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Outline
“...the universe may be the ultimate free lunch.”–Alan Guth

+ Basics of Squeezing formalism.
+ Reheating constraints on Inflationary Models.
+ Reheating constraints to the evolution of Primordial Complexity

measures.
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Inflation and Reheating

+ Inflation is a phase of quasi-exponential expansion in the early
Universe that explains the observed small fluctuations in the CMB
temperature map.

+ During inflation, the vacuum quantum fluctuations amplified by
gravitational instability and stretched over cosmological distances that
provide the seed for large-scale structure formation.

+ The Reheating phase follows the inflation when we recover the
Radiation dominated universe.

+ Reheating affects the mode re-entry after inflation.
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Squeezing and classicalization

¶ Squeezing occurs when a certain initial
phase space volume evolves in such a way
that it shrinks in one direction and
simultaneously grows in another direction.

· Albrecht, Ferreira, Joyce and Prokopec
applied the squeezing formalism to
Inflationary perturbations.

¸ The time evolution operator Û
(corresponding to the system’s
Hamiltonian) is factorized into a rotation
operator R̂ and a squeezing operator Ŝ:

Û(η) = Ŝ(rk(η), ϕk(η))R̂(θk(η)) Fig: Albrecht et al. 1994
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Squeezing the curvature perturbation

Perturbation to the scalar field: φ(~x, t) = φ0(t) + δφ(~x, t)

Perturbation in the metric:

ds2 = a(η)2
[
−(1 + 2Ψ(x, η))dη2 + (1− 2Ψ(x, η))d~x2

]
.

The gauge-invariant combination — the curvature perturbation
R = Ψ + H

φ̇0
δφ

We quantize the curvature perturbation (some suitable re-scaled
quantity v ≡ zR, with z = MPla

√
2ε1. )

As v(η, ~x) is real, one has v−k = v∗k =⇒ In Fourier space, all
degrees of freedoms are not independent =⇒ Partition the system
into bipartite system E = Ek

⊗ E−k.
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Squeezing formalism
Equations governing the evolution of the three squeezing
parameters (Polarski and Starobinsky 1996):

r′k = −z
′

z
cos 2ϕk, (1)

ϕ′k = −k +
z′

z
coth 2rk sin 2ϕk, (2)

θ′k = k − z′

z
tanh rk sin 2ϕk (3)

We choose the ICs such that the mode functions

fk(η) =
1√
2k

[
e−iθk(η) cosh(rk(η))− e−i(θk(η)+2ϕk(η)) sinh(rk(η))

]
start from the Bunch-Davies vacuum:

uk(η) =
e−ikη√

2k

(
1− i

kη

)
. (4)
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Behavior of the Squeezing parameters

¶ The squeezing parameter rk grows
when they are the outside the horizon.

· The phase parameters φk and θk grow
inside the horizon while the
combination φk + θk remains
constant.

¸ Reheating phase directly do not alter
the evolution of the squeezing
parameters. It determines when a
mode will re-enter the horizon.

−20 −10 0 10 20 30 40

ln(a/are)

−102

−101

−100

0

100

101

102

S
q
u
e
e
z
i
n
g
p
a
r
a
m
e
t
e
r
s

rk
φk
θk
φk + θk

7



Complexity measures-I: OTOC
I The high sensitivity of initial conditions characterizes chaos in classical systems. In a

chaotic system, two nearby trajectories with small perturbations in the initial conditions
diverge exponentially. This behavior can be easily captured with the Poisson bracket
between the position and momentum variables

{q(t), p(0)}2 =

(
∂q(t)

∂q(0)

)2

∼
∑
i

cne
2λit,

where the λi is the Lyapunov characteristic exponents of the system.
I The simple analog of the Poisson bracket for quantum systems is the unequal time

commutator [q̂(t), p̂(0)].
I In the semi-classical limit, which reduces to the Poisson bracket ∼ i~{q(t), p(0)}. Thus

quantum chaos could be studied from this quantity.
I Being an operator and not a c-number, a more useful quantity to study the chaos in

quantum systems is the double unequal-time commutator or the out-of-time-order
correlator (OTOC)

CT (t) ≡ −〈[q̂(t), p̂(0)]2〉β ,
I OTOC in terms of the squeezing parameters:

CTk(η) ≡ |Fk(η, η0)|
2.

Fk(η, η0) =
1

2

[ (
cosh rke

−iθk − sinh rke
−i(θk+2φk)

)
×
(
cosh r0e

−iθk + sinh r0e
−i(θ0+2φ0)

)
+ c.c.

]
,
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Quantum Discord: von Neumann entanglement entropy

I The concept of quantum discord was introduced to measure the
quantumness of correlations of two subsystems of a quantum
system (Henderson and Vedral 2001; Ollivier and Zurek 2001).

I A relatively close measure to quantum discord is the entanglement
between the subsystems. However, quantum discord can be non-zero
even if there is no entanglement, while zero discord implies
entanglement is also zero.

I Quantum discord seems to be a better tool than quantum
entanglement to look for non-classical correlations in a system.

I If a system in the pure state is divided into two subsystems, the
quantum discord is identical to the von Neumann entanglement
entropy (Bera et al. 2017; Datta et al. 2008)
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Quantum Discord: von Neumann entanglement entropy

I The two-mode squeezing operator when acts on the two-mode
vacuum state (initial state), |0〉k |0〉−k yields

|Ψsqz〉k,−k = Ŝk(rk, φk) |0〉k |0〉−k , (5)

=
1

cosh rk

∞∑
n=0

(−1)neinθ(tanh rk)
n |nk, n−k〉 (6)

I The reduced density operators for the individual models are:

ρ̂k =

∞∑
n=0

1

(cosh rk)2
(tanh rk)

2n 〈nk|nk〉 , (7)

ρ̂−k =

∞∑
n=0

1

(cosh r−k)2
(tanh r−k)

2n 〈n−k|n−k〉 (8)

10



Quantum Discord: von Neumann entanglement entropy

S(ρ̂k) = −Tr [ρ̂k ln ρ̂k] = S(ρ̂−k),

= −
∞∑
n=0

pn ln pn,

=
(tanh rk)

2n

(cosh r−k)2
ln

(tanh rk)
2n

(cosh r−k)2
,

=
(tanh rk)

2n

(cosh r−k)2
[
ln
(
tanh2n rk

)
− ln

(
cosh2 rk

)]
,

S(ρ̂k) = cosh2 rk ln
(
cosh2 rk

)
− sinh2 rk ln

(
sinh2 rk

)
.
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Background Model
I We take the ubiquitous inflationary model:

V (φ) =
1

2
m2
φφ

2,

I The Hubble expansion is given by

H =


mφ

√
1
3
− 2

3
ln a, a ≤ 1

mφ√
3
e−

3
2
(wre+1) ln a, 1 ≤ a ≤ are

mφ√
3
e−

ln are
2

(3wre−1)e−2 ln a, a ≥ are

I Reheating efolds number is given by (Dai et al. 2014):

Nre =
4

3wre − 1

[
Nk − 61.6−

1

2
ln

(
π2M2

PlrkAs

2V
1/2
end

)]
,

Nk =
4

2(1− ns)
,

rk = 4(1− ns)
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Reheating constrains
¶ The scalar spectral index (ns) fixes the

inflationary (Nk) and reheating efolds.

· It also determines the type of
reheating equation of state:
wre < 1/3,wre = 1/3 or wre > 1/3.

¸ If a mode renter the horizon during
radiation dominated epoch, its horizon
reentry will same for all equation of
the state parameters from one of the
three classes.
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Reheating constraints in Primordial Complexity
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Summary Plot
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Figure: Reheating groups the Complexity measures into three classes
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Summary and Outlook

- A finite reheating epoch determines when a mode will re-enter the
horizon after inflation.

- Taking care of the reheating constrains, the re-entry of the modes can
be classified into three classes.

- This classification shows similar signatures in different primordial
Complexity measures.

- Taking the central value of the scalar spectral index (ns = 0.9649)
from Planck and the equation of state during reheating wre = 0.25 as
benchmark values, we found that the behavior of the complexities for
all modes smaller than 1.27× 1016 Mpc−1 can be classified as above.

—— Thank You! ——
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