model

* Temporary class <= majority voting for initial classes

*  Primary class <— consistency test for temporal classes

KK, J. Lee, O. Hannuksela, T. Li (ApJ, 2022)

«  Final class <= based on the p-value estimation for the median probability

g;rslgomryPrimary Final E?;ggorawPﬁmaw Final g]:glsmraryPrimary Final
Event Event Event

HI1L1 V1 Class Class HI1L1 V1 Class Class H1L1 V1 Class Class
GW150914 U U U U GW190503.185404 U U U U U GW190719215514 U U --- U U
GW151012 UL - U U GW190512.180714 U U U U U GW190720000836 U U U U U
GW151226 U U U U GW190513205428 U L U U U GW190727060333 U U U U U
GW170104 U U U U GW190514.065416 U U --- U U GW190728 0645100 U U U U U
GW170608 UL U U GW190517055101 U U U U U GW190731.140936 U U --- U U
GW170729 UUU U U GW190519.153544 U U U U U GW190803.022701 U U U U U
GW170809 UUU U U GW190521 UUU U U GW190828.063405 U U L* U U
GW170814 UUU U U GW190521074359 U U -.- U U GW190828. 065509 U U L U U
GW170818 UUU U U GW190527092055 L U -.- U U GW190909_114149 U U --- U U
GW170823 uu-.. U U GW190602_175927 U U U U U GW190910.112807 --- U U U U
GW190408_181802 U U U U U GW190620030421 --- U L U U GW190915235702 U U U U U
GW190412 UL U U U GW190630_.185205 --- U U U U GW190924. 021846 U L U U U
GW190413.052954 U L U U U GW190701-203306 U UU U U GW190929 012149 U U U U U
GW190413.134308 U U U U U [LLGW190706.222641 1 U U 1 1J GW190930.133541 L* U --- U U
GW1904212138’6 U U --- U U { GW190707.093326 L*L --- L U
GW190424_180648 --- U U U [[GWTO0708232457 "0 LU U
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Results : GW]. 9 O 70 7_0 9 3 3 2 6 KK, J. Lee, O. Hannuksela, T. Li (ApJ, 2022)

* Primary classification: Lensed (the only event out of 46) oW | A
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Summary and Remarks

* As the light being gravitationally lensed, expecting gravitational lensing in GWs is also possible by the
same analogy.

* There has been no widely accepted compelling evidence of lensing signatures in observed GWs yet.

« It is still promising to detect lensed GWs based on the forecasts of detection rates.

*  Once we observe lensed GWs, they will help us to understand diverse astrophysical/cosmological
phenomena much deeper, for example,

* strong lensing

* enable us to precisely estimate the distance to GW sources
=» help accurate measurement of the Hubble constant (H, = d/v)
=» may resolve the Hubble tension

* microlensing
* provide more detailed information about stellar objects imbedded in galaxies

* help to find dark compact objects (dark matter and/or isolated black holes)

* Gravitational lensing of GWs will boost multimessenger astronomy together with EM lensing events.

Thavk vou For your attention/
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