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DM Overview



Evidences for DM

Chapter 2 • The expanding universe 51

FIGURE 2.9 Constraints, assuming a Euclidean universe, placed by different probes on the matter density (!m) and
constant equation of state of the dark energy w = wDE. A cosmological constant corresponds to w = −1. The con-
straints from supernovae, the BAO standard ruler, as well as the CMB all point towards a concordance model with
wDE close to −1. From Scolnic et al. (2018).

spectively; Joyce et al. (2016) and Clifton et al. (2012) do the same for modified gravity. Most
pressing for us is the question of how we can distinguish among these possibilities given
the data. Do we have to laboriously repeat the analysis of supernovae, BAO, and so on for
each model of dark energy?

Fortunately not: as we argued at the beginning of Sect. 2.3, the form Eq. (2.44) of the
energy-momentum tensor is completely general and is dictated by the symmetries of the
FLRW spacetime. Hence, defining pressure via the equation of state wDE(a), and given the
continuity equation (2.57), whose solution is Eq. (2.61), the effect of a general dark energy
on the expansion history is completely determined by the function wDE(a).10 The cos-
mological constant, as we will see in Sect. 3.1, simply adds a term "δµ

ν to the Einstein
equations (when written with one upper index). Comparing this with Eq. (2.44) shows that
the cosmological constant effectively has an energy-momentum tensor that is of perfect
fluid form, with P = −ρ ∝ " which implies an equation of state of w" = −1. For a dynam-
ical dark energy (e.g. quintessence), wDE ≥ −1 (but still significantly below 0). Measuring
the dark energy density as a function of cosmic time (i.e. at different redshifts) then allows
us to constrain wDE and hence distinguish between different dark energy scenarios.

Fig. 2.9 shows a current example of constraints on wDE, assuming a Euclidean universe.
This figure drives home two points. First, so far all measurements are consistent with a
cosmological constant; models with values of wDE very different from −1 are ruled out.

10
If general relativity is modified, we have to be a bit careful here. Nevertheless, one can always derive an

equation of state dark energy would have to have in general relativity in order to produce the expansion history
of a given modified gravity model.
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FIGURE 1.10 Upper panel: Anisotropies in the CMB as measured by the Planck satellite (points). The line shows the
best-fit prediction by the concordance model of cosmology, based on initial conditions as predicted by inflation.
The model involves only six free parameters; its beautiful prediction matches the data almost perfectly. The x-axis
is multipole moment (e.g., l = 1 is the dipole, l = 2 the quadrupole) where large angular scales correspond to low l;
the y-axis is the variance of the temperature fluctuations as a function of scale (Dl ≡ l(l + 1)C(l)T 2

0 /2π ; we will learn
what C(l) is in Ch. 9). The characteristic signature of inflation is the series of peaks and troughs, a signature that
has been impressively verified by experiment. Lower panel: Difference between data and best-fit model. Notice the
change in y axis between l < 30 and l ≥ 30 in this panel. From Planck Collaboration (2018b).

transforming the CMB temperature, then, one typically expands it in spherical harmon-
ics, a basis appropriate for a 2D field on the surface of the sphere. Therefore, the power
spectrum of the CMB is a function of multipole moment l, not wave number k. Dozens
of groups have made measurements of the CMB power spectrum since the discovery of
anisotropies in 1992. COBE’s measurements were at the very largest angles, i.e. low l. The
definitive measurement was supplied by the Planck satellite in 2018, shown in Fig. 1.10.

One key difference between the map of the CMB and that of the structure in the current
universe is the “contrast,” or amplitude of structure. The very young universe, as mapped
out by CMB experiments, was very smooth, while maps of the current universe as depicted
in Fig. 1.8 convince us that the universe is very inhomogeneous today. How did the uni-
verse evolve from smooth to clumpy? The simple answer, at the same time one of the most
powerful underpinnings of modern cosmology, is that gravity forced more and more mat-
ter into overdense regions, so that a region starting out with only a small, 10−4 fractional
overdensity evolved, over billions of years, to become much denser than the homogeneous
universe today and in fact the site at which a galaxy formed. During this process, small-
scale perturbations grew nonlinear first, and then hierarchically assembled to form larger
structures.
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FIGURE 1.6 Predicted primordial abundances (lines) of helium (top) and deuterium (bottom) as a function of the
physical baryon density in units of ρcr, ωb = #bh2. The subscript P on the y-axes denotes that these are the primordial
abundances; YP Is the ratio of the mass density in helium to the total mass density in protons and neutrons, while
yD is defined as 105 times the ratio of deuterium to hydrogen. The horizontal bands show astrophysical constraints
on abundances, while the vertical band indicates the constraint based on CMB anisotropies, as measured by the
Planck satellite experiment. In case of deuterium, the predictions are uncertain due to imperfect knowledge of
certain nuclear reaction rates. Nevertheless, there is striking agreement between BBN (combined with astrophysical
measurements) and the CMB. From Planck Collaboration (2018b).

1.3 Big Bang nucleosynthesis
Armed with an understanding of the evolution of the scale factor and the densities of the
constituents in the universe, we can extrapolate backwards to explore phenomena at early
times. When the universe was much hotter and denser, and the temperature was of order
1 MeV/kB, there were no neutral atoms or even bound nuclei. The vast amounts of high-
energy radiation in such a hot environment ensured that any atom or nucleus produced
would be immediately destroyed by a high-energy photon. As the universe cooled well be-
low typical nuclear binding energies, light elements began to form in a process known as
Big Bang Nucleosynthesis (BBN). Knowing the conditions of the early universe and the rel-
evant nuclear cross-sections, we can calculate the expected primordial abundances of all
the elements (Ch. 4).

Fig. 1.6 shows the BBN predictions for the abundances of helium and deuterium as a
function of the mean baryon density, essentially the density of ordinary matter (Sect. 2.4) in
the universe, in units of the critical density. The predicted abundances, in particular that
of deuterium, which we will explore in detail in Ch. 4, depend on the density of protons
and neutrons at the time of nucleosynthesis. The combined proton plus neutron density
is equal to the baryon density since both protons and neutrons have baryon number one
and these are the only baryons around at the time.

The horizontal lines in Fig. 1.6 show the current measurements of the light element
abundances. The deuterium abundance is measured in the intergalactic medium at high
redshifts by looking for a subtle absorption feature in the spectrum of distant quasars (see
Burles and Tytler, 1998; Cooke et al., 2018 and Exercise 1.3). These measurements of the
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FIGURE 9.17 Changes in the anisotropy spectrum as the baryon density !bh2 is varied.

FIGURE 9.18 Changes in the anisotropy spectrum as the CDM density !ch
2 is varied. Also shown are binned Planck

measurements (Planck Collaboration, 2018b); the error bars are so small that they are only discernible for l around
and below the first peak. Clearly, !ch

2 and !bh2 can be determined very precisely.

nπη0/rs(η∗) (Eq. (9.27), but see the discussion in Sect. 9.6.2 that argues that the actual value
of lpk is ∼ 25% lower).

The effects of changing the baryon density (Fig. 9.17) are a shift in the peak locations,
due to the change in the sound horizon rs(η∗), as well as modifications in the heights of the
peaks. We have already touched on the ways in which the anisotropy spectrum depends on
the baryon density. The foremost, clearly visible in Fig. 9.17, is that the ratio of the heights
of the odd to even peaks is higher when the baryon density is large. The second change
due to !bh2 is that an increased baryon density reduces the diffusion length (increases kD).
Therefore, a larger baryon density means damping moves to smaller angular scales, so the
anisotropy spectrum on scales l > 1000 is larger in a high-!bh2 model. This characteristic
combination of effects allows for very tight constraints on !bh2; the parameter variations
around the fiducial values shown in Fig. 9.17 are ruled out by the data at high significance.
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FIGURE 12.6 Slices of width 15h−1 Mpc through the density field at redshift zero in the Millennium N-body simula-
tion which follows 1010 particles (i.e., phase-space elements). From top to bottom, the different panels zoom in to
show the hierarchical nature of the matter distribution in a !CDM cosmology. The spatial scale is labeled in each
panel. The color scale denotes density in logarithmic units. The simulations shown here are described in Springel et
al. (2005).

a spherical region whose interior density is above some threshold (“spherical overdensity”
algorithm), or if their nearest-neighbor distance to other halo particles is below a threshold
value (“friends-of-friends” algorithm). Crucially, by definition any particle can be part of
only a single halo. For both algorithms, the result is a catalog of halos with various masses,
and various other properties, such as center-of-mass position and velocity.
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Cos. Concordance Model



Dark Sector Landscape

• Dark Matter


• Dark Radiation


• Messengers (Force mediators) : charged/neutral under the 
SM gauge group


• Dark Energy (?) 


• Organizing principle : symmetries either global or local



• Feels Gravity > Currently 
evidences come only thru this


• Its lifetime >> Age of Universe


•  (Nonrel.)


• 


• 


• It forms a halo, not a disk

ρ( ≃ m) ≫ p( ≃ 0)

ΩDM ∼ 5 ΩBaryon

ρlocal ∼ 0.3GeV/cm3

• Mass, Spin ?


• How many species ?


• Any internal quantum #’s ?


• Any internal structures ?


• Interactions w/ SM particles ?


• DM self int. ? (  )


• Almost nothing known about 
particle physics nature of DM

σχχ /mχ ≲ 1g/cm2

KNOWNS UNKNOWNS



DM models in the market : 
Mass & Couplings ?

• WIMP, SIMP, ELDERS,…


• Axion (axino), gravitino, sterile 


• PBH (Primordial Blackhole)


• Fuzzy DM (Scalar Field DM)


• Topological objects


• Some DM models also solve another 
particle physics problems (             ??) 


• More than Baskin Robbins 31…

ν



US Cosmic Vision : New 
Ideas DM 2017[arXiv:1707.04591]

SIMPs	/	ELDERS	

Ultralight	Dark	Ma5er	

Muon	g-2

Small-Scale	Structure	

Microlensing	

Dark	Sector	Candidates,	Anomalies,	and	Search	Techniques	

Hidden	Sector	Dark	Ma5er	

Small	Experiments:	Coherent	Field	Searches,	Direct	DetecIon,	Nuclear	and	Atomic	Physics,	Accelerators	

GeV	 TeV	keV	eV	neV	feV	zeV	 MeV	aeV	 peV	 µeV	 meV	 PeV	 30M�	

WIMPs	QCD	Axion	

≈

GeV	 TeV	keV	eV	neV	feV	zeV	 MeV	aeV	 peV	 µeV	 meV	 PeV	 30M�	

≈

Beryllium-8	

Black	Holes	

Hidden	Thermal	Relics	/	WIMPless	DM	

Asymmetric	DM	

Freeze-In	DM	

Pre-InflaIonary	Axion	

Post-InflaIonary	Axion	

FIG. 1: Mass ranges for dark matter and mediator particle candidates, experimental anomalies,
and search techniques described in this document. All mass ranges are merely representative; for
details, see the text. The QCD axion mass upper bound is set by supernova constraints, and
may be significantly raised by astrophysical uncertainties. Axion-like dark matter may also have
lower masses than depicted. Ultralight Dark Matter and Hidden Sector Dark Matter are broad
frameworks. Mass ranges corresponding to various production mechanisms within each framework
are shown and are discussed in Sec. II. The Beryllium-8, muon (g � 2), and small-scale structure
anomalies are described in VII. The search techniques of Coherent Field Searches, Direct Detection,
and Accelerators are described in Secs. V, IV, and VI, respectively, and Nuclear and Atomic Physics
and Microlensing searches are described in Sec. VII.

II. SCIENCE CASE FOR A PROGRAM OF SMALL EXPERIMENTS

Given the wide range of possible dark matter candidates, it is useful to focus the search
for dark matter by putting it in the context of what is known about our cosmological history
and the interactions of the Standard Model, by posing questions like: What is the (particle
physics) origin of the dark matter particles’ mass? What is the (cosmological) origin of
the abundance of dark matter seen today? How do dark matter particles interact, both
with one another and with the constituents of familiar matter? And what other observable
consequences might we expect from this physics, in addition to the existence of dark matter?
Might existing observations or theoretical puzzles be closely tied to the physics of dark
matter? These questions have many possible answers — indeed, this is one reason why

13



Portals to DM
• Higgs portal : 


• U(1) Vector portal : 


• Neutrino portal : 


• (Dark) Axion portal (HSLee et al)


• So on & on & on …


• Eventually “Portal + Missing E (P)” is what we observe in the 
experiments 

H†HS, H†HS2, H†Hϕ†ϕ

ϵBμνXμν

NR( H̃ lL + ϕ†ψ)

  : Dark Scalarsϕ

  : Dark photonXμ

  : Dark fermion

~ Sterile 

ψ
ν



Portals to DM
• Higgs portal : 


• U(1) Vector portal : 


• Neutrino portal : 


• (Dark) Axion portal (HSLee et al)


• So on, & on & on , …


• Eventually “Portal” is what we observe in experiments 

H†HS, H†HS2, H†Hϕ†ϕ

ϵBμνXμν

NR( H̃ lL + ϕ†X)

Singlet Portals to Dark sector w/ local dark gauge sym 
(Baek, Park, Ko, arXiv:1303.4280 [hep-ph] )

DM stability is guaranteed by 
Local gauge symmetry 

OR 
DM longevity is guaranteed by 

Accidental global sym

Emphasizing 

• Importance of gauge invariance and unitarity

• Role of Dark Higgs : Main Focus of this talk   



Search for WIMP
• Direct Detections


• Indirect Detections (Current Universe, Early Universe)


• Collider Searches


• Quantum Force and search for the 5th force


• DM EFT/Simplified model : Not good for collider searches 
  Dark Higgs is important !


• Theoretical consistency (unitarity, gauge invariance, 
renornalizabiyity) important for DM model buildings

⟶



Crossing & WIMP detection
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However this crossing idea can lead to wrong answers  
if one works in DM EFT, since kinematic regions relevant  

to each experiment are very different in general !     
Better and safer to work in UV completed models. 



Crossing & WIMP detection
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However this crossing idea can lead to wrong answers  
if one works in DM EFT, since kinematic regions relevant  

to each experiment are very different in general !     
Better and safer to work in UV completed models,  

Especially for DM searches @ high energy colliders !

Furthermore one can consider on-shell mediators,  
dark radiation and inelastic DM, etc..
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mDM /mϕ

0

1/2

1/2

1

1
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 : dark Higgs
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γ′ 

ϕ

χ + χ → γ′ + γ′ 

Models w/o dark Higgs 
along the x-axis

Higgs Portal DM 
along the y-axis

DM EFT, including 
Higgs portal DM EFT

Dark sector parameter space for a fixed mDM

χ + χ → SM + SM



mDM /mγ′ 

mDM /mϕ

0

Dark sector parameter space for a fixed mDM
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χ
γ′ 

ϕ

χ + χ → SM + SM χ + χ → γ′ + γ′ 

χ + χ → ϕ + ϕ

χ + χ → ϕ + γ′ 

χ + χ → ϕ + γ′ 

DM EFT, including 
Higgs portal DM EFT

Models w/o dark Higgs 
Along the x-axis

P-wave annihilation 
For fermion DM χ

P-wave annihilation 
For scalar DM χ

These two channels are possible for light DM, 
only if we include dark Higgs boson !

Higgs Portal DM 
Along the y-axis



Dark Gauge 
Symmetry



Z2 real scalar DM
• Simplest DM model with Z2 symmetry :  

• Global Z2 could be broken by gravity effects (higher dim 
operators). [see also Reece’s talk on Tue]


• e.g. consider Z2 breaking dim-5 op :  


• Lifetime of EW scale mass “S” is too short to be a DM


• Similarly for singlet fermion DM 

S → − S

1
MPlanck

SO(4)
SM

3

not consider dim-3 operators, XRH†H or XIH†H, as-
suming the global dark symmetry GX is broken only by

nonrenormalizable operators.
Then the lifetime of XR or XI decaying into a pair or

photons would be

�(XR(or XI) ! ��) ⇠ 1

4⇡

✓
e2

MPl

◆2

m3
X

⇠ 10�38

✓
mX(GeV)

100

◆3

GeV (3)

This decay rate should be smaller than 10�52GeV, which
is possible only if mX . O(10) keV. If these nonrenor-
malizable operators are induced at lower energy scale
⇤ < MPl, then the DM mass should be lighter than the
above estimate, scaled by (⇤/MPl)2/3. Axion or light di-
lation DM is a good example of this. If these operators
were allowed with O(MPlanck), it would be disastrous for
dark matter physics.

The above argument also applies to global Z2 symme-
try which is invoked very often to stabilize the scalar dark
matter S with the following renormalizable lagrangian :

L =
1

2
@µS@

µS � 1

2
m2

S
S2 � �S

4!
S4 � �SH

2
S2H†H.

The Planck scale suppressed dim-5 operators will make
the weak scale dark matter S decay very fast in this
model too. Namely global Z2 discrete symmetry is not
strong enough to guarantee the stability or longevity of
the scalar dark matter. This is also true for the case of
fermion dark matter, as described in the following sec-
tion.

Local dark gauge symmetry

If dark symmetry U(1)X is unbroken, then the scalar
dark mater will be absolutely stable and there will be a
long range dark force between dark matters. The mass-
less dark photon can contribute to the extra dark radia-
tion at the level of ⇠ 0.06, making slight increase of the

SM prediction for�Ne↵ towards the WMAP9 data. This
issue has been addressed in detail in our recent paper [2],
and we don’t describe it here in any more detail.

If dark symmetry U(1)X is a local symmetry that is
broken spontaneously by h�Xi = v� 6= 0, then the e↵ect
would be similar to the global symmetry breaking with
suitable changes of couplings. The dim-5 operators which
were dangerous in case of global dark symmetry are now
replaced by dim-6 operators since the global dark sym-
metry is implemented to local dark symmetry :

L =
1

M2
Pl

�†
X
XO(4)

SM. (4)

After �X develops nonzero VEV, this operator predicts
that the CDM lifetime is long enough to be safe from
cosmological constraints: However there appears a dim-4
operator which is a disaster for the DM longevity:

L = �XH2�†
X
XH†H +H.c. (5)

After the U(1)X and EWSB, this operator induces a
nonzero VEV for X as well as X ! hh so that X can no
longer be a good CDM candidate.

In order to forbid the above dangerous dim-4 operator,
one has to assign di↵erent U(1)X charges to X and �X :
QX(X) = 1, QX(�X) = 2, for example. Then the model
would possess discrete local Z2 symmetry after U(1)X
breaking, and the lightest U(1)X -charged particle would
be absolutely stable due to the local Z2 symmetry.

L = LSM � 1

4
Xµ⌫X

µ⌫ � 1

2
✏Xµ⌫B

µ⌫ +Dµ�
†
X
Dµ�X � �X

4

⇣
�†
X
�X � v2

�

⌘2
+DµX

†DµX �m2
X
X†X

� �X

4

�
X†X

�2 �
�
µX2�† +H.c.

�
� �XH

4
X†XH†H � ��XH

4
�†
X
�XH†H � �XH

4
X†X�†

X
�X (6)

Due to the µ term, the mass degeneracy between XR and
XI is lifted, and also there could be CP violation from
the µ phase. The model is not so simple compared with
the usual Z2 scalar CDM model:

L =
1

2
@µS@

µS � 1

2
m2

S
S2 � �S

4!
S4 � �SH

2
S2H†H.

Dark matter phenomenology in the model (6) is very rich
and beyond the scope of this letter [1]. On the other
hand, Higgs phenomenology is very simple. There will be
two neutral Higgs-like scalar bosons, the signal strengths
of which are less than 1 independent of decay channels.



Fate of CDM with Z2 sym

• Global Z2 cannot save EW scale DM from decay with long 
enough lifetime

Consider Z2 breaking operators such as

1

MPlanck
SOSM

The lifetime of the Z2 symmetric scalar CDM S is roughly given by

�(S) ⇠ mS

M2
Planck

⇠ (
mS

100GeV
)10�37

GeV

The lifetime is too short for ~100 GeV DM

keeping dim-4 SM 
operators only

3 3

(Baek,Ko,Park,arXiv:1303.4280 )



Fate of CDM with Z2 sym
Spontaneously broken local U(1)X can do the job to some 
extent, but there is still a problem

Let us assume a local U(1)X is spontaneously broken by h�Xi 6= 0 with

QX(�X) = QX(X) = 1

Then, there are two types of dangerous operators:

�†
XXH†H, and �†

XXO(dim�4)
SM

Problematic ! Perfectly fine !

Higgs is not good for DM 
stability/longvity



• These arguments will apply to DM models based 
on ad hoc symmetries (Z2,Z3 etc.)


• One way out is to implement Z2 symmetry as local 
U(1) symmetry (arXiv:1407.6588 with Seungwon 
Baek and Wan-Il Park);


• See a paper by Ko and Tang on local Z3 scalar 
DM, and another by Ko, Omura and Yu on inert 
2HDM with local U(1)H


• DM phenomenology richer and DM stability/
longevity on much solider ground



Scalar dark matter stabilized by local Z2 symmetry
and the INTEGRAL 511 keV � ray

P. Ko
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We construct a scalar dark matter model where local Z2 symmetry guarantees the stability of
scalar dark matter. When we include the local U(1)X symmetry as the origin of the local Z2

symmetry, the dark matter appears from a complex scalar which has two real fields. After the
U(1)X ! Z2 symmetry breaking, the mass degeneracy between ..................

INTRODUCTION

If Z2 symmetry were global symmetry, it would be bro-

ken by quantum gravity e↵ects which can be described

by MPlanck scale suppressed nonrenormalizable operators

such as

1

MPlanck

�
SFµ⌫F

µ⌫ , S(H†H)
2, ..

�
(1)

MODEL

Let us assume the dark sector has a local U(1)X gauge

which is spontaneously broken into local Z2 symmetry.

This can be achieved with two complex scalar fields �X

and X ⌘ XR + iXI in the dark sector with the U(1)X

charges equal to 2 and 1, respectively, in the following

lagrangian:

QX(�) = 2, QX(X) = 1

L = LSM +�1

4
Xµ⌫X

µ⌫ � 1

2
✏Xµ⌫B

µ⌫
+Dµ�

†
X
Dµ�X � �X

4

⇣
�†
X
�X � v2

�

⌘2
+DµX

†DµX �m2
X
X†X

� �X

4

�
X†X

�2 �
�
µX2�†

+H.c.
�
� �XH

4
X†XH†H � ��XH

4
�†
X
�XH†H � �XH

4
X†X�†

X
�X (2)

After the U(1)X symmetry breaking by nonzero h�Xi =
v� 6= 0, the µ�term generates

(X2
+H.c.) = 2(X2

R
�X2

I
)

which lifts the mass degeneracy between XR and XI .

The lagrangian is invariant under X ! �X even after

U(1)X symmetry breaking.

The covariant derivative on X is defined as

DµX = @µX � igXXµX.

In terms of XI and XR, one has

DµX
†DµX = @µXR@

µXR + @µXI@
µXI + 2igXXµ

(XR@µXI �XI@µXR) + g2
X
XµX

µ
(X2

R
+X2

I
) (3)

If the mass di↵erence of XR and XI is of ⇠ O(1) MeV

and the lifetime of the heavier state is ⇠ 10
26�29

sec,

then

XR ! XI�
⇤
h

followed by �⇤
h
! � ! e+e�

could generates the positrons which would be a source of

511 keV � ray lines observed by INTEGRAL.

Note that the local Z2 symmetry guarantees the sta-

bility of the dark matter even if we consider 1/MPlanck-

suppressed nonrenormalizable operators. This is in sharp

contrast with the case of global Z2. However the local

Z2 symmetry requires extra fields compared with a sin-

glet scalar dark matter model with unbroken global Z2

symmetry.

From the model lagrangian Eq. (2), we can work out

the particle spectra at the tree level:

m2
X

= g2
X
v2
�
, (4)
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Let us assume the dark sector has a local U(1)X gauge
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and X ⌘ XR + iXI in the dark sector with the U(1)X

charges equal to 2 and 1, respectively, in the following
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which lifts the mass degeneracy between XR and XI .

The lagrangian is invariant under X ! �X even after

U(1)X symmetry breaking.

The covariant derivative on X is defined as
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If the mass di↵erence of XR and XI is of ⇠ O(1) MeV

and the lifetime of the heavier state is ⇠ 10
26�29

sec,

then
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followed by �⇤
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! � ! e+e�

could generates the positrons which would be a source of

511 keV � ray lines observed by INTEGRAL.

Note that the local Z2 symmetry guarantees the sta-

bility of the dark matter even if we consider 1/MPlanck-

suppressed nonrenormalizable operators. This is in sharp

contrast with the case of global Z2. However the local

Z2 symmetry requires extra fields compared with a sin-

glet scalar dark matter model with unbroken global Z2

symmetry.

From the model lagrangian Eq. (2), we can work out

the particle spectra at the tree level:

m2
X

= g2
X
v2
�
, (4)

etc.

Unbroken Local Z2 symmetry

Gauge models for excited DM

The heavier state decays into the lighter state

The local Z2 model is not that simple as 
the usual 


Z2 scalar DM model (also for the 
fermion CDM)
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We construct a scalar dark matter model where local Z2 symmetry guarantees the stability of
scalar dark matter. When we include the local U(1)X symmetry as the origin of the local Z2
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Local dark gauge symmetry
• Better to use local gauge symmetry for DM stability 

(Baek,Ko,Park,arXiv:1303.4280 )

• Success of the Standard Model 
of Particle Physics lies in “local 
gauge symmetry” without 
imposing any internal global 
symmetries 


• Electron stability : U(1)em gauge 
invariance, electric charge 
conservation, massless photon


• Proton longevity : baryon # is an 
accidental sym of the SM


• No gauge singlets in the SM ; all 
the SM fermions chiral

• Dark sector with (excited) dark 
matter, dark radiation and force 
mediators might have the same 
structure as the SM


• “Chiral dark gauge theories 
without any global sym”


•Origin of DM stability/longevity 
from dark gauge sym, and not 
from dark global symmetries, as 
in the SM


• Just like the SM (conservative)



In QFT,
• DM could be absolutely stable due to  

unbroken local gauge symmetry (DM with 
local Z2, Z3 etc.) or topology (hidden sector 
monopole + vector DM + dark radiation)


• Longevity of DM could be due to some 
accidental symmetries (hidden sector 
pions and baryons)


• I will focus on the roles of (light) dark 
Higgs boson



Higgs Portal DM : EFT 
vs. UV completions

arXiv: 2112.11983, PRD 105 (2022) 015007,with S. Baek, W.I. Park 
And references therein by P. Ko et al

 for Γinv(H → VV) mV → 0



Comparison with the EFT approach 

• SFDM scenario is ruled out in the EFT 
• We may lose imformation in DM pheno. 

A. Djouadi, et.al. 2011 
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1 Introduction

The so-called Higgs portal cold dark matter (CDM) model is an interesting possibility for

the nonbaryonic dark matter of the universe. The dark matter fields are assumed to be the

standard model (SM) gauge singlets, and could be a scalar (S), a singlet fermion ( ) or

a vector boson (V ) depending on their spin. The Lagrangian of these CD-M’s are usually

taken as [1–4]

Lscalar =
1

2
@µS@

µS �
1

2
m2

SS
2
�
�HS

2
H†HS2

�
�S
4
S4 (1.1)

Lfermion =  [i� · @ �m ] �
�H 
⇤

H†H   (1.2)

Lvector = �
1

4
Vµ⌫V

µ⌫ +
1

2
m2

V VµV
µ +

1

4
�V (VµV

µ)2 +
1

2
�HV H

†HVµV
µ. (1.3)

Dark matter fields (S, , V ) are assumed to be odd under new discrete Z2 symmetry:

(S, , V ) ! �(S, , V ) in order to guarantee the stability of CDM. This symmetry removes

the kinetic mixing between the Vµ⌫ and the U(1)Y gauge field Bµ⌫ , making V stable.

The scalar CDM model (1.1) is fineis satisfactory both theoretically and phenomeno-

logically, as long as Z2 symmetry is unbroken. The model is renormalizable and can be

considered to high energy scale as long as the Landau pole is not hit. Large region of

parameter space is still allowed by the relic density and direct detection experiments [3].

On the other hand, the other two cases have problems.

Let us first consider the fermionic CDM model (1.2). This model is nonrenormalizable,

and has to be UV completed. The simplest way to achieve the UV completion of (1.2) is to

– 1 –

All invariant 
under ad hoc 
Z2 symmetry

de Simone et al (2014) arXiv:1112.3299, … 1402.6287, etc.



Comparison with the EFT approach 

• SFDM scenario is ruled out in the EFT 
• We may lose imformation in DM pheno. 
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1 Introduction
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µ)2 +
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�HV H

†HVµV
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Dark matter fields (S, , V ) are assumed to be odd under new discrete Z2 symmetry:

(S, , V ) ! �(S, , V ) in order to guarantee the stability of CDM. This symmetry removes

the kinetic mixing between the Vµ⌫ and the U(1)Y gauge field Bµ⌫ , making V stable.

The scalar CDM model (1.1) is fineis satisfactory both theoretically and phenomeno-

logically, as long as Z2 symmetry is unbroken. The model is renormalizable and can be

considered to high energy scale as long as the Landau pole is not hit. Large region of

parameter space is still allowed by the relic density and direct detection experiments [3].

On the other hand, the other two cases have problems.

Let us first consider the fermionic CDM model (1.2). This model is nonrenormalizable,

and has to be UV completed. The simplest way to achieve the UV completion of (1.2) is to

– 1 –

All invariant 
under ad hoc 
Z2 symmetry

de Simone et al (2014) arXiv:1112.3299, … 1402.6287, etc.

We need to include dark Higgs or singlet scalar  
to get renormalizable/unitary models  

for Higgs portal singlet fermion or vector DM 
[NB: UV Completions : Not unique]

And Revived recent papers



Models for HP SFDM & VDM
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The model Lagrangian has extended structure with the hidden sector and
Higgs portal terms in addition to the SM Lagrangian

L = LSM � µHSSH
†H � �HS

2
S2H†H

+
1

2
(⇤µS⇤

µS �m2
SS

2)� µ3
SS � µ�

S

3
S3 � �S

4
S4

+⇥(i ⇥ ⇤ �m�0)⇥ � �S⇥⇥

where

Lportal = �µHSSH
†H � �HS

2
S2H†H,

Lhidden = LS + L� � �S⇥⇥, (1)

with

LS =
1

2
(⇤µS⇤

µS �m2
SS

2)� µ3
SS � µ�

S

3
S3 � �S

4
S4,

L� = ⇥(i/⇤ �m�0)⇥ (2)

Except the dark sector, this model was quite well studied in detail in [?, ?].
The Higgs potential has three parts: the SM, the hidden sector and the

portal parts

VHiggs = VSM + Vhidden + Vportal, (3)

where Vhidden, Vportal can be read from (1), (2) and

VSM = �µ2
HH

†H + �H(H
†H)2. (4)

In general the Higgs potential develops nontrivial vacuum expectation values
(vev)

⇤H⌅ = 1⇧
2

�
0
vH

⇥
, ⇤S⌅ = vS. (5)

1

amount, unlike the claim made in literatures [1] based on the effective Lagrangian (1.2).

The decoupling of the 2nd scalar boson occurs rather slowly, since the mass mixing between

the SM Higgs boson and the new singlet scalar is due to the dim-2 operator. Also the mixing

between two scalar bosons makes the signal strength of two physical Higgs-like bosons less

than one, and make it difficult to detect both of them at the LHC. Since there is now an

evidence for a new boson at 125 GeV at the LHC [6, 7], the 2nd scalar boson in the singlet

fermion DM model is very difficult to observe at the LHC because its signal strength is

less than 0.3 [3, 8]. Also an extra singlet scalar saves the vacuum instability for mH = 125

GeV [8–10]. The electroweak (EW) vacuum can be still stable upto Planck scale even for

mH = 125 GeV [8]. These phenomena would be very generic in general hidden sector DM

models [11]. In short, it is very important to consider a renormalizable model when one

considers the phenomenology of a singlet fermion CDM.

Now let us turn to the Higgs portal vector dark matter described by (1.3) [1]. This

model is very simple, compact and seemingly renormalizable since it has only dim-2 and

dim-4 operators. However, it is not really renormalizable and violates unitarity, just like the

intermediate vector boson model for massive weak gauge bosons before Higgs mechanism

was developed. The Higgs portal VDM model based on (1.3) is a sort of an effective

lagrangian which has to be UV completed. It lacks including the dark Higgs field, ϕ(x),

that would mix with the SM Higgs field, h(x). Therefore the model (1.3) does not capture

dark matter or Higgs boson phenomenology correctly. It is the purpose of this work to

propose a simple UV completion of the model (1.3), and deduce the correct phenomenology

of vector CDM and two Higgs-like scalar bosons. Qualitative aspects of our model are

similar to those presented in Ref.s [3, 8], although there are some quantitative differences

due to the vector nature of the CDM.

This work is organized as follows. In Sec. 2, we define the model by including the

hidden sector Higgs field that generates the vector dark matter mass by the usual Higgs

mechanism. Then we present dark matter and collider phenomenology in the following

section. The vacuum structure and the vacuum stability issues are discussed in Sec. 4, and

the results are summarized in Sec. 5.

2 Model

Let us consider a vector boson dark matter, Xµ, which is assumed to be a gauge boson

associated with Abelian dark gauge symmetry U(1)X . The simplest model will be without

any matter fields charged under U(1)X except for a complex scalar, Φ, whose VEV will

generate the mass for Xµ:

LV DM = −1

4
XµνX

µν + (DµΦ)
†(DµΦ)− λΦ

4

(
Φ†Φ− v2Φ

2

)2

−λHΦ

(
H†H − v2H

2

)(
Φ†Φ− v2Φ

2

)
, (2.1)

in addition to the SM lagrangian. The covariant derivative is defined as

DµΦ = (∂µ + igXQΦXµ)Φ,

– 2 –

UV Completion of HP Singlet Fermion DM (SFDM)

UV Completion of HP VDM

• The simplest UV completions in terms of # of new d.o.f. 
• At least, 2 more parameters, (  ,  ) for DM physicsmϕ sin α
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The model Lagrangian has extended structure with the hidden sector and
Higgs portal terms in addition to the SM Lagrangian
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Except the dark sector, this model was quite well studied in detail in [?, ?].
The Higgs potential has three parts: the SM, the hidden sector and the

portal parts

VHiggs = VSM + Vhidden + Vportal, (3)

where Vhidden, Vportal can be read from (1), (2) and

VSM = �µ2
HH

†H + �H(H
†H)2. (4)

In general the Higgs potential develops nontrivial vacuum expectation values
(vev)

⇤H⌅ = 1⇧
2

�
0
vH

⇥
, ⇤S⌅ = vS. (5)

1

ΨSM H S

mixing

invisible
decay

Production and decay rates are suppressed relative to SM.

30

UV Completion for HP FDM
Baek, Ko, Park,  arXiv:1112.1847



Higgs-Singlet Mixing
• Mixing and Eigenstates of Higgs-like bosons

at vacuum

Mixing of Higgs and singlet



• Dark matter to nucleon cross section (constraint)

Excluded!

m₁=143 GeV

Constraints

32
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portal parts

VHiggs = VSM + Vhidden + Vportal, (4)
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destructive!



Low energy pheno.
• Universal suppression of collider SM signals

• If “mh > 2 m𝜙”, non-SM Higgs decay!

• Tree-level shift of 𝝺H,SM (& loop correction)

If “m𝜙> mh”, vacuum instability can be cured.

↵

SM

�H =

"
1 +

 
m2

�

m2
h

� 1

!
sin2 ↵

#
�SM
H��H )

[S. Baek, P. Ko, WIP & E. Senaha, JHEP(2012)][G. Degrassi et al., 1205.6497]

[See 1112.1847, Seungwon Baek, P. Ko & WIP]



UV Completion of HP VDM

• There appear a new singlet scalar (dark Higgs)  from  , which mixes 
with the SM Higgs boson through Higgs portal interaction (  term)


• The effects must be similar to the singlet scalar in the fermion CDM model, 
and generically true in the DM with dark gauge symmetry


• Can accommodate GeV scale gamma ray excess from GC with 


• Can modify the Higgs inflation : No tight correlation with top mass

ϕ(x) Φ(x)
λHΦ

VV → ϕϕ

amount, unlike the claim made in literatures [1] based on the effective Lagrangian (1.2).

The decoupling of the 2nd scalar boson occurs rather slowly, since the mass mixing between

the SM Higgs boson and the new singlet scalar is due to the dim-2 operator. Also the mixing

between two scalar bosons makes the signal strength of two physical Higgs-like bosons less

than one, and make it difficult to detect both of them at the LHC. Since there is now an

evidence for a new boson at 125 GeV at the LHC [6, 7], the 2nd scalar boson in the singlet

fermion DM model is very difficult to observe at the LHC because its signal strength is

less than 0.3 [3, 8]. Also an extra singlet scalar saves the vacuum instability for mH = 125

GeV [8–10]. The electroweak (EW) vacuum can be still stable upto Planck scale even for

mH = 125 GeV [8]. These phenomena would be very generic in general hidden sector DM

models [11]. In short, it is very important to consider a renormalizable model when one

considers the phenomenology of a singlet fermion CDM.

Now let us turn to the Higgs portal vector dark matter described by (1.3) [1]. This

model is very simple, compact and seemingly renormalizable since it has only dim-2 and

dim-4 operators. However, it is not really renormalizable and violates unitarity, just like the

intermediate vector boson model for massive weak gauge bosons before Higgs mechanism

was developed. The Higgs portal VDM model based on (1.3) is a sort of an effective

lagrangian which has to be UV completed. It lacks including the dark Higgs field, ϕ(x),

that would mix with the SM Higgs field, h(x). Therefore the model (1.3) does not capture

dark matter or Higgs boson phenomenology correctly. It is the purpose of this work to

propose a simple UV completion of the model (1.3), and deduce the correct phenomenology

of vector CDM and two Higgs-like scalar bosons. Qualitative aspects of our model are

similar to those presented in Ref.s [3, 8], although there are some quantitative differences

due to the vector nature of the CDM.

This work is organized as follows. In Sec. 2, we define the model by including the

hidden sector Higgs field that generates the vector dark matter mass by the usual Higgs

mechanism. Then we present dark matter and collider phenomenology in the following

section. The vacuum structure and the vacuum stability issues are discussed in Sec. 4, and

the results are summarized in Sec. 5.

2 Model

Let us consider a vector boson dark matter, Xµ, which is assumed to be a gauge boson

associated with Abelian dark gauge symmetry U(1)X . The simplest model will be without

any matter fields charged under U(1)X except for a complex scalar, Φ, whose VEV will

generate the mass for Xµ:

LV DM = −1

4
XµνX

µν + (DµΦ)
†(DµΦ)− λΦ

4

(
Φ†Φ− v2Φ

2

)2

−λHΦ

(
H†H − v2H

2

)(
Φ†Φ− v2Φ

2

)
, (2.1)

in addition to the SM lagrangian. The covariant derivative is defined as

DµΦ = (∂µ + igXQΦXµ)Φ,

– 2 –

 hereXμ ≡ Vμ

Φ(x) = (vϕ + ϕ(x))/ 2

[ S Baek, P Ko, WI Park, E Senaha, arXiv:1212.2131 (JHEP) ]
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Figure 6. The scattered plot of σp as a function of MX . The big (small) points (do not) satisfy the
WMAP relic density constraint within 3 σ, while the red-(black-)colored points gives r1 > 0.7(r1 <
0.7). The grey region is excluded by the XENON100 experiment. The dashed line denotes the
sensitivity of the next XENON experiment, XENON1T.

Since there is additional direction of Φ, the Higgs potential can have minima other than

our EW vacuum. In the following, we investigate whether the EW vacuum is global or not.

We closely follow the analysis done in Ref. [8].

– 9 –

Allowed Region

Allowed Region

Figure 8. The vacuum stability and perturbativity constraints in the ↵-m2 plane. We take
m1 = 125 GeV, g

X
= 0.05, MX = m2/2 and v� = MX/(gXQ�).

where we have used Eq. (4.8) in the second line. Therefore, as long as Eqs. (4.1) and (4.2)

are satisfied, the EW vacuum is always the global minimum. Note that this is not the case

for the generic Higgs potential [11].

Although the EW vacuum is stable at the EW scale, its stability up to Planck scale

(MPl ' 1.22⇥1019 GeV) is nontrivial question since a renormalization group (RG) e↵ect of

the top quark can drive �H negative at certain high-energy scale, leading to an unbounded-

from-below Higgs potential or a minimum that may be deeper than the EW vacuum. We

will work out this question by solving RG equations with respect to the Higgs quartic

couplings and the U(1)X gauge coupling. The one-loop � functions of those couplings are

listed in Appendix A. In addition to the vacuum stability, we also take account of the

perturbativity of the couplings. To be specific, we impose �i(Q) < 4⇡ (i = H,H�,�) and

g2
X
(Q) < 4⇡ up to Q = MPl.

Fig. 8 shows the vacuum stability and the perturbativity constraints in the ↵-m2 plane.

We take m1 = 125 GeV, g
X

= 0.05, MX = m2/2 and v� = MX/(gXQ�). The vacuum

stability constraint is denoted by red line; i.e., the region above the red line is allowed

for ↵ > 0, and it is the other way around for ↵ < 0. The perturbativity requirement is

represented by blue line; i.e., the region below the blue line is allowed for ↵ > 0, and it is the

other way around for ↵ < 0. For ↵ < 0, the region above the dotted black line is excluded

by Eq. (4.1). Putting all together, for ↵ > 0 the region between the red and blue lines

is allowed while for ↵ < 0 the region between the dotted black and blue lines is allowed.

– 13 –

New scalar (Dark Higgs) 
improves EW vacuum stability 



Interaction Lagrangiansthus becomes a DM candidate. After the electroweak (EW) symmetry breaking H !
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2)T and assuming hSi = 0, we can write down the interaction Lagrangian for
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In this model, the DM can only be pair produced through the SM Higgs (h) mediation.
The simplest Higgs portal singlet FDM model with SM gauge invariance and renormal-

izability contains a SM singlet Dirac fermion DM � and a real singlet scalar mediator S
2

in addition to the SM particles [16, 17]:
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�
i/@ �m� � y�S

�
�+

1

2
@µS@

µ
S �

1

2
m

2
0S

2 (II.3)

� �HSH
†
HS

2
� µHSSH

†
H � µ

3
0S �

µS

3!
S
3
�

�S

4!
S
4
,

where the singlet scalar S can not have direct renormalizable couplings to the SM particles
due to the SM gauge symmetry and the singlet Dirac fermion � is assumed to be odd under
a Z2 dark parity � ! ��. When both scalar fields H and S develop nonzero vacuum
expectation values (VEV), vh and vs, so that

H =

✓
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1p
2
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0)

◆
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giving H1 and H2 fields in mass eigenstate. The mixing angle can be expressed in terms of
parameters in scalar potential
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The interaction Lagrangian of interest can be written in the mass eigenstates as

L
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In contrast to the SDM model, there are two scalar bosons that mediate the DM production
in the fermion DM model. The interference effects between two mediators can lead to
interesting applications to DM searches at colliders [14, 15]. If the H1 is assumed to be the

2
Here the singlet scalar S is different from the singlet scalar DM defined in Eq. (II.1), although we use

the same notation. In the FDM case, there is no Z2 symmetry (S ! �S) so that S cannot be a DM

candidate, and S is a messenger between the dark sector and the SM sector through the Yukawa coupling

(y�-term) in Eq. (II.3).
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candidate, and S is a messenger between the dark sector and the SM sector through the Yukawa coupling
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125 GeV Higgs boson [42, 43] with its measured strengths [44, 45], the mixing angle should
be small, sin↵ . 0.4 [46–48].

As for constructing a renormalizable and gauge invariant model for vector (VDM), we
need to introduce an abelian dark gauge group U(1)X and a dark Higgs field � [23, 49]:

LVDM = �
1

4
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(II.8)
where the VEV of � = 1p

2
(v� + �) will provide mass to the vector DM Vµ. The convariant

derivative is defined as Dµ� = (@µ + igVQ�Vµ)� where the U(1)X charge of � will be taken
as Q� = 1 throughout the paper. In this model, a Z2 symmetry (Vµ ! �Vµ) and charge
conjugation symmetry have been imposed by hand, thereby forbidding the kinetic mixing
between Vµ and the SM U(1)Y gauge boson and making the vector boson Vµ stable. It can
also be implemented by some unbroken local dark gauge symmetry as proposed in Ref. [50].

Similarly to the FDM model with Higgs portal, there are two scalar mass eigenstates
(H1/2) that are originated from the mixing of SM Higgs h and dark Higgs �, with the
mixing angle given by

tan 2↵ =
�H�vhv�

��v
2
�
� �Hv

2
h

. (II.9)

Then, the interaction Lagrangian that is relevant to the collider study can be written as

L
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VDM = � (H1 cos↵ +H2 sin↵)
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So far we have derived the relevant interaction Lagrangians for scalar, fermion and vector
DMs with Higgs portal in Eqs. (II.2), (II.7), (II.10) respectively. Note that there is only one
scalar mediator (h) in the scalar DM model, while there are two scalar mediators (H1/2)
in fermion and vector DM models. The difference in the number of mediators can lead to
quite different kinematic distributions, which can be used to discriminate scalar DM model
against fermion/vector DM models. On the other hand, distinguishing fermion DM models
from vector DM models is more involved. First of all, if the DM production is dominated
by on-shell H1/2 production with subsequent invisible decay, it will be impossible to observe
any differences in the final state distribution. The spin discrimination between fermion and
vector DM is possible only if the off-shell contributions become important. Then, given
the same decay width of H1/2, the fermion and vector DM model will predict different DM
production rate as well as final state kinematics.

III. A BENCHMARK STUDY

At the ILC, the Higgs portal DM is dominantly produced through the Higgs-strahlung
process

e
+
e
�
! ZH1/2 (! DD) , (III.1)

5

Scalar DM

Singlet FDM

Vector DM

NB: One can not simply ignore 125 GeV Higgs Boson or singlet scalar by 
hand, since it would violate gauge invariance and unitarity !



3

The 1/s suppressions from the s-channel resonance prop-
agators make the amplitude unitary, in compliance with
renormalizable and unitary QFT.
Finally let us discuss the indirect detection signatures

or thermal relic density from the full theory. In this case

we can assume the same amplitude (7), with approxima-
tion s ≈ (2mχ)2, and we can identify the scale for the
effective operator (1) as

| 1

Λ3
ann

| " 1

Λ3
dd

∣∣∣∣
m2

H1

4m2
χ −m2

H1
+ imH1ΓH1

−
m2

H1

4m2
χ −m2

H2
+ imH2ΓH2

∣∣∣∣ (9)

→ 1

Λ3
dd

∣∣∣∣
m2

H1

4m2
χ −m2

H1
+ imH1ΓH1

∣∣∣∣ %=
1

Λ3
dd

(10)

The last equation is obtained in the limit mH2 → ∞.
Again, due to its dependence on the DM mass mχ, the
scale Λann has nothing to do with the scale in the effective
operator for the direct detection, Λdd, Eq. (6).

COLLIDER STUDIES

To study the effect of nontrivial propagator of media-
tors, we consider following four cases between a standard
model sector and dark matter.

• EFT : Effective operator Lint =
mq

Λ3
dd
q̄qχ̄χ

• S.M.: Simple scalar mediator S of

Lint =
(

mq

vH
sinα

)
Sq̄q − λs cosαSχ̄χ

• H.M.: A case where a Higgs is a mediator

Lint = −
(

mq

vH
cosα

)
Hq̄q − λs sinαHχ̄χ

• H.P.: Higgs portal model as in eq. (2).

In S.M. and H.M. cases, we can regard α as a suppression
factor in interactions while H.P. case, it is a mixing angle
between H and a singlet scalar S. The kinematics of a
signature, i.e., a hardness of ISR jets, /ET , depend on the
scale of a hard interaction, which is proportional to the

invariant mass of a dark matter pair mχ̄χ. Thus there are
relations among EFT, S.M. H.M. and H.P as following,

H.P. −→
m2→∞

H.M. (11)

S.M. −→
m2→∞

EFF. (12)

Thus, an effective operator approach can not capture the
feature of an actual dark matter model, here a higgs
portal. To illustrate this point with Monte Carlo sim-
ulations, we follow ATLAS mono-jet and CMS tt̄ + /ET

searches [2, 3] in followings.
Monojet + !ET signatures

In this section, we discuss the monojet +
%ET signatures within the DM EFT and within the
full renormalizable theory. The scale in the full the-
ory for direct detection Λdd and Λ̄dd in the limit of
mH2 ' mH1 are defined as

Λ3
dd ≡

2vHm2
H1

m2
H2

λ sin 2α(m2
H2

−m2
H1

)
(13)

Λ̄3
dd ≡

2vHm2
H1

λ sin 2α
(14)

The applied cuts are as follows:

pjetT > 100GeV, |ηjet| < 2.4.

tt̄ + !ET signatures

In this section, we discuss the tt̄ + %ET signatures
within the DM EFT and within the full renormaliz-

able theory. Again one has to include the form factor,

5

TeV, and between S.M. with mS = 1 TeV and H.P. with
mH2 = 1 TeV, respectively.

Final search results will also depend on the production
cross section which depends on propagators of media-
tors. In Fig. 2, we illustrate the cross sections rescaled
by the dimensionless factor (2/�S sin 2↵)2 and the e�-
ciency ✏SR7 in the signal region SR7 (/ET > 500 GeV) at
ATLAS [11]. The rescaled cross sections are apparently
independent of the mixing angle ↵. The figure clearly
shows that the Higgs portal model cannot be described
by either the EFT or the S.M at all. Also in the limit
that mH2(mS) is much larger than the typical scale in
the process, the S.M approaches the EFT, whereas the
H.P. does the H.M., respectively.
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FIG. 2: Rescaled cross sections for the monojet+/ET in the
signal region SR7 (/ET > 500GeV) at ATLAS [11]. Each line
corresponds to the EFT approach (magenta), S.M. (blue),
H.M. (black), and H.P. (red), respectively. The solid and
dashed lines correspond to m� = 50 GeV and 400 GeV in
each model, respectively.

3.2 tt̄ + 6ET signatures: A (e↵ective) scalar operator
in Eq. (1) from the Higgs portal case is proportional to
the mass of quarks. Thus dark matter creations with top
quark pair will have better sensitivities compared to the
usual monojet search [18, 19]. Following the analysis of
CMS tt̄ + /ET search [12], we find similar features in the
monojet search in the previous section. The detail of this
analysis will be presented in the future publication [20],
but we will show the resulting bound on M⇤ in Fig. 3
(the lower pannel) in the following subsection.

3.3 Relation between a mediator and an e↵ective oper-
ator approach: By direct comparison between scattering
matrix elements from an e↵ective operator and from a
simple scalar mediator, we can have a similar relation to
Eq. (9)

M
3

⇤ =

✓
2vH

� sin 2↵

◆
m

2

S
. (16)

With this relation, the ATLAS collaboration showed that
the validity of the e↵ective operator when mS > 5 TeV
[11]. However as shown in Eq. (12), this validity holds

only for the S.M which does not respect the full SM gauge
symmetry, while the H.P. with the full SM gauge sym-
metry does not approach the EFT result.
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FIG. 3: The experimental bounds on M⇤ at 90% C.L. as a
function of mH2 (mS in S.M. case) in the monojet+/ET search
(upper) and tt̄ + /ET search (lower). Each line corresponds
to the EFT approach (magenta), S.M. (blue), H.M. (black),
and H.P. (red), respectively. The bound of S.M., H.M., and
H.P., are expressed in terms of the e↵ective mass M⇤ through
the Eq.(16)-(20). The solid and dashed lines correspond to
m� = 50 GeV and 400 GeV in each model, respectively.

In Fig. 3, we show that the experimental 90%
C.L. limits on the suppression scale M⇤ as a function of
a mediator mass mH2 (mS in the S.M. case) at the LHC
by using the results in the monojet+/ET search (upper)
at ATLAS [11] and in the tt̄+ /ET search (lower) at CMS
[12]. For the translation from the limit on the mass of
a mediator in a specific model to a limit on the M⇤ in
the e↵ective operator, we use a direct comparison be-
tween parameters in a model and an suppression scale
M⇤ in the limit where a collision energy becomes negli-
gible compared to the mediator’s mass. For S.M. case we
use the following relation

mq

M3
⇤

=
mq� sin ↵ cos ↵

vH

1

m
2

S

(17)

so that a limit on M⇤ can be obtained through a trans-
lation

"✓
1
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⇤

◆2 ✓
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2vHm
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S

◆�2
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#
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L . (18)
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ŝ � m
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+ imH2�H2

�
⌘ 1

⇤3

col
(ŝ)

, (10)

where ŝ ⌘ M
2

��
is the square of the invariant mass of the

DM pair. Note that ŝ � 4m
2

�
in the physical region for

DM pair creation, and that there is no single constant
scale ⇤col for an e↵ective operator that characterizes the
qq̄ ! ��̄, since ŝ varies in the range of 4m

2

�
 ŝ  s

with
p

s being the center-of-mass (CM) energy of the
collider. Also note that we have to include two scalar
propagators with opposite sign in order to respect the
full SM gauge symmetry and renormalizability. This is
in sharp contrast with other previous studies where only
a single propagator is introduced to replace 1/⇤2. The
two propagators interfere destructively for very high ŝ

or small t (direct detection), but for m
2

H1
< ŝ < m

2

H2
,

they interfere constructively. The 1/s suppressions from
the s-channel resonance propagators make the amplitude
unitary, in compliance with renormalizable and unitary
QFT.

If one can fix ŝ and m
2

H2
� ŝ, we can ignore the 2nd

propagator. But at hadron colliders, ŝ is not fixed, except
for the kinematic condition 4m

2

�
 ŝ  s (with s =

14TeV for example at the LHC@14TeV). Therefore we
cannot say clearly when we can ignore ŝ compared with
m

2

H2
at hadron colliders, unless m

2

H2
> s (not ŝ).

3. Collider Studies: There are two important factors
in the search for new physics at colliders: a total cross
section and the shape of di↵erential cross sections with
respect to various analysis “cut” variables. A mixing an-
gle ↵ between two scalars is related only to a total cross
section, not to the shape of di↵erential cross section. The
shape of di↵erential cross sections and e�ciencies from
various analysis cuts are related to the nontrivial propa-
gators coming from two mediators (H1, H2). Thus we can
single out the e↵ect of a mixing angle from collider anal-
yses when we try to understand whether we can recast
results of various analyses based on the e↵ective opera-
tor and a simplified model to our model here, the Higgs
portal case through the following set up:

• EFT : E↵ective operator Lint = mq

M3
⇤
q̄q�̄� defined

in Eq. (1)

• S.M.: Simplified model with a scalar mediator S

[3],

Lint =
⇣

mq

vH

sin ↵

⌘
sq̄q � �s�̄� cos ↵

• H.M.: A Higgs boson as a mediator,

Lint = �
⇣

mq

vH

cos ↵

⌘
hq̄q � �h�̄� sin ↵

• H.P.: Higgs portal model defined in Eq. (4) or (5).

In the S.M. and H.M. cases, we can regard ↵ as a sup-
pression factor in interactions while in the H.P. case, it
is a mixing angle between h and s. Note that the SM
gauge symmetry is not fully respected within EFT, S.M.
and H.M. cases.

The kinematics of a signature, i.e., PT of an initial
state radiation (ISR) jet and the size of /ET , depend on
the scale of a hard interaction, which is proportional to
the invariant mass of a dark matter pair, M��. With
following LHC studies, we show that there are relations
among EFT, S.M., H.M., and H.P:

H.P. �!
m

2
H2

�ŝ

H.M., (11)

S.M. �!
m

2
S

�ŝ

EFT, (12)

H.M. 6= EFT . (13)

In H.P., the limit m
2

H2
� ŝ can be achieved, for exam-

ple, by taking vS (the VEV of S in Eq. (4)) large while
keeping dimensionless couplings perturbative. The mix-
ing angle in this case is approximated to [6]

tan 2↵ ' 2vH (µHS
+ �HSvS)

2�Sv
2

S

. (14)

The perturbativity of e↵ective couplings obtained after
integrating out the heavy scalar particle (H2) requires
µHS + �HSvS . mH2 , constraining the mixing angle to
be upper-bounded as

↵ . 2

r
⇡

3

vH

mH2

. (15)

Hence, as H2 becomes heavier, impacts of H.P. at col-
lider experiments becomes more elusive. In any case, for
m

2

H2
� ŝ, the e↵ect of the heavy scalar propagator can be

ignored in relevant diagrams for collider searches. Then,
it is clear that H.P. reduces to H.M. with the angle ↵

given by Eq. (14), and this is what Eq. (11) means. On
the other hand, it should be clear that, S.M. is reduced
to EFT for m

2

S
� ŝ, as stated in Eq. (12), since there
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S.M. [26]. Also, it should be clear that, since the mass of
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for m

2

h
. ŝ, as stated in Eq.(13).

Thus, an e↵ective operator approach cannot capture
the feature of an actual dark matter model, as shown
here in the context of the Higgs portal singlet fermion
DM as an example. We illustrate our point with the AT-
LAS monojet and the CMS tt̄ + /ET searches [11, 12].

3 The interference e↵ect between two scalar mediators at LHC

In the singlet fermion DM models with Higgs portal described in the previous section, the

DM production is dominated by three processes as shown in Fig. 1: i.e. gluon-gluon fusion

(ggF), vector boson fusion (VBF) and Higgs Strahlung (VH).

g

g

t Hi

�

�̄

q

q

q

q

Hi

�

�̄

V

q

q̄

V

V

Hi

�

�̄

Figure 1: The dominant DM production processes at LHC.

In contrast to the simplified scalar mediated DM model recommended by the LHC

Dark Matter Forum [11], there are two propagators (H1 and H2) that can mediate the DM

pair production in the gauge invariant model descried in the previous section. Note that

the Lagrangian in Eq. (2.4) resembles the singlet scalar mediated DM model in Ref. [11]

when only fermionic couplings of H2 are concerned.

The interference between two propagators in the di↵erential production cross sections

of the DM pair takes the following form:

d�i
dm��

/ | sin 2↵ g�
m2

�� �m2

H1
+ imH1�H1

� sin 2↵ g�
m2

�� �m2

H2
+ imH2�H2

|2 , (3.1)

where �i corresponds to the cross section of di↵erent production mechanism and m�� is

the invariant mass of DM pair. The minus sign between two propagators comes from the

SO(2) nature of the mixing matrix in Eq. (2.3), which is found is be helpful to evade the

DM direct detection [19, 35] in such class of models. The interference e↵ect will not only

influence the total production rate of DM pair, but also changes the shape of kinematic

variables.

To give more concrete examples on the interference e↵ect, a few assumptions are made

to narrow down the parameter space. We will fix sin↵ = 0.2 and g� = 1 in our following

discussion. Because the di↵erential cross section are universally proportional to g� sin 2↵

as shown in Eq. (3.1), changing the sin↵ and g� will simply rescale the di↵erential cross

section as long as the �Hi does not di↵er much. The scalar H1 is identified as the 125

GeV Higgs boson with properties that are consistent with the LHC discovery, so that

mH1 = 125 GeV and �H1 = cos2 ↵ · �hSM . Models with m� < mhSM/2 will be highly

constrained by the Higgs invisible decay search at LHC. This usually requires very small

g�, e.g. for sin↵ = 0.2, g� should be smaller than . 0.1 in order to satisfy the current

upper bound on the invisible Higgs branching ratio: Br(hSM ! ��)< 0.24 [36]. Then

the DM production cross section should be small in such cases. The same situation exists

when DM is heavy. So we will focus on the scenarios with medium DM mass in this work,
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nal strength ∼ 1, the other ons has the signal strength
! 0.1. Therefore it would require dedicated searches for
this singlet-like scalar boson at the LHC. In fact this sec-
ond scalar boson is almost ubiquitous in hidden sector
DM models, where DM is stabilized or long-lived due
to dark gauge symmetries [17–23]. In case this second
scalar is light, it could solve some puzzles in the CDM
paradigm, such as core cusp problem, missing satellite
problem or too-big-to-fail problem [22, 23]. And it
can help the Higgs inflation work [24] in light of the
recent BICEP2 results with large tensor-to-scalar ratio
r = 0.2+0.07

−0.05. Therefore it would be very important to
search for the singlet-like second scalar boson at the LHC
and elsewhere, in order to test the idea of dark gauge
symmetry stabilizing the DM of the universe. Since the
ILC can probe α down to a few ×10−3 only, there would
be an ample room for the 2nd scalar remaining undis-
covered at colliders unfortunately. It would be a tough
question how to probe the region below α ! 10−3 in the
future terrestrial experiments ( for example, see [25] for
a recent study).
The second point is that there is no unique correlation

between the LHC data on the Higgs invisible branch-
ing ratio and the spin-independent cross section of Higgs
portal DM on nucleon. One can not say that the former
gives stronger bound for low DM mass region compared
with the latter, which is very clear from the plots we have
shown. Therefore it is important for the direct detection
experiments to improve the upper bound on σSI for low
mDM, regardless of collider bounds. Collider bounds can
never replace the DM direct search bounds in a model
independent way, unlike many such claims.

CONCLUSION

In this letter, we have demonstrated that the effec-
tive theory approach in dark matter physics could lead
to erroneous or misleading results. For the Higgs portal
SFDM and VDM, there are at least two more impor-
tant parameters, the mass m2 of the 2nd scalar which is
mostly a SM singlet, and the mixing angle α between the
SM Higgs boson and the 2nd scalar boson:

σSI
p = (σSI

p )EFT c4αm
4
hF(mDM, {mi}, v) (27)

# (σSI
p )EFT c4α

(

1−
m2

h

m2
2

)2

(28)

where the function F is defined in Eq. (13) and m1 =
mh = 125 GeV. The second equation is obtained when
the momentum of DM is negligible relative to both
masses of Higgses. The usual EFT approach applies only
for the case m2 = mhcα/

√

1 + c2α or m2 → ∞ with
α → 0. For the finite m2, there is a generic cancel-
lation between H1 and H2 contribution due to the or-
thogonal nature of the rotation matrix from interaction

to mass eigenstates of two scalar bosons. The resulting
bound on σSI becomes even stronger if m2 > m1 = 125
GeV. On the other hand, for a light 2nd Higgs (m2 <
mhcα/

√

1 + c2α), the LHC bound derived from the invis-
ible Higgs decay width is weaker than the claims made
in both ATLAS and CMS collaborations. Especially, for
m2 ! mhcα/

√

12.3 + c2α, it can not compete with the
DM direct search bounds from XENON100, CDMS and
LUX, which is the main conclusion of this paper. Both
LHC search for the singlet-like 2nd scalar boson and the
DM direct search experiments are important to be con-
tinued, and will be complementary with each other.
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Invisible H decay into 
a pair of  VDM 

4

LVDM = −
1

4
VµνV

µν +DµΦ
†DµΦ− λΦ

(

Φ†Φ−
v2Φ
2

)2

− λΦH

(

Φ†Φ−
v2Φ
2

)(

H†H −
v2H
2

)

(21)

where Φ is the dark Higgs field which generates nonzero
mass for the VDM through spontaneous U(1)X breaking,
and

DµΦ ≡ (∂µ + igXQΦVµ)Φ

After U(1)X breaking, we shift the field ΦX as follows:

Φ →
1√
2
(vΦ + φ(x))

where the field φ(x) is a SM singlet scalar similarly to
the singlet scalar in the SFDM case. Again there are two
scalar bosons which are mixtures of h and φ.
The invisible and non-SM branching fractions of the

Higgs decay are of the same forms as Eqs. (5) and (6),
but with

Γinv
i =

g2X
32π

m3
i

m2
V

(

1−
4m2

V

m2
i

+ 12
m4

V

m4
i

)(

1−
4m2

V

m2
i

)1/2

(22)
where mV is the mass of VDM, and Γjj

i with µ′
P = 0.

The spin-indenpendent cross section of VDM to proton is
also same as the one of Eq. (7) with λψ and mψ replaced
to gX and mV , respectively.
Again, let us compare these results with those in the

EFT:
(

Binv
h

)

EFT
is of the same form as Eq. (15) with

(Γinv
h )EFT =

λ2V H

128π

v2Hm3
h

m4
V

×

(

1−
4m2

V

m2
h

+ 12
m4

V

m4
h

)(

1−
4m2

V

m2
h

)1/2

(23)

and the VDM-nucleon scattering cross section is

(σSI
p )EFT =

m2
r

π

[

λV H mp

2mV m2
h

]2

f2
p (24)

In the renormalizable model of Eq. (21), the LHC bound
on Binv

h can be translated directly to a constraint on σSI
p

by the relation,

σSI
p = c4αm

4
hF(mV , {mi}, v)

×
Binv

h ΓSM
h

(

1−Binv
h

)

32m2
rm

2
V (mp/vH)2 f2

p

m7
hβV

(

1− 4m2

V

m2

h

+ 12
m4

V

m4

h

) (25)

where βV =
√

1− 4m2
V /m

2
h. On the other hand, in the

EFT of Eq. (3) one finds

(

σSI
p

)

EFT
=

Binv
h ΓSM

h

1−Binv
h

32m2
rm

2
V (mp/vH)2 f2
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1− 4m2
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m2
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m4

V

m4
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) (26)
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FIG. 2: σSI
p as a function of the mass of dark matter for SVDM

for a mixing angle α = 0.2. Same color and line scheme as
Fig. 1.

used in the analysis’s of ATLAS [1] and CMS [2]. Note
again that σSI

p of Eq. (25) has additional factors involving

(α, m2), compared to
(

σSI
p

)

EFT
of Eq. (26). Therefore,

similarly to the case of SFDM, one cannot make model-
independent connections between Binv

h and σSI
p in the

Higgs portal VDM model. Fig. 2, where σSI
p of Eq. (25)

and (σSI
p )EFT of Eq. (26) in VDM scenario are depicted

for comparison, shows clearly this discrepancy caused by
the different dependence on α and m2.

IMPLICATIONS FOR DM SEARCH AND

COLLIDER EXPERIMENTS

From our arguments based on the renormalizable and
unitary model Lagrangians, it is clear that one has to
seek for the singlet-like second scalar boson H2. It could
be either lighter or heavier than the observed Higgs bo-
son. Since the observed 125 GeV Higgs boson has a sig-
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EFT of Eq. (3) one finds
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FIG. 2: σSI
p as a function of the mass of dark matter for SVDM

for a mixing angle α = 0.2. Same color and line scheme as
Fig. 1.

used in the analysis’s of ATLAS [1] and CMS [2]. Note
again that σSI

p of Eq. (25) has additional factors involving

(α, m2), compared to
(

σSI
p

)

EFT
of Eq. (26). Therefore,

similarly to the case of SFDM, one cannot make model-
independent connections between Binv

h and σSI
p in the

Higgs portal VDM model. Fig. 2, where σSI
p of Eq. (25)

and (σSI
p )EFT of Eq. (26) in VDM scenario are depicted

for comparison, shows clearly this discrepancy caused by
the different dependence on α and m2.

IMPLICATIONS FOR DM SEARCH AND

COLLIDER EXPERIMENTS

From our arguments based on the renormalizable and
unitary model Lagrangians, it is clear that one has to
seek for the singlet-like second scalar boson H2. It could
be either lighter or heavier than the observed Higgs bo-
son. Since the observed 125 GeV Higgs boson has a sig-

Invisible H decay width : finite for small mV 
in unitary/renormalizable model

[arXiv: 1405.3530, S. Baek, P. Ko & WIPark, PRD]

VS.

sin2 ↵

I. INVISIBLE DECAY WIDTH OF THE HIGGS BOSON

A. Renormalizable and gauge invariant theory
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Here mV / gxQ�v� [defined in the covariant derivative of � below Eq. (21).] Now we are

interested in the limit mV ! 0, but mV 6= 0. This limit can be achieved by taking gX ! 0

with a fixed v�. Then the prefactor in Eq. (2),
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=
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Therefore �
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becomes finite when mV ! 0.

B. EFT prediction
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In this case there is no definite correlation between mV and �V H so that the invisible decay

width grows indefinitely when mV ! 0, unlike the case of Eq. (1). This is the well known

disaster in the Higgs portal VDM in the EFT approach.
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Diverge when 
 !!mV → 0



Two Limits for mV → 0

•   in the UV completion with dark Higgs boson 


• Case I :  with finite  


      


• Case II :  with finite 

mV = gXQΦvΦ

gX → 0 vΦ ≠ 0

In the limit mV ! 0+, the main contribution to (8) comes from the longitudinally

polarized V ’s, where the polarization vector is in the form, ✏µ(k) ⇡ kµ/mV . This also

explains the enhancement factor m
2
h
/m

2
V

in Eq. (8). The invisible Higgs decay width is

constrained by signal strengths of Higgs boson in various production and decay channels,

and the upper limits on the Higgs invisible branching ratio as well as on the nonstandard

Higgs decay width (see, for example, [17, 18]).

The critical di↵erence of Eq. (8) compared with the EFT result in Eq. (2) is that m2
V
=

g
2
X
Q

2
�v

2
� in the UV completed model. Note that the massless VDM limit, mV ! 0+, can be

achieved by taking either gXQ� ! 0+ or v� ! 0+ in Eq. (8). We find that in both cases

the Higgs invisible decay widths are finite, and physically sensible results are obtained as

described below.

A. gXQ� ! 0+ with v� 6= 0 fixed

For a finite fixed v�, we notice that the mixing angle ↵ is fixed and finite, since the 2⇥ 2

scalar mass matrix in Eq. (5) is independent of gX . And the prefactor in Eq. (8) becomes

g
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m
3
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v
2
�

sin2
↵, (9)

which is finite irrespective of the VDM mass and physically sensible. Note that, mh � mV

in this limit and the VDMs produced in the decay of the SM Higgs are highly boosted.

Hence, the decay rate in Eq. (9) is actually mostly from the longitudinal mode of the VDM.

Then, it is clear that from Goldstone boson equivalence theorem one should have the same

rate as the one in Eq. (9) for the decay of the SM Higgs to its associated Goldstone bosons

when gXQ� = 0.

Indeed, for gXQ� ⌘ 0 and v� 6= 0, there is no interaction between Vµ and the dark Higgs

�. Specifically the Higgs-V-V interaction vanishes identically:

�g
2
X
Q

2
�v� sin↵VµV

µ
h ⌘ 0,

and consequently the partial width �(h ! V V ) vanishes. Since V is massless for gX ! 0,

the Goldstone boson a� from � is not absorbed into the longitudinal component of V but
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vΦ → 0 gX ≠ 0

Also see the addendum:  
by S Baek, P Ko, WI Park 

=  Γ(h → aΦaΦ)

with  being the NG boson for spontaneously broken global aΦ U(1)X

becomes a physical degree of freedom. That is, the dark U(1) symmetry acts as a global

symmetry. In this case the Higgs boson h can decay into a pair of the Goldstone bosons

through the mixing with the dark Higgs boson, and the partial decay width is found to

be [19],

�(h ! a�a�) =
sin2

↵m
3
h

32⇡v2�
, (10)

which is exactly what we obtain from Eq. (8) with gXQ� ! 0 as shown in Eq. (9).

B. v� ! 0+ with gXQ� fixed

Another possibility for a massless VDM would be taking v� ! 0 with a finite value of

gX . In this limit, the mixing angle ↵ defined in Eq. (7) is approximated as

↵
v�!0+����! 2�H�v�

�HvH
. (11)

Then the prefactor (including the mixing factor) in (�inv
h
)UV [Eq. (8)] becomes
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where in the second equality we have used m
2
h
! �Hv

2
H
/2 as v� ! 0+. Then the invisible

Higgs decay rate in Eq. (8) can be approximated as

�
�inv
h

�
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v�!0+����! 1

16⇡

�
2
H�mh

�H

, (13)

which is finite again. Note that Eq. (13) is exactly what one finds for the decay of the SM-

like Higgs to Goldstone bosons in the linear representation of � in the broken phase. Hence,

we find that in the broken phase (i.e., v� 6= 0) whichever limit we take to get a massless

VDM limit, namely either gXQ� ! 0+ or v� ! 0+ to realize mV ! 0+, the invisible decay

rate of the SM Higgs in the UV complete model is finite and physically consistent with the

expectationthe result expected from the Goldstone boson equivalence theorem, as opposed

to the case of the EFT approach discussed in Sec. II.

C. Unbroken U(1) case with gXQ� 6= 0 and mV = 0

For completeness, we briefly discuss the unbroken U(1) case with gXQ� 6= 0, for which the

dark U(1)X gauge boson remains massless, mV ⌘ 0. In this case, we have �(h ! V V ) ⌘ 0.
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Therefore  is finite when  in the UV completionsΓ(h → VV ) mV → 0
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We consider  
followed by 

e+e− → Z * → ZHi=1,2
Hi → χ̄χ

P Ko, H Yokoya, arXiv:1603.08802, JHEP



where the t-dependent function G(t) is given by the following:
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If we ignored the 2nd scalar propagator and identified m1 = mH (the discovered Higgs

boson), the we would have
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! constant (as t ! 1) (5.15)

These results violate unitarity at high t or high s region, and the results become unreliable.

Note that ignoring the propagator of the 2nd Higgs, which would be justified if m2 �
p
s.

Therefore if we factor out the phase space factors from d�/dt and correct for detector

e�ciencies, etc., one would be able to determine the shape of the function G(t), since F (s)

will be the overall normalization. Having enough number of bins and data, we can test by

�
2minimization to determine whether the observed 6ET distribution follows that of scalar,

fermion or vector DM with Higgs portal. Note that this procedure is possible at ILC, and

not at LHC, since at ILC the CM energy
p
s is fixed so that one can factor out the phase

space factor. On the other hand, at hadron colliders, the parton-level CM energy
p
ŝ is

not fixed so that we cannot factor out the phase space factor in an unambiguous manner.

Note that for the scalar DM, G(t) is completely fixed by the SM Higgs propagator,

and there is no free parameter at all. Therefore it would be straightforward to check if the

observed 6ET distribution can be fit by the SM Higgs propagator or not.

For the SFDM or the VDM, the fitting would be more complicated, since in this case,

there are 5 parameters: namely,

sin↵, m2, �1, �2, mDM

Note that we have to regard �2 and sin↵ independently, since H2 ! H1H1 can be newly

open, which calls for a new parameter that could be traded with �2. With these 5 param-

eters, we can fit the 6ET spectrum and determine whether DM is SFDM or VDM.
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Asymptotic behavior in the full theory ( )t ≡ m2
χχ

Asymptotic behavior w/o the 2nd Higgs (EFT)

Unitarity is
violated in EFT!



Fermi-LAT GC 𝜸-ray 

GC : b ⇠ l . 0.1�

[1402.6703, T. Daylan et.al.]

GeV scale excess!﹀
extended

see arXiv:1612.05687 for a recent overview by 
C.Karwin, S. Murgia, T. Tait, T.A.Porter,P. Tanedo



• A DM interpretation
DM+DM ! bb̄ with �v = 1.7⇥ 10�26cm3/s

mDM = 35.25 GeV

* See “1402.6703, T. Daylan et.al.” for other possible channels

• Millisecond Pulars (astrophysical alternative)
It may or may not be the main source, depending on 
- luminosity func.
- bulge population
- distribution of bulge population
* See “1404.2318, Q. Yuan & B. Zhang” and “1407.5625, I. Cholis, D. Hooper & T. Linden”



GC gamma ray in HP VDM
V µ

V ν

b̄/τ̄

b/τ

H1,2

Figure 2. Dominant s channel b+ b̄ (and τ + τ̄ ) production

V µ

V ν

H1

H1

V µ

V ν

H1

H1

H1,2

V µ H1

V ν H1

V µ H1

V ν H1

Figure 3. Dominant s/t-channel production of H1s that decay dominantly to b+ b̄

3.4 Dark matter relic density

The observed GeV scale γ-ray spectrum may be explained if DM annihilates mainly into bb
with a velocity-averaged annihilation cross section close to the canonical value of thermal relic
dark matter. This implies that 30GeV ! mV ! 40GeV in case of the s-channel annihilation
(Fig. 2) scenario. It is also possible to produce bb̄ with the nearly same energy from the decay
of highly non-relativistic φ which is produced from the annihilation of DM having mass of
60GeV ! mV ! 80GeV (Fig. 3). In both cases, it is expected to have τ τ̄ and cc̄ productions
too in the final states, because H1 will decay into them with branching ratios about 7% and
3%.

In the process of Fig. 2, the thermally-averaged annihilation cross section of VDM is
given by

〈σvrel〉ff̄ =
∑

f

(gXsαcα)
2

3π
m2

X

∣

∣

∣

∣

∣

∑

i

1

s−m2
i + imiΓi

∣

∣

∣

∣

∣

2
(

mf

vH

)2
(

1−
4m2

f

s

)3/2

, (3.11)

where mf is the mass of a SM fermion f . Note that Eq. (3.11) is suppressed by a factor s2αm
2
f .

Hence a large enough annihilation cross section for the right amount of relic density can be
achieved only around the resonance region. However in the resonance region the annihilation
cross section varies a lot, as the Mandalstam s-variable varies from the value at freeze-out to
the value in a dark matter halo at present. Therefore, this process can not be used for the
GeV scale γ-ray spectrum from the galactic center.

On the other hand, in the process of Fig. 3 for mφ < mV ! 80GeV, the thermally-
averaged annihilation cross section of VDM is given by

〈σvrel〉tot = 〈σvrel〉ff̄ + 〈σvrel〉φφ (3.12)
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P. Ko, WI Park, Y. Tang. arXiv:1404.5257,  JCAP 

H2 : 125 GeV Higgs
H1 : absent in EFT   



Importance of HP VDM 
with Dark Higgs Boson

 0.1

 1

 10

 100

 0.1  1  10  100

E2 dN
γ/d

E 
(G

eV
)

Ek(GeV)

γ spectrum

 mV=40 GeV, mφ=59 GeV, VV→f f *2
mV=80 GeV, mφ=75 GeV, VV→φ φ
mV=80 GeV, mφ=50 GeV, VV→φ φ

Figure 5. Illustration of γ spectra from different channels. The first two cases give almost the same
spectra while in the third case γ is boosted so the spectrum is shifted to higher energy.

on the invisible decay of SM Higgs is irrelevant, but the mixing angle is still constrained by
the signal strength of SM channels such that α ! 0.4 [34].

A remark is in order for the present annihilation cross section to obtain observed GeV
scale γ-ray. Compared to the case of 30GeV ! mV ! 40GeV, the present number den-
sity of dark matter for 60GeV ! mV ! 80GeV is smaller by a factor of about a half, but
each annihilation produces two pairs of bb̄. Hence, the expected flux which is proportional
to the square of DM number density is smaller by about a half. However, there are various
astrophysical uncertainties in the estimation of required annihilation cross section. In par-
ticular, a small change of the inner slope of DM density profile is enough to compensate the
difference of about factor two. In addition, as discussed in Refs. [10], the GeV scale γ-ray
data fits well to cross sections proportional to the square of the mass of the final state SM
particles. This kind of flavor-dependence is an intrinsic nature of our SVDM scenario, thanks
to the Higgs portal interaction. Therefore, with these points in mind, SVDM with mass of
60GeV ! mV ! 80GeV can be a natural source of the GeV scale γ-ray excess from the
direction of the galactic center.

3.5 Comparison with other Higgs portal DM models

In regard of the GeV scale γ-ray excess from the galactic center, SSDM can work equally well
as our SVDM scenario. One difference from SVDM is the additional Higgs portal interaction
of SSDM with SM Higgs, which can improve the vacuum instability problem of SM Higgs
potential better than SVDM scenario.

Contrary to SSDM or SVDM, SFDM with a real scalar mediator results in p-wave s-
channel annihilation. In addition, the t-channel annihilation cross section is approximately

– 8 –

where

〈σvrel〉φφ #
1

16πs
|M|2

(

1−
4m2

φ

s

)1/2

(3.13)

with

|M|2 ≈
2

9

[

1 + 4

(

s

4m2
V

)2(

1−
2m2

V

s

)2
]

[(

2c2αg
2
X +M0

s

)

− 8c2αg
2
X

]2
(3.14)

M0
s = 2c4αm

2
V

(

6λΦ

s−m2
φ

−
tαλΦHvH/vΦ

s−m2
h

)

# 4c4αλΦ



1−
s2αm

2
V

(

m2
h −m2

φ

)

m2
φ

(

s−m2
h

)





∼ 2c4αg
2
X

[

1−
s2α
(

m2
h −m2

V

)

(

4m2
V −m2

h

)

]

(3.15)

Note that, if we consider the off-resonance region with 2mV ! mh, the contribution of the
s-channel H2 mediation can be ignored and 〈σvrel〉φφ does not depend neither sα nor mf .
Hence a right size of annihilation cross section can be obtained by adjusting mostly gX and
(mV −mφ) /mV , with the negligible mixing angle dependence. Fig. 4 shows the relic density

20 40 60 80 10010!4

0.001

0.01

0.1

1

10

mV!GeV"

"
h2

Figure 4. Relic density of dark matter as function of mψ for mh = 125, mφ = 75GeV, gX = 0.2,
and α = 0.1.

at present 5 as a function of mV for mφ = 75 GeV and gX = 0.2 and the mixing angle α = 0.1.
From Fig. 4, we note that the mass of our VDM is constrained to be mh/2 < mV , since SM-
Higgs resonance should be also avoided. And the velocity-averaged annihilation cross section
at present epoch can be close to that of freeze-out only for mφ ! mV . Note also that, as
shown in Fig. 5, in order to match to the observed γ-ray spectrum, we need mφ ∼ mV to
avoid boosted φ.

In the region of 60GeV ! mφ ∼ mV ! 80GeV, the SM Higgs boson decay into VDM
is suppressed by the phase space factor or kinematically forbidden. Hence the collider bound

5We adapted the micrOMEGAs package [37, 38] (ΩVDMh
2) to our model for numerical calculation.

– 7 –

This mass range of VDM would have been 

impossible in the VDM model (EFT)

And No 2nd neutral scalar (Dark Higgs) in EFT



Summary
• Phenomenology of HP VDM and Singlet FDM presented within EFT 

vs. UV completed models


• EFT approach has a number of drawbacks : non-renormalizable, 
unitarity violation at high energy colliders, and it applies only if 

 [But we don’t know mass scales of dark particles !]


• In particular, one has  , as  , 
whereas it is finite in UV completed models [Importance of gauge 
invariance, unitarity and renormalizability]


• The dark Higgs  can play crucial roles in interpreting the DM 
signatures at colliders, explaining the GC -ray excess ( ), 
improving vacuum stability up to Planck scale, modifying the Higgs 
inflation [  should be actively searched for !]

mDM, mSM ≪ mϕ

ΓEFT(H125 → VV ) → ∞ mV → 0

ϕ
γ VV → ϕϕ

ϕ



Inelastic DM and 
XENON1T Excess

arXiv:2006.16876, PLB 810 (2020) 135848 
With Seungwon Baek, Jongkuk Kim

We consider Both Scalar and Fermion IDM

Although XENON1T excess has gone, our study 
still leaves an important lesson for light DM scenarios



Motivations for XDM
• XDM : phenomenologically interesting possibility, used for 

interpretation of DAMA, 511 keV -ray & PAMELA  excesses, and 
XENON1T excess, muon (g-2), etc


• Constraints from DD and Colliders are different


• Co-annihilation could be important for relic density calculations


• Usually the mass difference btw XDM & DM is put in by hand, by 
dim-2 for scalar and dim-3 for fermions DM cases, and dark photon is 
introduced 


• However such theories are mathematically inconsistent and unitarity 
will be violated in some channels, when (X)DM couples to dark photon

γ e+



Usual Approaches
For example, Harigaya, Nagai, Suzuki, arXiv:2006.11938 

Similarly for the fermion 
DM case

This term is 
problematic : 
Current is not 

conserved

  : breaks U(1) explicitlyΔ ψCψ



Without dark Higgs

• Only the first two diagrams if the mass gap is given by hand


• The third diagram if the mass gap is generated by dark Higgs 
mechanism


• Without the last diagram, the amplitude violates unitarity at 
large Eγ′ 

P.Ko, T.Matsui, Yi-Lei Tang, arXiv:1910.04311, Appendix A



XENON1T Excess
• Excess between 1-7 keV


• Expectated : 232  15 , Observed : 285 


• Deviation ~ 3.5 


• Tritium contamination


• Long half lifetime (12.3 years)


• Abundant in atmosphere and cosmogenically produced in 
Xenon


• Solar axion


• Produced in the Sun


• Favored over bkgd @ 3.5 


• Neutrino magnetic dipole moment


• Favored @ 3.2 

±

σ

σ

σ

Electron recoil



DD/CMB Constraints
• To evade stringent bounds from direct detection expt’s : 

sub GeV DM


• CMB bound excludes thermal DM freeze-out determined 
by S-wave annihilation :  DM annihiliation should be 
mainly in P-wave Planck 2018


R.K.Leane 35 al, PRD2018⟨σv⟩ ∼ a + bv2



Exothermic DM 
• Inelastic exothermic scattering of XDM 


•   by dark photon exchange + 
kinetic mixing


• Excess is determined by 


• Most works are based on effective/toy models where  is put in 
by hand, or ignored dark Higgs


• dim-2 op for scalar DM and dim-3 op for fermion DM : soft and 
explicit breaking of local gauge symmetry), and include massive 
dark photon as well  theoretically inconsistent !

XDM + eatomic → DM + efree

ER ∼ δ = mXDM − mDM

δ

→



Z2 DM models with dark Higgs

• We solve this inconsistency and unitarity issue with 
Krauss-Wilczek mechanism 


• By introducing a dark Higgs, we have many advantages:  


• Dark photon gets massive


• Mass gap  is generated by dark Higgs mechanism


• We can have DM pair annihilation in P-wave involving 
dark Higgs in the final states, unlike in other works

δ



Usual Approaches

• The model is not mathematically consistent, since there is no 
conserved current a dark photon can couple to in the massless limit


• The second term with  breaks  explicitly, although softly Δ2 U(1)X

For example, Harigaya, Nagai, Suzuki, arXiv:2006.11938 

Similarly for the fermion 
DM case

This term is 
problematic



Relic Density from 

   

(P-wave annihilation)

XX† → Z′ * → ff̄
For example, Harigaya, Nagai, Suzuki, arXiv:2006.11938 



Scalar XDM ( )  XR & XI

role when mDM < mZ0 , as we shall demonstrate in the following. In order to explain the

XENON1T excess in terms of XDM+eatomic ! DM+efree with a kinetic mixing, both dark

photon and (X)DM mass should be sub-GeV, more specifically ⇠ O(100) MeV, in order to

avoid the stringent bounds on the kinetic mixing parameter. For such a light DM, one has

to consider the DM annihilation should be mainly in p-wave, and not in s-wave, in order to

avoid strong constraints from CMB (see [54, 55] and references therein).

For this purpose it is crucial to have dark Higgs (�), since they can play a key roles in

the p-wave annihilations of DM at freeze-out epoch:

XX†
! Z

0⇤
! Z

0
�,

�� ! ��,

where X and � are complex scalar and Dirac fermion DM, respectively. At freeze-out epoch,

the mass gap is too small (�m ⌧ T ) and we can consider DM as complex scalar or Dirac

fermion. In the present Universe, we have T ⌧ �m and so we have to work in the two

component DM picture for XENON1T electron recoil. It can not be emphasized enough

that these channels would not be possible without dark Higgs �, and it would be di�cult to

make the DM pair annihilation be dominated by the p-wave annihilation.

II. MODELS FOR (EXCITED) DM

A. Scalar DM model

The dark sector has a gauged U(1)X symmetry. There are two scalar particles in the dark

sector X and � with U(1)X charges 1 and 2, respectively. They are neutral under the SM

gauge group. After � gets VEV, h�i = v�/
p
2, the gauge symmetry is spontaneously broken

down to discrete Z2. The Z2-odd X becomes the DM candidate. The model Lagrangian is

in the form [51]

L = LSM �
1

4
X̂µ⌫X̂

µ⌫
�

1

2
sin ✏X̂µ⌫B̂

µ⌫ +Dµ�†Dµ�+DµX†DµX �m2
X
X†X +m2

�
�†�

���

�
�†�

�2
� �X

�
X†X

�2
� ��XX

†X�†�� ��H�
†�H†H � �HXX

†XH†H

�µ
�
X2�† +H.c.

�
, (1)

where X̂µ⌫ (Bµ⌫) is the field strength tensors of U(1)X (U(1)Y ) gauge boson in the interaction

basis.

3

Field

U(1) 
charge

2 1 1

ϕ X χ

We decompose the X as

X =
1
p
2
(XR + iXI), (2)

and H and � as

H =

0

@ 0

1p
2
(vH + hH)

1

A , � =
1
p
2
(v� + h�), (3)

in the unitary gauge.

The dark photon mass is given by

m2
Z0 ' (2gXv�)

2, (4)

where we neglected the corrections from the kinetic mixing, which is second order in ✏

parameter. The masses of XR and XI are obtained to be

m2
R
= m2

X
+

1

2
�HXv

2
H
+

1

2
��Xv

2
�
+

µ
p
2
v�,

m2
I
= m2

X
+

1

2
�HXv

2
H
+

1

2
��Xv

2
�
�

µ
p
2
v�, (5)

and the mass di↵erence, � ⌘ mR �mI ' µv�/
p
2mX . Since the original U(1)X symmetry

is restored by taking µ = 0, small µ does not give rise to fine-tuning problem. The mass

spectrum of the scalar Higgs sector can be calculated by diagonalising the mass-squared

matrix
0

@ 2�Hv2H ��HvHv�

��HvHv� 2��v2�

1

A , (6)

which is obtained in the (hH , h�) basis. We denote the mixing angle to be ↵H and the mass

eigenstates to be (H1, H2), where H1 is the SM Higgs-like state and H2(⌘ �) is mostly dark

Higgs boson. Since we work in the small ↵H in this paper, the VEV of � is approximated

to be, v� ' mH2/
p

2��, while ↵H ' ��Hv�/2�HvH .

The mass eigenstates Zµ and Z 0
µ
of the neutral gauge bosons can be obtained using the

procedure shown in Ref. [56]. In the linear order approximation in ✏ we can write the

covariant derivative as

Dµ ' @µ + ieQemAµ + i
⇣
gZ(T

3
�Qems

2
W
) + ✏gXQXsW

⌘
Zµ + i

⇣
gXQX � ✏eQemcW

⌘
Z 0

µ
, (7)

4

the kinetic mixing term given in (1) we get the dark-gauge interactions with the DM and

the electron [56]

L � gXZ
0µ(XR@µXI �XI@µXR)� ✏ ecWZ 0

µ
e�µe, (12)

where cW is the cosine of the Weinberg angle, Z and Z 0 are mass eigenstates, and we

assumed that ✏(⇠ 10�4) is small. The cross section for the inelastic scattering XRe ! XIe

for mX � me and small momentum transfer is given by

�e =
16⇡✏2↵em↵Xc2Wm2

e

m4
Z0

, (13)

where ↵em ' 1/137 is the fine structure constant and ↵X ⌘ g2
X
/4⇡. This can be used to

predict the di↵erential cross section of the dark matter scattering o↵ the xenon atom for the

DM velocity v, which reads

d�v

dER

=
�e

2mev

Z
q+

q�

a20qdqK(ER, q), (14)

where ER is the recoil energy, q is the momentum transfer, K(ER, q) is the atomic excitation

factor. From energy conservation we obtain the relation [9],

ER = � + vq cos ✓ �
q2

2mR

, (15)

where ✓ is the angle between the incoming XR and the momentum transfer q = p0
e
� p

e
.

The integration limits are [9],

q± ' mRv ±
q

m2
R
v2 � 2mR(ER � �), for ER � �,

q± ' ±mRv +
q

m2
R
v2 � 2mR(ER � �), for ER  �. (16)

Then we can obtain the di↵erential event rate for the inelastic scattering of DM with electrons

in the xenon atoms given by

dR

dER

= nTnR

d�v

dER

, (17)

where nT ⇡ 4⇥1027/ton is the number density of xenon atoms and nR ⇡ 0.15GeV/mR/cm3

is the number density of the heavier DM component XR, assuming nR = nI . Integrating

over ER, we get the event rate

R ⇡ 3.69⇥ 109 ✏2 g2
X

✓
1GeV

mR

◆✓
1GeV

mZ0

◆4

/ton/year. (18)
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Since XR is a dark matter component in our model with the same abundance with XI , its

lifetime should be much longer than the age of the universe. It can decay via XR ! XI���

as shown in [9]. Its decay into three-body final state, XR ! XI⌫⌫, is also possible in our

model. The relevant interactions are

L � ✏gXsWZµ(XR@µXI �XI@µXR)�
gZ
2
Zµ⌫L�

µ⌫L. (19)

The decay width is given by

� '
✏2↵Xs2W
5
p
2⇡2

GF �5

m2
Z

' 1.9⇥ 10�49 GeV
⇣ ✏

10�4

⌘2 ⇣ ↵X

0.078

⌘✓
�

2 keV

◆5

. (20)

Although this channel is much more e↵ective than XR ! XI��� considered in [9], the

lifetime of XR is still much longer than the age of the universe.

In the right panel of Fig. 1 , we show the allowed region in the (mZ0 , ✏) plane where we can

explain the XENON1T excess with correct thermal relic density of DM within the standard

freeze-out scenario. For illustration, we chose the DM mass to be mR = 0.1 GeV, and varied

the dark Higgs mass m� = 20, 40, 60, 80 MeV denoted with di↵erent colors. The sharp drops

on the right allowed region is from the kinematic boundary, mZ0+m� < 2mR. It is nontrivial

that we could explain the XENON1T excess with inelastic DM models with spontaneously

broken U(1)X ! Z2 gauge symmetry. In particular it is important to include light dark

Higgs for this explanation. It would be straightfoward to scan over all the parameters to get

the whole allowed region.

B. Fermion DM model

We start from a dark U(1) model, with a Dirac fermion dark matter (DM) � appointed

with a nonzero dark U(1) charge Q� and dark photon. We also introduce a complex dark

Higgs field �, which takes a nonzero vacuum expectation value, generating nonzero mass for

the dark photon. We shall consider a special case where � breaks the dark U(1) symmetry

into a dark Z2 symmetry with a judicious choice of its dark charge Q�.

Then the gauge invariant and renormalizable Lagrangian for this system is given by

L = �
1

4
X̂µ⌫X̂µ⌫ �

1

2
sin ✏X̂µ⌫B

µ⌫ + �
�
i /D �m�

�
�+Dµ�

†Dµ� (21)

� µ2�†�� ��|�|
4
�

1
p
2

⇣
y�†�C�+ h.c.

⌘
� ��H�

†�H†H
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U(1) → Z2 by vϕ ≠ 0 : X → − X
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FIG. 1: (left) Feynman diagrams relevant for thermal relic density of DM: XX†
! Z 0� and (right)

the region in the (mZ0 , ✏) plane that is allowed for the XENON1T electron recoil excess and the

correct thermal relic density for scalar DM case for � = 2 keV : (a) mDM = 0.1 GeV. Di↵erent

colors represents m� = 20, 40, 60, 80 MeV. The gray areas are excluded by various experiments,

from BaBar [61], E774 [62], E141 [63], Orasay [64], and E137 [65], assuming Z 0
! XRXI is

kinematically forbidden.

where X̂µ⌫ = @µX̂⌫ � @⌫X̂µ. Dµ = @µ + igXQXX̂µ is the covariant derivative, where gX is

the dark coupling constant, and QX denotes the dark charge of � and �: Q� = 2, Q� =

1, respectively. Then U(1)X dark gauge symmetry is spontaneously broken into its Z2

subgroup, and the Dirac DM � is split into two Majorana DM �R and �I defined as

� =
1
p
2
(�R + i�I), (22)

�c =
1
p
2
(�R � i�I), (23)

�c

R
= �R, �c

I
= �I , (24)

with

mR,I = m� ± yv� = m� ±
1

2
�. (25)

We assume y > 0 so that � ⌘ mR � mI = 2yv� > 0. Then the above Lagrangian is

written as

L =
1

2

X

i=R,I

�i

�
i/@ �mi

�
�i � i

gX
2
(Z 0

µ
+ ✏sWZµ) (�R�

µ�I � �I�
µ�R) (26)

�
1

2
yh� (�R�R � �I�I) , (27)

where h� is neutral CP-even component of � as defined in (3).
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P-wave annihilation x-sections

Scalar DM : XX† → Z′ * → Z′ ϕ



Fermion XDM ( )χR & χI

Since XR is a dark matter component in our model with the same abundance with XI , its

lifetime should be much longer than the age of the universe. It can decay via XR ! XI���

as shown in [9]. Its decay into three-body final state, XR ! XI⌫⌫, is also possible in our

model. The relevant interactions are

L � ✏gXsWZµ(XR@µXI �XI@µXR)�
gZ
2
Zµ⌫L�

µ⌫L. (19)

The decay width is given by

� '
✏2↵Xs2W
5
p
2⇡2

GF �5

m2
Z

' 1.9⇥ 10�49 GeV
⇣ ✏

10�4

⌘2 ⇣ ↵X

0.078

⌘✓
�

2 keV

◆5

. (20)

Although this channel is much more e↵ective than XR ! XI��� considered in [9], the

lifetime of XR is still much longer than the age of the universe.

In the right panel of Fig. 1 , we show the allowed region in the (mZ0 , ✏) plane where we can

explain the XENON1T excess with correct thermal relic density of DM within the standard

freeze-out scenario. For illustration, we chose the DM mass to be mR = 0.1 GeV, and varied

the dark Higgs mass m� = 20, 40, 60, 80 MeV denoted with di↵erent colors. The sharp drops

on the right allowed region is from the kinematic boundary, mZ0+m� < 2mR. It is nontrivial

that we could explain the XENON1T excess with inelastic DM models with spontaneously

broken U(1)X ! Z2 gauge symmetry. In particular it is important to include light dark

Higgs for this explanation. It would be straightfoward to scan over all the parameters to get

the whole allowed region.

B. Fermion DM model

We start from a dark U(1) model, with a Dirac fermion dark matter (DM) � appointed

with a nonzero dark U(1) charge Q� and dark photon. We also introduce a complex dark

Higgs field �, which takes a nonzero vacuum expectation value, generating nonzero mass for

the dark photon. We shall consider a special case where � breaks the dark U(1) symmetry
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L = �
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FIG. 1: (left) Feynman diagrams relevant for thermal relic density of DM: XX†
! Z 0� and (right)

the region in the (mZ0 , ✏) plane that is allowed for the XENON1T electron recoil excess and the

correct thermal relic density for scalar DM case for � = 2 keV : (a) mDM = 0.1 GeV. Di↵erent

colors represents m� = 20, 40, 60, 80 MeV. The gray areas are excluded by various experiments,

from BaBar [61], E774 [62], E141 [63], Orasay [64], and E137 [65], assuming Z 0
! XRXI is

kinematically forbidden.

where X̂µ⌫ = @µX̂⌫ � @⌫X̂µ. Dµ = @µ + igXQXX̂µ is the covariant derivative, where gX is

the dark coupling constant, and QX denotes the dark charge of � and �: Q� = 2, Q� =

1, respectively. Then U(1)X dark gauge symmetry is spontaneously broken into its Z2

subgroup, and the Dirac DM � is split into two Majorana DM �R and �I defined as

� =
1
p
2
(�R + i�I), (22)

�c =
1
p
2
(�R � i�I), (23)

�c

R
= �R, �c

I
= �I , (24)

with

mR,I = m� ± yv� = m� ±
1

2
�. (25)

We assume y > 0 so that � ⌘ mR � mI = 2yv� > 0. Then the above Lagrangian is

written as

L =
1

2

X

i=R,I

�i

�
i/@ �mi

�
�i � i

gX
2
(Z 0

µ
+ ✏sWZµ) (�R�

µ�I � �I�
µ�R) (26)

�
1

2
yh� (�R�R � �I�I) , (27)

where h� is neutral CP-even component of � as defined in (3).
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FIG. 2: (top) Feyman diagrams for ��̄ ! ��. (bottom) the region in the (mZ0 , ✏) plane that is

allowed for the XENON1T electron recoil excess and the correct thermal relic density for fermion

DM case for � = 2 keV and the fermion DM mass to be mR = 10 MeV. Di↵erent colors represents

m� = 2, 4, 6, 8 MeV. The gray areas are excluded by various experiments, assuming Z 0
! �R�I

is kinematically allowed, and the experimental constraint is weaker in the ✏ we are interested in,

compared with the scalar DM case in Fig. 1 (right). We also show the current experimental bounds

by NA64 [66].

Note that the kinetic mixing ✏ ⇠ 10�7±1, which is much smaller than the scalar DM case.

We have checked if the gauge coupling gX and the quartic coupling of dark Higgs (��)

remain in the perturbative regime. The solid (dashed) lines denote the region where gX

satisfy (violate) perturbativity condition, depending ↵X < 1 or not. Within this allowed

region, �� remain perturbative. Again it is nontrivial that we could explain the XENON1T

excess with inelastic fermion DM models with spontaneously broken U(1)X ! Z2 gauge

symmetry. In particular it is important to include light dark Higgs for this explanation as

in the scalar DM case.
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P-wave annihilation x-sections

Scalar DM : XX† → Z′ * → Z′ ϕ

Fermion DM : χχ → ϕϕ

Crucial to include “dark Higgs” to have 
DM pair annihilation in P-wave



 -charged DM 

:  only vs. 

U(1)Lμ−Lτ

Z′ Z′ + ϕ
arXiv:2204.04889 [hep-ph] 

With Seungwon Baek, Jongkuk Kim



SM+  gauge symU(1)Lμ−Lτ

• He, Josh, Lew, Volkas, PRD 43, 22; PRD 44, 2118 (1991) 


• One of the anomaly free gauge groups without extension 
of fermion contents


• The simplest anomaly free U(1) extensions that couple to 
the SM fermions directly


• Can affect the muon g-2, PAMELA  excess, (and B 
anomalies with extra fermions : Not covered in this talk) 

e+



Muon g-2

2

Models of Muon Anomalies

R(K(*)), b → sμμ
+(g − 2)μ

• Focus: 

The Muon g-2 Collaboration, 2104.03281

Excellent example for graduate students  
• Relativistic E&M (spinning particle in EM fields) 
• Special relativity (time dilation) 
• (V-A) structure of charged weak interaction



Muon (g-2) in  ModelU(1)μ−τ
Baek, Deshpande, He, Ko : hep-ph/0104141 

Baek, Ko : arXiv:0811.1646 [hep-ph]The ∆aµ in (2.4) can explain this discrepancy, if α
′

∼ 2 × 10−8. However, this coupling

is too small for the thermal relic density to satisfy the WMAP data. The resulting relic

density is too high by a several orders of magnitude. Also the collider signatures will be

highly suppressed. Therefore we do not consider this possibility any further, and consider

the massive Z
′

case (broken phase) in the following.

In the broken phase, it is straightforward to calculate the Z
′

contribution to ∆aµ. We

use the result obtained in Ref. [18]:

∆aµ =
α

′

2π

∫ 1

0
dx

2m2
µx

2(1− x)

x2m2
µ + (1− x)M2

Z′

≈
α

′

2π

2m2
µ

3M2
Z′

(2.6)

The second approximate formula holds for mµ % MZ′ . In Fig. 1, shown in the blue band

is the allowed region of MZ′ and α
′

which is consistent with the BNL data on the muon

(g − 2)µ within 3 σ range. There is an ample parameter space where the discrepancy

between the BNL data and the SM prediction can be explained within the model.

3. Dark matter : Relic density and (In)direct signatures

3.1 Thermal relic density

In our model, the Dirac fermion ψD and its antiparticle ψD are CDM candidates. The

thermal relic density of ψD and ψD is achieved through the DM annihilations into muon,

tau leptons or their neutrinos through s-channel Z ′-exchange. They can also annihilate

into the real Z ′ pairs when kinematically allowed.

ψDψ̄D → Z
′∗ → l+l−, νlν̄l (l = µ, τ),

ψDψ̄D → Z
′

Z
′

. (3.1)

We modified the micrOMEGAs [24] in order to calculate the relic density of the U(1)Lµ−Lτ

charged ψD CDM. It is easy to fulfil the WMAP data on ΩCDM for a wide range of the DM

mass, as shown in Fig. 1. The black curves represent constant contours of Ωh2 = 0.106

in the (MZ′ ,α)-plane for MψD
= 10, 100, 1000 GeV (from below). We can clearly see the

s−channel resonance effect of Z
′

→ ψDψ̄D near MZ′ ≈ 2MψD
. The blue band is the

allowed region by the (g − 2)µ at the 3 σ level. We also show the contours for the Z ′

production cross sections at various colliders: B factories (1fb, red dotted), Tevatron (10fb,

green dot-dashed), LEP(10fb, pink dotted), LEP2(10fb, orange dotted) and LHC (1 fb,

10 fb and 100 fb in blue dashed curves). The cross sections in the parentheses except the

LHC case roughly correspond to the upper bounds that each machine gives. Therefore the

left-hand sides of each curve is ruled out by the current collider data. Note that a larger

parameter space can be accessed by the LHC. These issues and other collider siugnatures

are covered in the next section.

The current experimental mass bound of SM-like Z ′ is 923 GeV from the search for

a narrow resonance in electron-positron events [25]. We emphasize, however, that in our

model the Z ′ boson as light as ∼ 10 GeV is still allowed by present data from various
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Figure 5: Thick solid red curves (thick dashed blue curves) are predictions of the neutrino-induced
up-going muon flux from the annihilation of dark matter with masses 3, 2, 1.5, 1 TeV from above,
for the NFW (isothermal) dark matter profile. The thin solid line is the superkamiokande bound.

The lower DMs are allowed with the NFW profile. However, if the isothermal profile is

used, all the DM are allowed because this profile is flat near the Galactic center and the

neutrinos are not much produced.

Fig. 6 shows the predictions for the gamma-ray flux from the Galactic center (0.1◦

region from the GC) [36] and the Galactic Center ridge (|b| < 0.3◦, |l| < 0.8◦) [37]. We can

see that the constraints on the DM annihilation for the NFW profile become more severe

than in the neutrino case. That is the NFW predicts too much gamma-ray, exceeding

even the current data for the massive DM. However, if more flat profile like the isothermal

profile is used, the predictions are below the current data.

4. Collider Signatures

New particles in this model are Z
′

, s (the modulus of φ) and ψD. Z
′

couples only to muon,

tau or their neutrinos, or the U(1)Lµ−Lτ charged dark matter. The new scalar s can mix

with the SM Higgs boson hSM, affecting the standard Higgs phenomenology.

Let us discuss first the decay of Z
′

gauge boson and its productions at various colliders.

In the broken phase with MZ′ != 0, Z
′

can decay through the following channels:

Z
′

→ µ+µ−, τ+τ−, ναν̄α (with α = µ or τ), ψDψD ,

if they are kinematically allowed. Since these decays occur through U(1)Lµ−Lτ gauge

interaction, the branching ratios are completely fixed once particle masses are specified. In
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red curves (thick dashed blue curves) are predictions of the gamma ray flux from the annihilation
of dark matter with masses 3, 2, 1.5, 1 TeV from above, for the NFW (isothermal) dark matter
profile.

particular,

Γ(Z
′

→ µ+µ−) = Γ(Z
′

→ τ+τ−) = 2Γ(Z
′

→ νµν̄µ) = 2Γ(Z
′

→ ντ ν̄τ ) = Γ(Z
′

→ ψDψ̄D)

if MZ′ " mµ,mτ ,MDM. The total decay rate of Z
′

is approximately given by

Γtot(Z
′

) =
α

′

3
MZ′ × 4(3) ≈

4(or 3)

3
GeV

(

α
′

10−2

)

(

MZ′

100GeV

)

if the channel Z
′

→ ψDψ̄D is open (or closed). Therefore Z
′

will decay immediately inside

the detector for a reasonable range of α
′

and MZ′ .

Z ′ can be produced at a muon collider as resonances in the µµ or ττ channel [18] via

µ+µ− → Z
′∗ → µ+µ−(τ+τ−).

The LHC can also observe the Z ′ which gives the right amount of the relic density as can

be seen in Fig. 1. Its signal is the excess of multi-muon (tau) events without the excess of

multi-e events.

The dominant mechanisms of Z
′

productions at available colliders are

qq̄ (or e+e−) → γ∗, Z∗ → µ+µ−Z
′

, τ+τ−Z
′

→ Z∗ → νµν̄µZ
′

, ντ ν̄τZ
′

There are also vector boson fusion processes such as

W+W− → νµν̄µZ
′

(or µ+µ−Z
′

), etc.

Z0Z0 → νµν̄µZ
′

(or µ+µ−Z
′

), etc.

W+Z0 → νµµ̄Z
′

(or µ+µ−Z
′

), etc.

and the channels with µ → τ . We will ignore the vector boson fusion channels in this paper,

since their contributions are expected to be subdominant to the qq̄ or e+e− annihilations.
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Z ′ can be produced at a muon collider as resonances in the µµ or ττ channel [18] via

µ+µ− → Z
′∗ → µ+µ−(τ+τ−).

The LHC can also observe the Z ′ which gives the right amount of the relic density as can

be seen in Fig. 1. Its signal is the excess of multi-muon (tau) events without the excess of

multi-e events.

The dominant mechanisms of Z
′

productions at available colliders are

qq̄ (or e+e−) → γ∗, Z∗ → µ+µ−Z
′

, τ+τ−Z
′

→ Z∗ → νµν̄µZ
′

, ντ ν̄τZ
′

There are also vector boson fusion processes such as

W+W− → νµν̄µZ
′

(or µ+µ−Z
′

), etc.

Z0Z0 → νµν̄µZ
′

(or µ+µ−Z
′

), etc.

W+Z0 → νµµ̄Z
′

(or µ+µ−Z
′

), etc.

and the channels with µ → τ . We will ignore the vector boson fusion channels in this paper,

since their contributions are expected to be subdominant to the qq̄ or e+e− annihilations.
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I. INTRODUCTION

Recently experiment from BNL [1] has measured the muon anomalous magnetic dipole
moment with aexpµ = (g−2)/2 = (11659202±14±6)×10−10. This value differs the Standard
Model (SM) prediction in Ref. [2,3] by 2.6σ,

∆aµ = aexpµ − aSMµ = (42.6± 16.5)× 10−10. (1)

At present the experimental errors are still too large to claim a real deviation. There are
also uncertainties from theoretical calculations, in particular contributions from hadrons at
loop levels are not well determined [4]. Improvements from both experimental measurements
and theoretical calculations are needed. If this difference is true, it is an indication of new
physics beyond the SM. Many authors have discussed possible implications for new physics
beyond the SM [5]. Some interesting constraints have been obtained. In this paper we study
the implications of a large ∆aµ on models with gauged Lµ − Lτ . Here Li is the i lepton
number.

Lµ − Lτ gauge models are some of the simplest models beyond the SM which contain
an additional Z ′ boson. Without enlarging the fermion contents in the SM, there are only
three types of U(1) symmetries which can be gauged from anomaly cancellation requirement.
These symmetries are

i) U(1)Le−Lµ; ii) U(1)Le−Lτ ; iii) U(1)Lµ−Lτ . (2)

Some experimental consequences of these models have been studied in Refs. [6,7]. There
are stringent constraints on the parameters of models based on i) and ii) because the Z ′

couple to electrons. It is difficult to generate a large enough value for ∆aµ in eq. (1). On
the other hand, for models based on iii) there are limited data available to constrain relevant
parameters. It is possible to have a large ∆aµ.

In U(1)Lµ−Lτ models, only the second and third generations of leptons are affected,
whereas all other SM particles are not. The transformation properties of leptons under the
SU(3)C × SU(2)L × U(1)Y SM gauge group and the U(1)Lµ−Lτ gauge group are

Le
L : (1, 2,−1)(0) eR : (1, 1,−2)(0)

Lµ
L : (1, 2,−1)(2a) µR : (1, 1,−2)(2a)

Lτ
L : (1, 2,−1)(−2a) µR : (1, 1,−2)(−2a).

(3)

where the numbers in the first and the second brackets indicate the transformation properties
under the SM gauge group and the U(1)Lµ−Lτ group, respectively. The numbers in the second
bracket will be indicated as Y ′. The covariant derivative in terms of the photon field Aµ,
the Zµ field, and the Z ′

µ field is given as

Dµ = ∂µ + ieQAµ + i
e

sW cW
(I3 − s2WQ)Zµ + i

e

cW

Y ′

2
Z ′

µ, (4)

where sW = sin θW , cW = cos θW . We have normalized the Z ′ coupling to the U(1)Y charge
coupling e/cW .

The U(1)Lµ−Lτ may be an exact symmetry or broken at some scale which may or may not
be related to the electroweak breaking scale. One can classify three types of models based on

2
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There are already many papers available studying the implications of the PAMELA data

in different models and/or context [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,

24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39].

The simplest model for the leptophilic (or hadrophobic) gauge interaction is to gauge

the global U(1)Lµ−Lτ symmetry of the standard model (SM), which is anomaly free [40,

41, 42, 43]. Within the SM, there are four global U(1) symmetries which are anomaly free:

Le − Lµ, Lµ − Lτ , Lτ − Le, B − L

One of these can be implemented to a local symmetry without anomaly. The most popu-

lar is the U(1)B−L, which can be easily implemented to grand unified theory. Two other

symmetry involving Le are tightly constrained by low energy and collider data. On the

other hand, the Lµ −Lτ symmetry is not so tightly constrained, and detailed phenomeno-

logical study is not available yet. Only the muon (g−2)µ and the phenomenology at muon

colliders have been discussed [43, 44]. This model can be extended by introducing three

right-handed neutrinos and generate the neutrino masses and mixings via seesaw mecha-

nism [41]. Also U(1)Lµ−Lτ can be embedded into a horizontal SU(2)H [41] acting on three

lepton generations. This may be related with some grand unification.

In this paper, we extend the existing U(1)Lµ−Lτ model by including a complex scalar

φ and a spin-1/2 Dirac fermion ψD, with U(1)Lµ−Lτ charge 1. There is no anomaly

regenerated in this case, since we introduced a vectorlike fermion. The complex scalar φ

gives a mass to the extra Z
′

by ordinary Higgs mechanism. And the Dirac fermion ψD

plays a role of the dark matter, whose pair annihilation into µ or τ explains the excess of

e+ and no p̄ excess as reported by PAMELA [2, 3]. Then we study the phenomenology of

the U(1)Lµ−Lτ model with Dirac fermion dark matter in detail.

In Sec. 2, we define the model and discuss the muon (g − 2)µ in our model. In Sec. 3,

we calculate the thermal relic density of the CDM ψD, and identify the parameter region

that is consistent with the data from cosmological observations. In Sec. 4, we study the

collider signatures of the model at various colliders (Tevatron, B factories, LEP(2), the Z0

pole and LHC), including production and decay of Z
′

and Higgs phenomenology. Then our

results are summarized in Sec. 5. We note that this model was discussed briefly in Ref. [4]

in the context of the muon (g − 2)µ and the relic density. In this paper, we present the

quantitative analysis on these subjects in detail, as well as study the collider signatures at

colliders.

2. Model and the muon (g − 2)µ

The new gauge symmetry U(1)Lµ−Lτ affects only the 2nd and the 3rd generations of leptons.

We assume li=2(3)
L , li=2(3)

R (i: the generation index) carry Y
′

= 1(−1). We further introduce

a complex scalar φ with (1, 1, 0)(1) and a Dirac fermion ψD with (1, 1, 0)(1), where the first

and the second parentheses show the SM and the U(1)Lµ−Lτ quantum numbers of φ and

ψD, respectively. The covariant derivative is defined as

Dµ = ∂µ + ieQAµ + i
e

sW cS
(I3 − s2

W Q)Zµ + ig
′

Y
′

Z
′

µ (2.1)

– 2 –

The model lagrangian is given by 1

LModel = LSM + LNew (2.2)

LNew = −
1

4
Z

′

µνZ
′µν + ψDiD · γψD − MψD

ψDψD + Dµφ∗Dµφ (2.3)

−λφ(φ∗φ)2 − µ2
φφ∗φ − λHφφ∗φH†H.

In general, we have to include renormalizable kinetic mixing term for U(1)Y and U(1)Lµ−Lτ

gauge fields, which will lead to the mixing between Z and Z
′

. Then the dark matter pair

can annihilate into quarks through Z − Z
′

mixing in our case, and the p̄ flux will be

somewhat enhanced, depending on the size the Z − Z
′

mixing. However, electroweak

precision data and collider experiments give a strong constraint on the possible mixing

parameter, since the mixing induces the Z
′

coupling to the quark sector. Furthermore, if

one assumes that the new U(1)Lµ−Lτ is embedded into a nonabelian gauge group such as

SU(2)H or SU(3)H , then the kinetic mixing term is forbidden by this nonabelian gauge

symmetry [41]. In this paper, we will assume that the kinetic mixing is zero to simplify the

discussion and to maximize the contrast between the positron and the antiproton fluxes

from the dark matter annihilations.

In this model, there are two phases for the extra U(1)Lµ−Lτ gauge symmetry depending

on the sign of µ2
φ :

• Unbroken phase: exact with 〈φ〉 = 0, µ2
φ > 0 and MZ

′ = 0,

• Spontaneously broken phase: by µ2
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FIG. 1. Feynman diagram which generates a non-zero ∆aµ
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colliders. It is mainly because the production cross section at the Tevatron is suppressed

since Z ′ should be produced from the couplings to the 2nd and 3rd family leptons.

In the range 100 GeV ! MψD
! 10 TeV, α " 10−3 and 100 GeV ! MZ′ ! 1 TeV, the

relic density and ∆aµ constraints can be easily satisfied simultaneously while escaping the

current collider searches. We note that if the (g−2)µ constraint is not considered seriously

or if we assume there are other sector which saturate the (g − 2)µ upper bound, then all

the region in the right-hand side of the blue band is also allowed.
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Figure 1: The relic density of CDM (black), the muon (g − 2)µ (blue band), the production cross
section at B factories (1 fb, red dotted), Tevatron (10 fb, green dotdashed), LEP (10 fb, pink
dotted), LEP2 (10 fb, orange dotted), LHC (1 fb, 10 fb, 100 fb, blue dashed) and the Z0 decay
width (2.5 ×10−6 GeV, brown dotted) in the (log10 α

′

, log10 MZ
′ ) plane. For the relic density, we

show three contours with Ωh2 = 0.106 for MψD
= 10 GeV, 100 GeV and 1000 GeV. The blue band

is allowed by ∆aµ = (302± 88)× 10−11 within 3 σ.

3.2 Direct detection rates

Since we ignored the kinetic mixing between the new U(1) gauge boson and the SM U(1)Y
gauge boson Bµ, there would be no signal in direct DM detection experiments in this

model. The messenger Z
′

does not interact with electron, quarks or gluons inside nucleus.

Also there would be no excess in the antiproton flux in cosmic rays in this case, while one

could have an excess in the positron signal in a manner consistent with the PAMELA/Fermi

data. However there would be a small kinetic mixing between two U(1) gauge field strength

tensor. If we assume a small kinetic mixing θ(∼ 10−3 = 10−2) between the Z
′

µ and photon,

– 5 –

Neutrino trident puts strong  
constraints on this model
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�

FIG. 1. The leading order contribution of the Z0 to neutrino
trident production (another diagram with µ+ and µ� reversed
is not shown). Other contributions at the same order in g0

are further suppressed by the Fermi scale.

is not directly relevant for our work, and thus we suppress
any additional pieces in (1) related to the corresponding
Higgs sector.

This model contributes to the neutrino trident pro-
duction at lowest order through the diagram shown in
Fig. 1. This contribution interferes with the SM contri-
bution coming from W±/Z exchange. In order to gain
insight into the di↵erent contributions, in what follows
we provide analytical results using the equivalent pho-
ton approximation (EPA) [14, 15]. Under the EPA, the
full cross-section of a muon-neutrino scattering with a
nucleus N is related to the cross-section of the neutrino
scattering with a real photon through,

�(⌫µN ! ⌫µNµ+µ�) =

Z
�(⌫µ� ! ⌫µµ

+µ�) P (s, q2) .(2)

Here, P (q2, s) is the probability of creating a virtual pho-
ton in the field of the nucleus N with virtuality q2 which
results in the energy being

p
s in the center-of-mass frame

of the incoming neutrino and a real photon. This proba-
bility is given by [16]

P (q2, s) =
Z2e2

4⇡2

ds

s

dq2

q2
F 2(q2) , (3)

where Ze and F (q2) are the charge and the electromag-
netic form-factor of the nucleus, respectively. The in-
tegral over s is done from 4m2 to 2E⌫q, with the muon
mass m and the neutrino energy E⌫ . The q integral has a
lower limit of 4m2/(2E⌫) and the upper limit is regulated
by the exponential form-factor. We thus concentrate on
the computation of the cross-section �(⌫µ� ! ⌫µµ+µ�).
Computations of the full ⌫µN ! ⌫µNµ+µ� process have
been performed in [17–22] in the context of the V-A the-
ory and of the SM.

We begin with the di↵erential cross-section for the
⌫� ! ⌫µ+µ� sub-process associated with a pure V-A
charged interaction between neutrinos and muons. It is
given symbolically by

d� =
1

2s
dPS3

0

@1

2

X

pol

|M1M2|
2

1

A G2

F
e2

2
, (4)

where GF =
p

2g2/(8M2

W
) is the Fermi constant. The

3-body phase-space (with correction of a typo in the cor-
responding expression of ref. [23]) is given by

dPS3 =
1

2

1

(4⇡)2
dt

2s

d`

2⇡
v
d⌦0

4⇡
, (5)

where ` = (p+ + p�)2 is the square of the invariant
mass of the µ+µ� pair, ⌦0 is the solid angle with re-
spect to the photon four-vector in the µ+µ� rest-frame,
v =

p
1 � 4m2/` is the velocity of each muon in that

frame, and t ⌘ 2k · q. M1 and M2 in (4) are the neutrino
and the muon-pair blocks in the amplitude, that form
the total amplitude according to M = GFep

2
M1M2. The

factor of 1/2 in (4) originates from the average over the
incoming photon polarizations.

Using M1,2 explicitly, and summing over spins and po-
larizations, we get (in agreement with result of ref. [16])

1

2

X

pol

|M1M2|
2

⌘ 512 |MV�A|
2

' 512 ⇥

 
(6)

(k1 · p+)(q · k2)(q · p�)

A2
+

(k2 · p�)(q · k1)(q · p+)

B2

+
2(k1 · p+)(k2 · p�)(p+ · p�)

AB
�

(k2 · p�)(p+ · p�)(q · k1)

AB

�
(k1 · p+)(p+ · p�)(q · k2)

AB
�

(k1 · p+)(k2 · p�)(q · p�)

AB

+
(k1 · p+)(k2 · p+)(q · p�)

AB
+

(k1 · p�)(k2 · p�)(q · p+)

AB

�
(k1 · p+)(k2 · p�)(q · p+)

AB

!
,

where A = (p� � q)2 � m2 and B = (q � p+)2 � m2.
The result for the full SM contribution together with the
Z0 vector-boson exchange can be obtained from the V-A
matrix-element contribution, if we neglect terms propor-
tional to the muon mass. The full square of the matrix-
element is defined as in Eq. (6) but with,

1

2

X

pol

|M1M2|
2 = 512 |MV�A|

2
⇥

1

2

 
C2

V
+ C2

A
(7)

�2CVC
(Z

0
)

V

m2

Z0

k2 � m2

Z0
+

✓
C(Z

0
)

V

m2

Z0

k2 � m2

Z0

◆2
!

.

Here, k is the momentum of the exchanged Z0 and the SM
coe�cients of the vector and axial-vector currents in the
interaction of muon-neutrinos with muons are CV = 1

2
+

2 sin2 ✓W , CA = 1

2
, with ✓W being the weak mixing angle.

The second line in Eq. (7) features the Z0 contribution
with the vector-current coe�cient defined as,

C(Z
0
)

V
= 4

M2

W

m2

Z0

g02

g2
=

v2
SM

v2
Z0

, (8)

where vSM = 246 GeV is the SM Higgs vacuum expecta-
tion value and v

Z0 = mZ0/g0.

3

Next we consider the phase-space integration. The to-
tal cross-section is obtained by integrating over the entire
solid angle ⌦0, ` < t < s, and 4m2 < ` < s. The inte-
gration over phase-space is best done first over the solid
angle, then over t and ` (see also ref. [23]). Keeping only
leading log terms in the muon mass we find the following
expression for the inclusive SM cross-section,

�(SM)
'

1

2

�
C2

V
+ C2

A

� 2G2

F
↵ s

9⇡2

✓
log

⇣ s

m2

⌘
�

19

6

◆
. (9)

The destructive interference between the charged and
neutral vector-boson contributions leads to a reduction
of about 40% of the SM cross-section compared to the
pure V-A theory. Our results corrects a missing factor of
2 in the corresponding expression in ref. [16].

In general we can write

�(SM+Z
0
) = �(SM) + �(inter) + �(Z

0
) , (10)

where the second term is the interference between the
SM and the Z0 contributions. In the heavy mass limit,
mZ0 �

p
s this can be expressed concisely as [13]

�(SM+Z
0
)

�(SM)
'

1 +
⇣
1 + 4 sin2 ✓W + 2v2

SM
/v2

Z0

⌘2

1 +
�
1 + 4 sin2 ✓W

�2 . (11)

This expression also holds for the di↵erential cross-
section in this limit, up to muon mass corrections.

In the limit of light Z0, mZ0 ⌧
p
s the expression is

more complex. In the leading log approximation, the
interference term is given by

�(inter)
'

GF
p

2

g02CV↵

3⇡2
log2

⇣ s

m2

⌘
. (12)

The Z0 contribution alone, for m ⌧ mZ0 ⌧
p
s, is

�(Z
0
)
'

1

m2

Z0

g04↵

6⇡2
log

✓
m2

Z0

m2

◆
, (13)

while for mZ0 ⌧ m ⌧
p
s it is

�(Z
0
)
'

1

m2

7g04↵

72⇡2
log

✓
m2

m2

Z0

◆
. (14)

As can be expected, at high mZ0 the Z0 contribution is ad-
ditive with respect to the SM one (as shown in Eq. (11))
and decouples as m�2

Z0 . For light Z0, on the other hand,
the cross-section is only log sensitive to mZ0 and the cen-
ter of mass energy of the event.

To get the total ⌫µN ! ⌫µNµ+µ� cross-section, the
real-photon contribution can be easily integrated against
the Weizsäcker-Williams probability distribution func-
tion, Eq. (2), in 4m2 < s < 2E⌫q and 4m2/(2E⌫) <
q < 1, with the q integral regulated by the form fac-
tor . Using a simple exponential form factor, we find
good agreement between our results from the EPA and
a direct numerical calculation of the full process follow-
ing [19]. As a cross check we also reproduced the trident

0.01 0.1 1 10 102 103

10-3
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m Z ' HGeVL

g '

CCFR

Hg-2Lm ±2s

ZÆ4mûLHC

FIG. 2. Parameter space for the Z0 gauge boson. The light-
grey area is excluded at 95% C.L. by the CCFR measurement
of the neutrino trident cross-section. The grey region with
the dotted contour is excluded by measurements of the SM
Z boson decay to four leptons at the LHC [24, 25]. The
purple (dark-grey) region is favored by the discrepancy in the
muon g-2 and corresponds to an additional contribution of
�aµ = (2.9± 1.8)⇥ 10�9 to the theoretical value [26].

cross sections reported in [19, 22], for V-A theory and
for the SM, for various neutrino energies, using both the
EPA and the numerical calculation. For large mZ0 the
relative size of the Z0 contribution is independent of the
neutrino energy. For low mZ0 on the other hand, lower
neutrino energies lead to an enhanced sensitivity to the
Z0. Since the experimental searches employed a variety
of kinematical cuts, in determining the sensitivity to the
{g0,mZ0} parameter space we use full numerical results
for the phase-space integration rather than analytic ap-
proximations and keep the full dependence on the muon
mass.

Neutrino trident production has been searched for in
several neutrino beam experiments. Both the CHARM-
II collaboration [27] (using a neutrino beam with mean
energy of E⌫ ⇠ 20 GeV and a glass target) and the CCFR
collaboration [28] (using a neutrino beam with mean en-
ergy of E⌫ ⇠ 160 GeV and an iron target) reported detec-
tion of trident events and quoted cross-sections in good
agreement with the SM predictions,

�CHARM�II/�SM = 1.58 ± 0.57 , (15)

�CCFR/�SM = 0.82 ± 0.28 . (16)

(Corresponding results from NuTeV can also be used al-
beit with some caution due to a rather large di↵erence
in the background treatment between the initial report
[29] and the publication [30].) These results strongly
constrain the gauged Lµ � L⌧ model, and more gen-
erally any new force that couples to both muons and

Altmannshofer et al. 
arXiv:1406.2332 [hep-ph]

Seungwon Baek, Pyungwon Ko, 
arXiv:0811.1646, JCAP(2009) 

about PAMELA  excesse+

One can evade the neutrino trident constraint, if one introduces  
New fermions and generate muon g-2 at loop level w/ new fermions ! 



Z’ Only
• Consider light Z’ and  for the muon g-2. Then


•  : dominant annihilation channel


•  is too small for  to be effective for 


•  with the s-channel  resonance for the correct relic 
density


• Many recent studies on this case:

gX ∼ (a few) × 10−4

χχ̄ → Z′ * → fSM f̄SM

gX ∼ 10−4 χχ̄ → Z′ Z′ Ωχh2

mZ′ ∼ 2mDM Z′ 

- Asai, Okawa, Tsumura, 2011.03165

- Holst, Hooper, Krnjaic, 2107.09067

- Drees and Zhao, arXiv:2107.14528

- And some earlier papers
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FIG. 1. Regions inside the yellow and Green shaded areas
by the �aµ are allowed at 1� and 2� C.L.. Cyan, black, and
orange regions are excluded by other experimental bounds.
Above green solid line is ruled out by the Borexino experi-
ment. Region inside the orange area can resolve the Hubble
tension. We take two Benchmark Points (BP) (MZ0 , gX) as
BPI =(11.5MeV, 4⇥10�4) and BPII = (100MeV, 8⇥10�4).

following U(1)
X

charge assignments:

QX(µ, ⌫µ, ⌧, ⌫⌧ , X,�,�) = (1, 1,�1,�1, QX , Q�, Q�),
(2)

where X and � are complex scalar and Dirac fermion
DM [81], and � is dark Higgs that breaks U(1)X sponta-
neously with its nonzero VEV: �(x) = 1p

2
(v� + �(x)).

The model Lagrangian and various formulae in the inter-
action and mass bases are given in Appendix A.

In this model, the Z 0 contribution to �aµ at one-loop
is given by [29–31, 41]

�aµ =
↵X

2⇡

Z
1

0

dx
2M2

µ
x2(1� x)

x2M2
µ
+ (1� x)M2

Z0
, (3)

where ↵X = g2
X
/4⇡ with the gX being the U(1)X gauge

coupling constant. Taking gX ⇠ (4� 8)⇥ 10�4, Eq. (3)
can resolve the discrepancy in Eq. (1) in the MZ0 < Mµ

limit. The region for heavier MZ0 is excluded by the neu-
trino trident events in the muon-neutrino scattering with
a nucleus N , ⌫µN ! ⌫µNµ+µ� [45]. Data measured by
CHARM-II [82] and CCFR [83] Collaborations provide a
stringent constraint, which basically excludes the param-
eter region with MZ0 > O(1) GeV [31] [84]. In our study,
we take 2� exclusion limit from the CCFR data. There
are also constraints on (MZ0 , gX) plane from BaBar and
LHC searches for the 4µ channel, Borexino neutrino os-
cillation data, and �Ne↵ , which are summarized in the
Appendix B.

Considering all of the experimental bounds, the re-
maining parameter space for the �aµ in case of light
Z 0 is depicted in Fig. 1. In the following, we shall take
two benchmark points (11.5MeV, 4 ⇥ 10�4) [BPI] and
(MZ0 , gX) = (100MeV, 8⇥ 10�4) [BPII]. Note that the
Hubble tension can be relaxed in case of [BPI] with the
help of light Z 0 contributing to some amount of dark ra-
diation [85, 86]. In the main text, we show the results for
[BPI] only, relegating those for [BPII] in Appendix C.

SCALAR DM (X)

Generic Case: QX/Q� 6= ±1,±1/2,±1/3, etc.

Let us first consider complex scalar DM with a generic
QX/Q�. Then the gauge invariant and renormalizable
scalar DM Lagrangian is given by

LDM = |DµX|
2
�m2

X
|X|

2
� �HX |X|

2

✓
|H|

2
�

v2
H

2

◆
� ��X |X|

2

✓
|�|2 �

v2
�

2

◆
(4)

where DµX = (@µ + igXQXZ 0
µ
)X. Here we assume that

QX = 1, and Q� is chosen in such a way that there
are no gauge invariant operators up to dim-5 that would
make the DM X decay into the SM particles, so that
DM particle would be stable or long-lived enough [87,
88]. This case we call “generic” [89]. The ��H allows
the CP -even neutral components of � and H, � and
h respectively, to mix. The dark(SM)-Higgs-like mass
eigenstate is denoted as H1(2). Using the mixing angle
↵ 2 [�⇡/4,⇡/4], they are written as H1 = � cos↵ �

h sin↵, H2 = � sin↵ + h cos↵. In this work we assume
MH1 < MH2(= 125GeV). See Appendix A for more
details.

In Fig. 2, we depict the Feynman diagrams relevant

to the thermal relic density of complex scalar DM X. In
this case, the important channels for the correct DM relic
abundance turn out to be XX†

! H1H1, Z 0Z 0. Note
that the channels with H1 in the final states [Fig. 2, (Bot-
tom)] or in the s-channel propagator [Fig. 2, (Top) (b)]
would be possible only if the dark Higgs is included. Since
the U(1)X gauge coupling gX is small, the XX†

! Z 0Z 0

with t, u-channel [Fig. 2 (c),(d) or the contact interaction
(a)] would not be e�cient enough to dilute away DM par-
ticles, as noticed in previous works. The large enhance-
ment of the annihilation cross sections is possible either
by producing longitudinally polarized Z 0 [Fig. 2 (Top)
(b)] involving the s-channel dark Higgs boson propaga-
tor [90], or by taking large value of ��X [Fig. 2 (Bot-
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Models with Φ

• Physics depends on  ,  and 


•  need special cares, since there are extra 
gauge invariant op’s that break  after  is 
spontaneously broken by nonzero VEV of  

QΦ QX Qχ

QΦ = 2QX(χ) and 3QX
U(1) → Z2 , Z3 U(1)

Φ

TABLE I: U(1) charge assignments of newly introduced particles and SM particles. The other SM

particles are singlet.

Field Z
0
µ X(�) � Lµ = (⌫Lµ, µL), µR L⌧ = (⌫L⌧ , ⌧L), ⌧R

spin 1 0 (1/2) 0 1/2 1/2

U(1) charge 0 QX(Q�) Q� +1 -1

II. U(1)Lµ�L⌧ MODEL WITH DARK HIGGS

The minimal model set-up is based on an SU(3)
c
⇥ SU(2)

L
⇥ U(1)

Y
⇥ U(1)

Lµ�L⌧
gauge

theory. This U(1)
Lµ�L⌧

gauge theory is anomaly-free without introducing additional chiral

fermions [15, 16]. The model lagrangian is written by

L = LSM �
1

4
Z 0µ⌫Z 0

µ⌫
� gX
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�†��
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◆✓
H†H �

v2

2

◆
+ LDM, (1)

where gX is the U(1)
Lµ�L⌧

gauge coupling, Dµ = @µ + igXQ�Z 0
µ
, � is new scalar.

The phase where U(1) symmetry is spontaneously broken is described by

�(x) =
1
p
2
(v� + �(x)) ,

where v� is vev of dark Higgs (see Table I). The Z 0 boson mass is given by

MZ0 = gX |Q�|v�. (2)

In the neutral two scalar bosons, we can define the mixing matrix O which is defined by
0

@ �

h

1

A = O

0

@ H1

H2

1

A ⌘

0

@ c↵ s↵

�s↵ c↵

1

A

0

@ H1

H2

1

A , (3)

where s↵(c↵) ⌘ sin↵(cos↵), �, h are the interaction eigenstates and Hi (i = 1, 2) are the

mass eigenstates with masses Mi, respectively. The mixing angle ↵ is defined by

tan 2↵ =
2��Hv�vH

2�Hv2H � 2��v2�
, (4)

where vH = 246 GeV is the vev of the SM Higgs.
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We Consider Both Complex Scalar ( ) and Dirac Fermion DM ( )X χ
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FIG. 2. (Top) Feynman diagrams for Complex scalar DM
annihilating to a pair of Z0 bosons. (Bottom) Feynman di-
agrams for Complex scalar DM annihilating to a pair of H1

bosons.

FIG. 3. Top: relic abundance of complex scalar DM as func-
tions of ��X for [BPI] for MX = 1, 10, 100, 1000GeV,
respectively. We assumed Q� = 1.1, MH1 = 1GeV, and
sin↵ = 10�4. Solid (Dashed) lines represent the region where
bounds on DM direct detection are satisfied (ruled out). Bot-
tom: the preferred parameter space in the (MH1 ,��X) plane
for �HX = 0.

tom)]. Light dark Higgs boson H1 also contributes to
DM scattering on nucleons, and the stringent bounds
from various direct detection experiments should be im-
posed. Explicit expressions and detailed discussions on
h�viZ0Z0,H1H1 and �SI are given in AppendixC1.

In the Top of Fig. 3, we show the DM relic abundance
⌦DMh2 as functions of ��X in case of [BPI], for MX = 1

(Red), 10 (Blue),100 (Purple), 1000 (Brown) GeV. The
gray horizontal line corresponds to ⌦DMh2 = 0.12. The
solid (dashed) region is allowed (excluded) by DM direct
detection experiments. In the Bottom of Fig. 3, we show
the contours for ⌦DMh2 = 0.12 in the (MH1 ,��X) plane
for the same choices of MX . Note that there is ample pa-
rameter space for DM mass beyondMZ0 ⇠ 2MX that can
reproduce the correct thermal relic density, which is one
of the main findings of this work. Notice that (Top)(b) of
Fig. 2 contributes dominantly to the total cross section of
XX†

! Z 0Z 0. For BPI, the relic density is determined
mainly by XX†

! H1H1, Z 0Z 0 below MH1 ⇠ 2MX . And
above theH1 resonance ,MH1 > 2MX , the relic density is
mostly determined by XX†

! Z 0Z 0 since XX†
! H1H1

channel is kinematically forbidden. As we can see from
Eqs. (33) and (34), the dominant terms of the annihila-
tion cross sections are not very sensitive to the change
of MH1 for MH1 < 2MX , while h�vreliZ0Z0 / �2

�X
/M4

H1

for MH1 > 2MX . These facts account for the behav-
ioral change in the plot below and above the resonance.
Similar plots for the [BPII] are shown in AppendixC1,
Fig. 7.

Local Z2 scalar DM: (QX , Q�) = (1, 2)

Now let us consider a special case Q� = 2 and QX = 1.
In this case, DM Lagrangian would have one more gauge
invariant operator at renormalizable level:

�LDM = �µ(X2�† +H.c.) (5)

to the generic case, Eq. (4). Then U(1)X will be broken
into its subgroup Z2 (X ! �X) after � gets nonzero
VEV, á la Krauss-Wilczek mechanism [91]. Such local
Z2 scalar DM model with dark photon has been studied
in the context of GC �-ray excess [66, 92] and XENON1T
excess [75], respectively. After the U(1) symmetry is bro-
ken by v� 6= 0, the µ�term is written as

µ
�
X2�† +H.c.

�
=

1
p
2
µv�(X

2

R
�X2

I
)

✓
1 +

�

v�

◆
, (6)

where X = (XR + iXI) /
p
2. This term gives rise to the

mass splitting between XR and XI :

M2

R
= M2

X
+
p
2µv�, M2

I
= M2

X
�
p
2µv�. (7)

Assuming µ > 0, we will take the lighter state XI as
DM. The mass splitting is represented by dimensionless
quantity, � ⌘ (MR �MI)/MI . Notice that dark photon
interaction with DM is o↵-diagonal(or inelastic):

L � gXZ 0µ (XR@µXI �XI@µXR) . (8)

For the benchmark point [BPI], there are two dom-
inant DM annihilation channels: XIXI ! Z 0Z 0, H1H1,
similarly to the generic case discussed in the previous

  and  (dark Higgs)H2 ≃ H125 H1 ≃ ϕ
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agrams for Complex scalar DM annihilating to a pair of H1

bosons.
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FIG. 3. Top: relic abundance of complex scalar DM as func-
tions of ��X for [BPI] for MX = 1, 10, 100, 1000GeV,
respectively. We assumed Q� = 1.1, MH1 = 1GeV, and
sin↵ = 10�4. Solid (Dashed) lines represent the region where
bounds on DM direct detection are satisfied (ruled out). Bot-
tom: the preferred parameter space in the (MH1 ,��X) plane
for �HX = 0.

tom)]. Light dark Higgs boson H1 also contributes to
DM scattering on nucleons, and the stringent bounds
from various direct detection experiments should be im-
posed. Explicit expressions and detailed discussions on
h�viZ0Z0,H1H1 and �SI are given in AppendixC1.

In the Top of Fig. 3, we show the DM relic abundance
⌦DMh2 as functions of ��X in case of [BPI], for MX = 1

(Red), 10 (Blue),100 (Purple), 1000 (Brown) GeV. The
gray horizontal line corresponds to ⌦DMh2 = 0.12. The
solid (dashed) region is allowed (excluded) by DM direct
detection experiments. In the Bottom of Fig. 3, we show
the contours for ⌦DMh2 = 0.12 in the (MH1 ,��X) plane
for the same choices of MX . Note that there is ample pa-
rameter space for DM mass beyondMZ0 ⇠ 2MX that can
reproduce the correct thermal relic density, which is one
of the main findings of this work. Notice that (Top)(b) of
Fig. 2 contributes dominantly to the total cross section of
XX†

! Z 0Z 0. For BPI, the relic density is determined
mainly by XX†

! H1H1, Z 0Z 0 below MH1 ⇠ 2MX . And
above theH1 resonance ,MH1 > 2MX , the relic density is
mostly determined by XX†

! Z 0Z 0 since XX†
! H1H1

channel is kinematically forbidden. As we can see from
Eqs. (33) and (34), the dominant terms of the annihila-
tion cross sections are not very sensitive to the change
of MH1 for MH1 < 2MX , while h�vreliZ0Z0 / �2

�X
/M4

H1

for MH1 > 2MX . These facts account for the behav-
ioral change in the plot below and above the resonance.
Similar plots for the [BPII] are shown in AppendixC1,
Fig. 7.

Local Z2 scalar DM: (QX , Q�) = (1, 2)

Now let us consider a special case Q� = 2 and QX = 1.
In this case, DM Lagrangian would have one more gauge
invariant operator at renormalizable level:

�LDM = �µ(X2�† +H.c.) (5)

to the generic case, Eq. (4). Then U(1)X will be broken
into its subgroup Z2 (X ! �X) after � gets nonzero
VEV, á la Krauss-Wilczek mechanism [91]. Such local
Z2 scalar DM model with dark photon has been studied
in the context of GC �-ray excess [66, 92] and XENON1T
excess [75], respectively. After the U(1) symmetry is bro-
ken by v� 6= 0, the µ�term is written as

µ
�
X2�† +H.c.

�
=

1
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µv�(X

2

R
�X2
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where X = (XR + iXI) /
p
2. This term gives rise to the

mass splitting between XR and XI :

M2

R
= M2

X
+
p
2µv�, M2

I
= M2

X
�
p
2µv�. (7)

Assuming µ > 0, we will take the lighter state XI as
DM. The mass splitting is represented by dimensionless
quantity, � ⌘ (MR �MI)/MI . Notice that dark photon
interaction with DM is o↵-diagonal(or inelastic):

L � gXZ 0µ (XR@µXI �XI@µXR) . (8)

For the benchmark point [BPI], there are two dom-
inant DM annihilation channels: XIXI ! Z 0Z 0, H1H1,
similarly to the generic case discussed in the previous
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FIG. 7. The (Top) plots show the relic abundance of complex scalar DM for Q� = 1.1 as functions of dark Higgs mass
MH1 for [BPI] (Left) and [BPII] (Right). The (Bottom) plots show the relic density as functions of ��X (Left) and the
preferred parameter space in the (MH1 ,��X) plane for �HX = 0 (Right) for [BPII] . We take four di↵erent DM masses,
MX = 1, 10, 100, 1000GeV, respectively. Solid (Dashed) lines represent the region where bounds on DM direct detection are
satisfied (ruled out).

where S is symmetric factor. The thermal averaged cross section of XX†
! Z 0Z 0 is

h�vrel(XX†
! Z 0Z 0)i =

1

32⇡s
|M|2

✓
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4M2
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s

◆1/2

. (34)

The Z 0
L
Z 0
L
final state gives the dominant contribution:
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where

1 = 6�HvHs3
↵
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The thermal DM can be detected by DM direct detection searches. Spin-independent DM-nucleon scattering cross
section is given by

�SI =
µ2

N
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↵
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◆�2
, (38)

where fN = 0.327 [104, 105], MN is the nucleon mass, and µN = MXMN/(MX +MN ). For MDM � 1GeV, The most
stringent bound comes from CRESST [106], DarkSide-50 [107] and XENON1T [108, 109], which can be evaded by
choosing small enough sin↵ and �HX ⇡ 0.

In the top panel of Fig. 7, we show the ⌦h2 as functions of MH1 for two [BP]’s. The bottom panel is for the
[BPII]: (Left) ⌦h2 as a function of ��X , and (Right) the allowed parameter space in the (MH1 ,��X). Solid (Dashed)

DM mass : much wider range than  
due to dark Higgs boson contributions

mZ′ ∼ 2mDM
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FIG. 8. (Top) Feynman diagrams for local Z2 scalar DM annihilatiing to a pair of Z0 bosons. (Bottom) Feynman diagrams
for local Z2 scalar DM annihilatiing to a pair of H1 bosons, which is mostly dark Higgs-like.

lines represent the region where bounds on DM direct detection are satisfied (ruled out). It is found that the scalar
DM can be thermal WIMP in wide mass ranges, outside MZ0 ⇠ (2 � 3)MX due to the contributions from the dark
Higgs � ' H1 that opens new contribution to Z 0Z 0 and new annihilation channel into H1H1.

C2. Local Z2 Scalar DM

Feynman diagrams for local Z2 scalar DM model are depicted in Fig. 8:
The thermal averaged cross section annihilating to a pair of Z 0 is

h�vrel(XIXI ! Z 0Z 0)i ⇡
1

32⇡s
|M|2
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4M2
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s

◆1/2

(39)

with
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where �1 =
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c↵��HXvHs↵ and �2 =

�
��Xv� �

p
2µ

�
s↵+�HXvHc↵. Again the longitudinal Z 0

L
pair

will give the dominant contributions here. Neglecting Z 0 mass in the final states, the thermally averaged annihilation
cross sectionaround freeze-out temperature is

h�vrel(XIXI ! Z 0Z 0)i ⇡
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Note that one can see the longitudinal enhancement e↵ect.
If kinematically allowed, the DM annihilation cross section into the dark Higgs boson is also possible:

h�vrel(XIXI ! H1H1)i ⇡
1

32⇡s

�
��Xc2

↵
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↵

�2
s

1�
4M2
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s
(42)

In the local Z2 scalar DM case, there are two processes in DM direct detection. One is elastic scattering and the
other is inelastic scattering process. In our interesting parameter space where � � O(100)keV, inelastic scattering
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FIG. 9. (Left) Relic abundance of local Z2 scalar DM in case of [BPII]. We take �HX = 0, MH1 = 10GeV, and s↵ = 10�4.
All the lines satisfy the DM direct detection bound. (Right) Relic abundance of local Z2 scalar DM in the (MH1 ,��X) plane.

process does not happen. Thus, we will concentrate on elastic scattering process mediated by both the dark and the
SM Higgs bosons. In this case, the spin-independent elastic DM-nucleon scattering is given by
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µ2

N

4⇡

✓
MN

MI

◆2 c4
↵

M4

H1

f2

N

" 
��X �

p
2µ

v�

!
v�
vH

t↵

✓
1�

M2

H1

M2

H2

◆
� �HX

✓
t2
↵
+

M2

H1

M2

H2

◆#2
. (43)

We choose small enough sin↵(' tan↵) and �HX in order to avoid the strong constraints from direct detections.

C3. Local Z3 scalar DM : (QX , Q�) = (1, 3)

There is another special case for the complex scalar DM: Q� = 3 and QX = 1, for which U(1)
X

! Z3 [65, 110] by
Krauss-Wilczek mechanism. The relevant Lagrangian is given by

LDM = DµX†DµX �m2

X
X†X � �HXX†X

✓
H†H �

v2
H

2

◆
� ��XX†X

✓
�†��

v2
�

2

◆
+ �3

�
X3�† +H.c.

�
.

In this case there appears a new mechanism, semi-annihilations XX ! X†H1, X†Z 0 in addition to the usual anni-
hilation channels XX†

! Z 0(�, h) ! (SM particles) [110]. Thus the mass scale of the complex scalar DM X can
be in a wide range, evading the mass relation, MZ0 ⇠ (2 � 3)MX , that was derived in the case with Z 0 only and
without H1. In Fig. 10, we show for di↵erent choices of ��X ⌦h2 as functions of �3 which controls the strength
of semi-annihilation. Since gX ⇠ O(10�4) is very small, the channel XX ! X†Z 0 is not important compared to
XX ! X†H1. Therefore the parameter �3 controlling the channel XX ! X†H1 becomes most important. This is
why two plots in the left and the right are almost identical for our choice of parameters. Once again, we observe that
the dark Higgs can modify DM phenomenology significantly and the allowed mass range for the complex scalar DM
X can be very far from MZ0 ⇠ 2MX for a special choice of dark charges, QX = 1 = Q�/3.

C4. Fermion DM: Generic Case

Generic Case: Q� 6= 2Q� = 2

For the generic case of Dirac fermion DM, the DM Lagrangian is given by

LDM = �(i /D �m�)�. (44)

In this case there is no direct renormalizable interactions between � and � for generic Q� (except for Q� = 2), which
is in sharp contrast to the scalar DM cases we discussed earlier. If we assume gX ⇠ O(10�4) for the muon (g � 2),
DM pair annihilation cross sections for ��̄ ! Z 0Z 0, Z 0H1 are ⇠ O(g4

X
). Therefore they are too small for the correct
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FIG. 4. Top: Relic abundance of local Z2 scalar DM as func-
tions of ��X for [BPI] and di↵erent values of mass splittings
(�). We take �HX = 0, MH1 = 10GeV, and s↵ = 10�4.
All the curves satisfy the DM direct detection bound. Bot-

tom: The preferred parameter space in the (MH1 ,��X) plane
for di↵erent values of �. The gray area is excluded by the
perturbative condition.

subsection. The corresponding Feynman diagrams are
similar to those in Fig. 2 with appropriate change of
X fields. The corresponding Feynman diagrams are de-
picted in Fig. 8 of Appendix C2, along with the relevant
expressions for h�vi.

In Fig. 4, we show the DM relic density as func-
tions of ��X for the [BPI] for MI = 1, 10, 102, 103GeV
and � = 1, 0.1, 0.01 with fixed MH1 = 10GeV and
sin↵ = 10�4. The new parameter µ makes the pre-
diction for the relic density significantly di↵erent from
the generic case we considered in the previous section.
For the light DM we can obtain the correct relic density
via XIXI ! Z 0Z 0 while for the heavy DM the chan-
nel XIXI ! H1H1 becomes relevant as well. In Top of
Fig. 4, as � increases the DM coupling with H1 becomes
stronger, reducing the relic abundance. Note also that we
can see bump-like shape. This happens due to the can-
cellation between ��Xv� and µ. In Bottom of Fig. 4, we
again see that the XIXI ! H1H1, Z 0Z 0 dominates below

the resonance region MH1 ⇠ 2MX while XIXI ! Z 0Z 0

takes over above the resonance. Near the resonance re-
gion co-annihilation XIXR ! Z 0H1 contributes to the
relic density. However, this e↵ect is sub-dominant. If we
took even smaller � such as � < 10�3, we could get the
correct relic density for the heavier DM upto a few TeV
through XIXI(XRXR) ! H1H1, Z 0Z 0 channels.

For the DM direct detection, there are two processes in
this case: one is elastic scattering and the other is inelas-
tic scattering process. In the parameter space yielding
the correct DM relic density, one has � � O(100)keV, so
that inelastic scattering process does not happen. Thus,
we consider only the Higgs-mediated elastic scattering
process, the cross section of which is given in Appendix
C2. It turns out that the parameters chosen in Fig. 4
satisfy the bounds on the DM direct detections.

Another special case for the scalar DM case is for Q� =
3QX = 3, for which U(1)X ! Z3. In this case too, one
can accommodate both �aµ and thermal WIMP DM for
MZ0 ⇠ (10 � 100) MeV, gX ⇠ 10�4 with a much wider
range of DM mass due to the semi-annihilation channels,
XX ! X†H1, as well as XX†

! H1H1. More detailed
discussion on this case can be found in Appendix C3.

LOCAL Z2 FERMION DM: Q� = 2Q� = 2

For Dirac fermion DMmodel [93], let us consider a spe-
cial case Q� = 2Q� = 2, for which the DM Lagrangian
at renormalizable level is modified as

LDM = �(i /D �m�)��

⇣
y��C��† +H.c.

⌘
. (9)

Again the symmetry breaking pattern is U(1)X ! Z2 (lo-
cal Z2 fermion DM) due to the nonzero v�. This model
is a dark gauge model for inelastic fermion DM, and has
been studied in the context of DM bound state forma-
tion in Ref. [68] and the XENON1T excess in Ref. [75],
respectively. In this model the light dark Higgs contribu-
tion to the DM self-interaction and the relic density has
been considered in [94].

After U(1)X symmetry breaking with nonzero y�, the
original Dirac fermion � is decomposed into two Majo-
rana fermions (�R and �I) with mass splitting / v�:

� ⌘ MR �MI = 2y�v�. (10)

Assuming y� > 0, we have � > 0, and the lighter state
�I becomes Majorana fermion DM, with �R being its
excited state. Then the Lagrangian of DM is written as

LDM =
1

2

X

i=R,I

�̄i (i@µ�
µ
�Mi)�i � i

gX
2
Z 0
µ
(�̄R�

µ�I � �̄I�
µ�R)�

1

2
y� (c↵H1 + s↵H2) (�̄R�R � �̄I�I) . (11)

DM mass : much wider range than  
due to dark Higgs boson contributions

mZ′ ∼ 2mDM
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I. INTRODUCTION

Although Planck [1] has already given the dark matter(DM) relic density ⌦h2 = 0.1199±
0.0027 with a high precision, we still do not know particle physics nature of DM at all. So far
all the compelling evidences for the existence of DM come from astrophysics and cosmology,
due to its gravitational interaction. Still, many particle physics models for DMs have been
proposed, and most of them have a stable collisionless cold DM(CCDM) candidate whose
self-interaction can be ignored.

The collisionless cold DM has been very successful when explaining the large scale
structure of our Universe. However, anomalies from the small scale astrophysical obser-
vations [2–4] indicate that DM may have strong interactions between themselves. Such
self-interaction [5] would make DM have a flat core density profile rather than a cusp one
predicted by CCDM. Recent simulations show that in order to flatten the cores of galaxies
the cross section for DM scattering should be around � ⇠ MX ⇥ barn GeV�1 [6–8], which is
in fact a huge cross section compared with typical weak-scale cross sections � ⇠ 10�12 barn
or 1 pb. Some light particle mediator in the dark sector could be an origin of such strong
self-interaction between DMs.

In this paper, we propose a scalar DM model with a local Z3 symmetry. Unlike models
based on global symmetries, local discrete symmetries can protect symmetry-breaking from
quantum gravity e↵ects and guarantee the longevity or absolute stability of DM particles.
Also a light mediator can exist in the models with local symmetry, and generate the correct
self-interaction for DM in explaining the anomalies mentioned in the previous paragraph.

The outline of this paper is as follows. In Sec. II, we introduce the model with a local
Z3 symmetry, establish the convention for parameters and give the physical mass spectra.
Then we discuss both theoretical and experimental constraints on the parameters in Sec. III.
Then in Sec. IV, we discuss the relic density and DM direct searches, paying attentions to
the semi-annihilation feature, and compare with the global Z3 mode. In Sec. V, we show
that a light scalar mediator in our model can induce strong interaction for DM. Finally we
summarize the results in Sec. VI.

II. LOCAL Z3 MODEL

Let us assume the dark sector has a local U(1)X gauge which is spontaneously broken
into local Z3 symmetry a la Krauss and Wilczek [9] (see ref. [10] for local ZN case). This
can be achieved with two complex scalar fields

�X ⌘ (�R + i�I) /
p
2, X ⌘ (XR + iXI) /

p
2

in the dark sector with the U(1)X charges equal to 1 and 1/3, respectively. Then one can
write down renormalizable Lagrangian for the SM fields and the dark sector fields, X̃µ,�X

and X:

L = LSM �
1

4
X̃µ⌫X̃

µ⌫
�

1

2
sin ✏X̃µ⌫B̃

µ⌫ +Dµ�
†
X
Dµ�X +DµX

†DµX � V

V = �µ2
H
H†H + �H

�
H†H

�2
� µ2

�
�†
X
�X + ��

⇣
�†
X
�X

⌘2

+ µ2
X
X†X + �X

�
X†X

�2

+ ��H�
†
X
�XH

†H + ��XX
†X�†

X
�X + �HXX

†XH†H +
⇣
�3X

3�†
X
+H.c.

⌘
(2.1)

2

Local  DM Model : first considered by Ko, Tang:  
arXiv:1402.6449 (SIDM), 1407.5492 (GC -ray excess)

Z3
γ

(a) (b)

X

X

X̄

H1/H2 H1/H2

X

X

X̄

(c)

H1/H2

X̄X

X

(d)

H1/H2

X̄
X

X

(e) (f)

X

X

X̄

Z
0
/Z Z

0
/Z

X

X

X̄

(g)

Z
0
/Z

X̄X

X

FIG. 1: Feynman diagrams for dark matter semi-annihilation. Only (a), (b), and (c) with H1 as
final state appear in the global Z3 model, while all diagrams could contribute in local Z3 model.

Similarly we can do the analysis in another directions. The direction h = y ⇥ x, �X =

0, X =
x
p
2
gives

�Hy
4 + �HXy

2 + �X � 0,

leading constraints on �H , �X and �HX which are just those in Eq. (3.1).
Constraints on the kinetic mixing parameter ✏ come from the muon (g�2), atomic parity

violation, the ⇢ parameter and electroweak precision tests(EWPTs) [16–19]. These could
put an upper limit on ✏ as a function of MZ0 . Among these constraints, EWPTs provides
the most stringent one: ✓

tan ✏

0.1

◆2 ✓250GeV

MZ0

◆2

 0.1. (3.4)

For MZ0 ⇠ 250GeV we have ✏ . 0.03. In the case of ✏ = 0, there is no mixing between Z
and Z 0, the whole connnection between SM and dark sector comes from the scalar sector.

In the following numerical investigation, we have imposed all the relevant constraints
discussed in this section.

IV. RELIC DENSITY AND DIRECT DETECTION

A. semi-annihilation

The X3�X term and the cubic term X3 after U(1)X symmetry breaking lend the semi-
annihilation channel possible and could have a significant e↵ect in the freeze out of the
DM [20–22]. We show the relevant Feynman diagrams in Fig. 1. In the presence of semi-
annihilation the Boltzman equation that determines the number density nX is modified
into [23]

dnX

dt
= �v�XX

⇤!Y Y
�
n2
X
� n2

X eq

�
�

1

2
v�XX!X

⇤
Y
�
n2
X
� nXnX eq

�
� 3HnX , (4.1)

where Y stands for any other particles and v for the relative velocity. Due to the semi-
annihilation, new contribution appears as the second term in the above equation. The

6

  and  : present only in models with dark gauge symmetries, 
And not in models with global dark symmetries

ϕ Z′ 
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• Blue band marks the 
upper bound, 

• All points are allowed 
in our local Z3 
model,1402.6449 

• only circles are 
allowed in global Z3 
model,1211.1014  
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FIG. 2: Illustration of discrimination between global and local Z3 symmetry. We have chosen
MH2 = 20GeV, MZ0 = 1TeV and �3 < 0.02 as an example. From up to down, three nearly straight
lines mark the XENON100 [21], LUX [22] and expected XENON1T limits [23], respectively. Colors
in the scatterred triangles and circles indicate the relative contribution of semi-annihilation, r. The
curved blue band, together with the cirles, gives correct relic density of X in the global Z3 model.
And the colored triangles appears only in the local Z3 model. See text for detail.

numerical investigation is done with micrOMEGAs [20]. We may define the fraction of the
contribution from the semi-annihilation in terms of

r ⌘
1

2

v�XX!X
⇤
Y

v�XX⇤!Y Y + 1
2v�

XX!X⇤Y
.

The full Feynman diagrams for semi-annihilation are presented in Fig. 1. Depending on
the particles’ masses or couplings, only a fraction of these diagrams might be kinematically
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This whole region is allowed in 
local Z3 case



 U(1)Lμ−Lτ
→ Z3

•  : very small,  is not important 


•  controlling  is an important parameter

gX ∼ O(10−4) XX → X†Z′ 

λ3 XX → X†H1

16
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FIG. 10. Relic abundance of Z3 scalar DM for the [BPI] (Left) and the [BPII] (Right), respectively. Here we fixed �HX = 0
for simplicity.

thermal relic density of DM. Only ��̄ ! Z 0
!(SM particles) turns out to can reproduce the correct relic density only

in the resonance region with MZ0 ⇠ (2� 3)M�, as observed in previous works and described in the Introduction.
The thermal averaged DM annihilation cross section is given by

h�vrel(��̄ ! `¯̀)i '
g4
X
Q2

�

2⇡

�
2M2

�
+M2

`

�

�
4M2

�
�M2

Z0

�2
+ �2

Z0M2

Z0

s

1�
M2

`

M2
�

, (45)

h�vrel(��̄ ! ⌫`⌫̄`)i '
g4
X
Q2

�

2⇡

M2

��
4M2

�
�M2

Z0

�2
+ �2

Z0M2

Z0

, (46)

where ` = µ, ⌧ . Since gX is O(10�4) in order to explain �aµ anomaly with MZ0 ⇠ (10 � 100) MeV, the total
annihilation cross section is too small to get the correct relic density. The correct DM relic abundance reaches in the
resonance region with M� ⇠ MZ0/2.

If kinematically allowed, there are additional DM annihilation channels which are given by

h�vrel(��̄ ! Z 0Z 0)i '
g4
X
Q4

�

4⇡

M2

�
�M2

Z0
�
M2

Z0 � 2M2
�

�2

s

1�
M2

Z0

M2
�

(47)

h�vrel(��̄ ! Z 0H1)i '
c2
↵
g4
X
Q2

�
Q2

�

256⇡

h
16M4

�
� 8M2

�
(M2

H1
� 5M2

Z0) +
�
M2

H1
�M2
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�2i
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i
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�2
� 2M2

H1

�
M2

Z0 + 4M2
�

�
(48)

However, relic density of DM is satisfied near resonance area even though we consider additional DM annihilation
channels.

C5. Local Z2 fermion DM

For the direct detection in the local Z2 fermion DM case, there are also two processes as in the local Z2 scalar DM
case: one is elastic scattering through (dark) Higgs exchanges, and the other is inelastic scattering process through
Z 0 exchange with the kinetic mixing. Here again the inelastic scattering is negligible for � & O(10)keV. Therefore we
impose only the Higgs-mediated elastic scattering, the explicit form of which is given by

�SI =
µ2

N

⇡
�2

✓
MIMN

vHv�

◆2

f2

N
s2
↵
c2
↵

✓
1

M2

H1

�
1

M2

H2

◆2

, (49)

where � ⌘ (MR �MI) /MI .

DM mass : much wider range than  
due to dark Higgs boson contributions

mZ′ ∼ 2mDM



Dirac fermion DM: 
 ( )U(1)Lμ−Lτ

→ Z2 QΦ = 2Qχ

85

5

FIG. 5. Feynman diagrams of local Z2 fermion DM (co-
)annihilating into a pair of Z0 bosons and H1 bosons (Top),
and Z0 +H1 (Bottom).

First let us consider thermal relic density within the
standard freeze-out mechanism. Note that the new sin-
glet scalar � plays a crucial role for the fermionic DM in
this model to be thermal WIMP. And DM mass can be
very heavy up to ⇠ O(a few) TeV. This result is in sharp
contrast with the results obtained in the literature where
the Z 0 mass is assumed to be generated by Stückelberg
mechanism, ignoring the dark Higgs boson. In particular
the (co-)annihilation channel involving H1 plays a dom-
inant role in determining the relic density. Note that
these annihilation channels are completely missing in the
usual approach. The corresponding Feynman diagrams
are described in Fig. 5.

DM direct detection in local Z2 fermion DM case sim-
ilar to the local Z2 scalar DM case (see Appendix C5 for
the detail). Imposing this constraint, we get the plots in
the bottom of Fig. 6, where the dashed lines are excluded
by DM direct detection experiments. Still there is am-
ple parameter space for heavy DM mass MI , far beyond
MI ⇠ MZ0/2 ⇠ O(10� 100)MeV.

In the Top of Fig. 6, we plot ⌦DMh2 as functions of
� in case of the [BPI], for MH1 = 5GeV and di↵erent
DM masses MI = 1, 10, 102, 103GeV. The most domi-
nant contribution comes from �I�I ! Z 0Z 0, H1H1 and
�I�R ! H1Z 0. Solid lines denote the region which sat-
isfy the DM direct detection bounds. Note that the
smaller splitting � is required for heavy fermion DM
to satisfy the relic abundance. In case of [BPI], co-
annihilation is important when DM is heavy and the mass
splitting is small, since the t-channel diagram of the co-
annihilation also has y� coupling. In case of [BPII],
co-annihiation is not that important for the correct ⌦h2,
since v� is large. In the (Bottom) of Fig. 6, we show
the contours of ⌦h2 = 0.12 in the (MH1 ,�) plane for
the same choices of MI . Similar plots for the [BPII] are
shown in AppendixC5, Fig. 11.

FIG. 6. Top: Dark matter relic density as functions of mass
splitting � for [BPI] and for di↵erent values of DM mass,
MI = 1, 10, 100, 1000GeV. Solid (Dashed) lines denote the re-
gion where bounds on DM direct detection are satisfied (ruled
out). Bottom: Preferred parameter space in the (MH1 ,�)
plane for di↵erent DM masses. The gray region is ruled out
by the perturbativity condition on ��.

CONCLUSIONS

In this work, we considered the �aµ and thermal
dark matter, both scalar and Dirac fermion DM, in the
U(1)Lµ�L⌧ extensions of the SM. �aµ can be accom-
modated for MZ0 ' O(10)MeV and gX ' 10�4, for
which thermal DM could be achieved near the Z 0 res-
onance region only with MZ0 ⇠ 2MDM, if we do not
include the dark Higgs boson. A noble feature of this
work is that we have included the contributions of the
dark Higgs boson which were ignored in the earlier lit-
erature. Details of the DM phenomenology depend on
the U(1) charge assignments to the DM and the dark
Higgs (�) fields. U(1)Lµ�L⌧ symmetry can be broken
generically or in a special way into Z2 (inelastic scalar
or fermion DM models) or Z3 scalar DM model. New
DM (co-)annihilation channels involving the dark Higgs
boson can open DM + DM ! H1H1, H1Z 0 as well as
DM + DM ! H1 ! Z 0Z 0. In the latter process, there
is an enhancement in the longitudinal Z 0 pair produc-
tion. Thanks to these newly open channels, the DM
mass range becomes much wider from GeV to O(a few)
TeV, dissecting the tight correlation between MZ0 and
MDM: MZ0 ⇠ 2MDM. Our analysis clearly shows that
DM phenomenology with a massive dark photon can not
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FIG. 11. (Top) Dark matter relic density as functions of dark Higgs mass MH1 for [BPI] (Left) and [BPII] (Right) (Bottom-

Left) Dark matter relic density as functions of � for [BPII], and (Bottom-right) Preferred parameter region in the (�,MH1)
plane. Solid (Dashed) lines denote the region where bounds on DM direct detection are satisfied (ruled out).
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FIG. 5. Feynman diagrams of local Z2 fermion DM (co-
)annihilating into a pair of Z0 bosons and H1 bosons (Top),
and Z0 +H1 (Bottom).

First let us consider thermal relic density within the
standard freeze-out mechanism. Note that the new sin-
glet scalar � plays a crucial role for the fermionic DM in
this model to be thermal WIMP. And DM mass can be
very heavy up to ⇠ O(a few) TeV. This result is in sharp
contrast with the results obtained in the literature where
the Z 0 mass is assumed to be generated by Stückelberg
mechanism, ignoring the dark Higgs boson. In particular
the (co-)annihilation channel involving H1 plays a dom-
inant role in determining the relic density. Note that
these annihilation channels are completely missing in the
usual approach. The corresponding Feynman diagrams
are described in Fig. 5.

DM direct detection in local Z2 fermion DM case sim-
ilar to the local Z2 scalar DM case (see Appendix C5 for
the detail). Imposing this constraint, we get the plots in
the bottom of Fig. 6, where the dashed lines are excluded
by DM direct detection experiments. Still there is am-
ple parameter space for heavy DM mass MI , far beyond
MI ⇠ MZ0/2 ⇠ O(10� 100)MeV.

In the Top of Fig. 6, we plot ⌦DMh2 as functions of
� in case of the [BPI], for MH1 = 5GeV and di↵erent
DM masses MI = 1, 10, 102, 103GeV. The most domi-
nant contribution comes from �I�I ! Z 0Z 0, H1H1 and
�I�R ! H1Z 0. Solid lines denote the region which sat-
isfy the DM direct detection bounds. Note that the
smaller splitting � is required for heavy fermion DM
to satisfy the relic abundance. In case of [BPI], co-
annihilation is important when DM is heavy and the mass
splitting is small, since the t-channel diagram of the co-
annihilation also has y� coupling. In case of [BPII],
co-annihiation is not that important for the correct ⌦h2,
since v� is large. In the (Bottom) of Fig. 6, we show
the contours of ⌦h2 = 0.12 in the (MH1 ,�) plane for
the same choices of MI . Similar plots for the [BPII] are
shown in AppendixC5, Fig. 11.
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FIG. 6. Top: Dark matter relic density as functions of mass
splitting � for [BPI] and for di↵erent values of DM mass,
MI = 1, 10, 100, 1000GeV. Solid (Dashed) lines denote the re-
gion where bounds on DM direct detection are satisfied (ruled
out). Bottom: Preferred parameter space in the (MH1 ,�)
plane for di↵erent DM masses. The gray region is ruled out
by the perturbativity condition on ��.

CONCLUSIONS

In this work, we considered the �aµ and thermal
dark matter, both scalar and Dirac fermion DM, in the
U(1)Lµ�L⌧ extensions of the SM. �aµ can be accom-
modated for MZ0 ' O(10)MeV and gX ' 10�4, for
which thermal DM could be achieved near the Z 0 res-
onance region only with MZ0 ⇠ 2MDM, if we do not
include the dark Higgs boson. A noble feature of this
work is that we have included the contributions of the
dark Higgs boson which were ignored in the earlier lit-
erature. Details of the DM phenomenology depend on
the U(1) charge assignments to the DM and the dark
Higgs (�) fields. U(1)Lµ�L⌧ symmetry can be broken
generically or in a special way into Z2 (inelastic scalar
or fermion DM models) or Z3 scalar DM model. New
DM (co-)annihilation channels involving the dark Higgs
boson can open DM + DM ! H1H1, H1Z 0 as well as
DM + DM ! H1 ! Z 0Z 0. In the latter process, there
is an enhancement in the longitudinal Z 0 pair produc-
tion. Thanks to these newly open channels, the DM
mass range becomes much wider from GeV to O(a few)
TeV, dissecting the tight correlation between MZ0 and
MDM: MZ0 ⇠ 2MDM. Our analysis clearly shows that
DM phenomenology with a massive dark photon can not

DM mass : much wider range than  
due to dark Higgs boson contributions

mZ′ ∼ 2mDM



Conclusion
• DM physics with massive dark photon can not be complete without 

including dark gauge symmetry breaking mechanism, e.g. dark 
Higgs field , which have been largely ignored by DM community 
(or some ways other than dark Higgs to provide dark photon mass) 


• Many examples show the importance of  in DM phenomenology,  
astroparticle physics and cosmology


• Once  is included, can accommodate the muon g-2 and thermal 
DM without the s-channel resonance condition  


•  : essentially free, whereas  MeV and 
 can explain the muon (g-2)

ϕ

ϕ

ϕ
mZ′ ∼ 2mDM

mDM mZ′ ∼ O(10 − 100)
gX ∼ O(10−4)



Summary



Take home messages
• DM interacting with massive dark photon is a typical scenario in DM 

physics


• Dark photon may be related with stable/long-lived DM


• Very often, dark Higgs boson (or some mechanism to generate dark 
photon mass) has been ignored


• However, there are many examples that show importance of dark 
Higgs boson


• In this talk, I discussed the following examples:


• Interpretations of DM searches@high energy colliders



• HP VDM:  and  GC -ray excess


• XENON1T excess in terms of exothermic scattering 
of inelastic DM (both scalar and fermion DM)


• -charged scalar/fermion DM outside the

  window


• Higgs-portal assisted Higgs inflation with large 
 


• Additional dark Higgs (singlet-like scalar) : generic (in 
DM models with dark gauge symmetry), improves EW 
vac stability >> should be actively search for @ LHC 
and other future colliders

Γinv(H → VV) γ

U(1)Lμ−Lτ

mZ′ 
∼ 2mDM

r ∼ O(0.1)



mDM /mγ′ 

mDM /mϕ

0

Dark sector parameter space for a fixed mDM

1/2

1/2

1

1
 : dark matter 
 : dark photon 
 : dark Higgs

χ
γ′ 

ϕ

χ + χ → SM + SM χ + χ → γ′ + γ′ 

χ + χ → ϕ + ϕ

χ + χ → ϕ + γ′ 

χ + χ → ϕ + γ′ 

DM EFT, including 
Higgs portal DM EFT

Models w/o dark Higgs 
Along the x-axis

P-wave annihilation 
For fermion DM χ

P-wave annihilation 
For scalar DM χ

These two channels are possible for light DM, 
only if we include dark Higgs boson !

Higgs Portal DM 
Along the y-axis



To-Do List 
(Personal Prospect)



What is the DM mass ?
• If very light, DM is long 

lived for the kinematical 
reason


• Axion and light sterile ’s 
are good examples

ν

• Charge/color neutral : no renormalizable int’s w/ 


• Eq of State : 


•  or 

γ, g

ρ ≃ 0 (i . e . p ≃ 0)

τDM ≫ τ (Age of the Universe) ∞

• If not, reasonable to 
assume some conserved 
quantum #, either exactly 
or approximately conserved


• Local or global Dark Sym



Higgs-Portal Assisted 
Higgs Inflation

arXiv:1405.1635 [hep-ph], JCAP02 (2017) 003  
With Jinsu Kim, Wan-Il Park



Higgs Inflation
• Inflation : the main paradigm for very early Universe


• But no very compelling inflation scenarios based on high 
energy physics


• SM Higgs boson can play a role of inflaton if it has large 
non minimal coupling [Bezrukov, Shaposhnikov (2007)] or 
non canonical kinetic term


• Merits: Minimal model, Consistent with Planck data, Can 
connect low energy ( ) scale to high energy (inflation) 
scale

mEW



Higgs Inflation in SM

) ✏ ' 3

4
⌘2

ns = 1� 6✏+ 2⌘ ⇠ 0.96

) ⌘ ' 1

2
(ns � 1)

) ✏ ' 3

16
(ns � 1)2

) r ' 16✏ ' 3 (ns � 1)2 ⇠ 5⇥ 10�3

� ⇠ 0.1

(before BICEP2) [Bezrukov and Shaposhnikov, 0710.3755]

Nonminimal coupling



Higgs Inflation in SM
(after BICEP2)

Is Higgs inflation ruled out? No!rBICEP2 ⇠ 0.1

U(h) =
�

4⌦4

�
h2 � v2

H

�
! �(µ)

4⌦4

�
h2 � v2

H

�

[Hamada, Kawai, Oda and Park, 1403.5043; Bezrukov and Shposhnikov, 1403.6078]



✏ & ⌘ are independent

Effects of running on slow-roll parameters

However  and  are tightly constrained!mt mh



[CMS PAS TOP-14-001 ]

[CMS PAS HIG-13-001 ]

[1406.3827 ]

In SM, our vacuum is likely to be meta-stable.



Higgs portal interaction

Scalar mixing

�H > �SM
H

for m� > mh & ↵ 6= 0

Vacuum instability along the Higgs 
direction is easily removed.

Higgs inflation consistent with BICEP2 is 
possible for a wide range of mt and Mh

Higgs portal interaction disconnect mt and Mh

from inflationary observables.



Higgs-portal Higgs inflation

↵ =

8
<

:

0.074223
0.074222
0.074221

m� =

8
<

:

528.28 GeV
528.27 GeV
528.26 GeV

⇠ =

8
<

:

10
15
30

* Inflection point control

(↵,m�) & ��H

mt = 173.2 GeV

Mh = 125.5 GeV

- Result depends very sensitively on α, mΦ and λ𝚽H -

Higgs Portal Higgs Inflation 
can  have  without 

resorting to mt and Mh. 
r ≲ O(0.1)

m� = 500 GeV ↵ = 0.07

Result of numerical analysis



Brief Article

The Author

November 7, 2011

The model Lagrangian has extended structure with the hidden sector and
Higgs portal terms in addition to the SM Lagrangian

L = LSM � µHSSH
†H � �HS

2
S2H†H

+
1

2
(⇤µS⇤

µS �m2
SS

2)� µ3
SS � µ�

S

3
S3 � �S

4
S4

+⇥(i ⇥ ⇤ �m�0)⇥ � �S⇥⇥

where

Lportal = �µHSSH
†H � �HS

2
S2H†H,

Lhidden = LS + L� � �S⇥⇥, (1)

with

LS =
1

2
(⇤µS⇤

µS �m2
SS

2)� µ3
SS � µ�

S

3
S3 � �S

4
S4,

L� = ⇥(i/⇤ �m�0)⇥ (2)

Except the dark sector, this model was quite well studied in detail in [?, ?].
The Higgs potential has three parts: the SM, the hidden sector and the

portal parts

VHiggs = VSM + Vhidden + Vportal, (3)

where Vhidden, Vportal can be read from (1), (2) and

VSM = �µ2
HH

†H + �H(H
†H)2. (4)

In general the Higgs potential develops nontrivial vacuum expectation values
(vev)

⇤H⌅ = 1⇧
2

�
0
vH

⇥
, ⇤S⌅ = vS. (5)

1

ΨSM H S

mixing

invisible
decay

Production and decay rates are suppressed relative to SM.

102
 This simple model has not been studied properly !!

Singlet fermion CDM
Baek, Ko, Park,  arXiv:1112.1847



HP assisted HI w/ SFDM

Figure 2. RG runnings of nonminimal couplings ⇠h and ⇠s and G(t) (3.12) in SFDM. The initial
conditions are chosen at Mt scale as ⇠h = 400, ⇠s = 0, ↵ = 0.03, ms = 500GeV, �SH = 0.1, �S = 0.2,
and � = 0.3, where �S is the quartic coupling of the extra singlet scalar S and � is the coupling
between the extra DM fermion  and S, i.e., � S  .

scalar field S and a fermionic DM-candidate field  . The hidden sector and the SM sector
communicates through the following Higgs portal interaction: 3

Vportal = µSHSH
†
H +

1

2
�SHS

2
H

†
H . (4.1)

As stated in section 3, we work in the Jordan frame in order to obtain the RG equations and
then go to the Einstein frame where it is easy to study cosmological observables. The full
RG equations obtained up to two-loop order are summarized in appendix A.

Our numerical analysis is done as follows. The RG equations (A.1) are solved with the
initial conditions at µ = Mt up to the Planck scale. In order to determine the values of the
MS running parameters at Mt scale, we used the C++ program library mr [40, 41] which
takes into account full two-loop threshold corrections and the full three-loop RG equations,
together with the latest PDG values [33] at MZ ,

MW = 80.385GeV , MZ = 91.1876GeV , MH = 125.09GeV , Mt = 173.21GeV ,

GF = 1.1663787⇥ 10�5
, ↵ = 1/127.950 , ↵s = 0.1182 , (4.2)

where GF is the Fermi constant, ↵s(µ) = g
2
s(µ)/(4⇡) is the MS strong coupling structure

constant and Mi (i = W,Z,H, t) are the pole masses. The new physics model parameters
(�S , �SH , � ) as well as the nonminimal coupling (⇠h) are chosen at Mt. Note that ⇠h is not
a free parameter; we choose ⇠h at the scale Mt in such a way that the Planck normalization
(3.8) is satisfied. Finally, we compute the slow-roll parameters and cosmological observables
numerically, taking into account all the RG runnings, including ⇠h(t), ⇠s(t) and G(t).

It is important to note that a nonminimal coupling of the singlet scalar field S to gravity,
i.e., L �

1
2⇠sS

2
R , is generated via RG runnings. Since we assume inflation to take place

along the SM Higgs field, we set ⇠s to be zero at Mt scale and S = 0 during inflation. Figure 2
shows the running of nonminimal couplings ⇠h and ⇠s.

In figure 3, we show how the Jordan-frame RG-improved e↵ective Higgs potential V
(3.12) and RG running of the Higgs quartic coupling �H depend on the mixing angle ↵ for
fixed values of ms and �SH . It is clear that, for a given ms, the instability is determined by

3
Although it is clear from the context, let us inform that � and ��H introduced in section 2 correspond

to S and �SH/2 in SFDM, respectively. In order to make notations clear we shall use ms instead of m� for

the dark Higgs mass.
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 term is generated by RG, even if  at   scale. 
We assume  during inflation : Inflation along the Higgs direction.  

ξs ξs = 0 μ = mt
S = 0
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Figure 3. Jordan-frame Higgs potential Ve↵ (left panel) and the running of �H (right panel) in
SFDM for ⇠h = 440, ⇠s = 0, ms = 600GeV, �SH = 0.1, �S = 0.2, and � = 0.3 chosen at Mt scale.

↵ ms �SH �S � ⇠h Ne 109PS ns r ↵s

0.036 500 0.1 0.2 0.3 433 57.3 2.2 0.9758 0.0926 �0.0003
0.03885 500 0.1 0.1 0.1 396 57.3 2.2 0.9775 0.0878 �0.0003

Table 1. Cosmological observables in SFDM. Two parameter sets which result in a sizeable value
of the tensor-to-scalar ratio r are presented. Here the pivot scale k⇤ = 0.05Mpc�1 is chosen. For the
upper (lower) case, we obtained x ⇡ 0.25 (0.26) and y ⇡ 0.11 (0.11), where x and y are defined as
eq. (3.15).

delicate interplay between ↵ and �SH . Note that one can achieve nearly the same behavior
of the Higgs potential by adjusting ms instead of ↵. Therefore one may easily avoid the
vacuum instability due to the presence of additional model parameters, while generating a
large value of tensor-to-scalar ratio r ⇠ O(0.01�0.1) at the same time. In other words, for a
given value of top quark pole mass Mt ⇠ 173.2GeV, the vacuum instability may be avoided
once the mixing angle takes nonzero value, e.g., ↵ & 0.023 in the case of figure 3.

The e-foldings associated with a cosmological scale � = 2⇡/k is given by [42]

N = 62� ln

✓
k

a0H0

◆
� ln

 
1016GeV

U
1/4
I

!
+ ln

 
U

1/4
I

U
1/4
end

!
�

1

3
ln

 
U

1/4
end

⇢
1/4
R

!
, (4.3)

where ⇢R = (⇡2
/30)g⇤T 4

R, g⇤ ⇡ 100, TR is the reheating temperature, H0 ⇡ 0.67/(3000Mpc
is the Hubble parameter today [3], and UI (Uend) is the Einstein-frame potential at the
horizon crossing (end of inflation). For the SM Higgs inflation the reheating temperature is
TR ⇡ 1.8 ⇥ 1014GeV [10]. It is also pointed out in ref. [10] that the upper bound on the
reheating temperature is given by TR . 5 ⇥ 1015GeV which corresponds to the “critical”
Higgs inflation case. We choose TR ⇡ 1.0 ⇥ 1015GeV for our numerical analysis presented
in table 1 since the values used are near the critical point. Let us comment that the exact
value of TR barely alters our results in the sense that all the cosmological observables are in
consistent with the latest Planck results.

Based on this, we performed a numerical analysis to obtain cosmological observables,
for a pivot scale k⇤ = 0.05Mpc�1, by considering perturbativity; namely all the coupling
constants except the nonminimal couplings should be less than 4⇡, vacuum stability, and
latest Planck result (3.9). Although a wide range in parameter space generates small tensor-
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Figure 4. Tensor-to-scalar ratio as a function of the mixing angle ↵ for ms = 300GeV, 400GeV,
500GeV and 600GeV at the pivot scale k⇤ = 0.05Mpc�1. Here ⇠s = 0, �SH = 0.1, �S = 0.2,
and � = 0.3 at Mt scale are used. The nonminimal coupling of the SM Higgs to gravity, ⇠h, is
chosen in such a way that the Planck normalization (3.8) is satisfied. The grey-dotted lines indicate
the parameter region where the spectral index ns becomes larger than 2� Planck bound, ns & 0.98.
Similar behaviors are found for di↵erent sets of model parameters.

to-scalar ratio, compatible with the SM Higgs inflation, some values of ↵ near the value which
source the inflection point give sizeable values of r. Figure 4 shows the tensor-to-scalar ratio
as a function of the mixing angle ↵ for four di↵erent values of ms. The grey-dotted lines
indicate the parameter region where the spectral index ns becomes larger than the 2� Planck
bound, ns & 0.98. As expected from the above discussion, for a given value of ms, we found
that the tensor-to-scalar ratio r becomes small for large values of the mixing angle ↵, while
it is possible to obtain large values of r for small values of ↵. We also found similar behaviors
for di↵erent sets of model parameters. As an example, we present two parameter sets which
give a sizeable value of r in table 1. For the parameter values used in table 1, we found that
the conditions (3.18) are satisfied. It is interesting to note that 0.01 . r . 0.08 is di�cult
to realize in the SFDM model, while 0.08 . r . 0.1 is allowed. Thus detection of a nonzero
tensor-to-scalar ratio in the near future will be an important signal in discriminating di↵erent
variants of the Higgs inflation.

Let us finally comment on the other constraints on the SFDM model. Following refs. [24,
25], we consider (i) perturbative unitarity condition, (ii) DM relic density, and (iii) DM direct
detection as follows:

(i) Perturbative unitarity condition

For mh 6= ms, the perturbative unitarity of scattering amplitudes for longitudinal weak gauge
bosons gives the following constraint on the mixing angle ↵ for a given dark Higgs mass,

sin2 ↵ 
1

m2
s �m

2
h

 
4⇡

p
2

3GF
�m

2
h

!
. (4.4)

We find that no severe constraints exist for ms = [300GeV, 600GeV].
(ii) DM relic density

In refs. [24, 25], the authors found that the DM relic density, ⌦CDMh
2 = 0.1198± 0.0015 [3],
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Figure 6. Tensor-to-scalar ratio as a function of the mixing angle ↵ for ms = 300 GeV, 400 GeV,
500 GeV and 600 GeV, with the constraints discussed in the main text. The stringent upper bounds
for a given ms comes from the DM physics. The values of the other parameters are the same as in
figure 4. Color-shaded regions (following the scheme of colored lines) are the excluded regions from
the latest LUX experiment, corresponding to di↵erent dark Higgs masses.

5 Conclusions

In this paper, we pointed out that a strong connection of masses of the SM Higgs and
top quark pole mass in the Higgs inflation is demolished in the presence of Higgs portal
interaction, while being consistent with the latest experimental results. In particular we
showed how a large tensor-to-scalar ratio r ⇠ 0.08, which can be probed in the near future
experiments, can be achieved in the Higgs inflation without resort to a strong dependence
on Mt. Using the model of singlet fermion dark matter as a concrete model, we performed a
numerical analysis and showed how it is realized. It is interesting to see that the combination
of cosmological observables, theoretical constraints and DM physics rules out small dark Higgs
masses and favors r ⇠ 0.08 for 400  ms  600GeV, but it is also possible to have a small
tensor-to-scalar ratio for very large dark Higgs masses ms & 600GeV. Even though we
considered a model in which SM Higgs couples to a real singlet scalar, we expect a similar
result for the case where the dark Higgs is charged under a local dark symmetry. So, given
that the Higgs portal interaction is generic in scenarios beyond the SM, playing crucial roles
in low energy phenomenology and dark matter physics, where the dark matter is stabilized by
a local dark symmetry and thermalized by Higgs portal interaction, we find it amusing that
the dark Higgs guarantees the dark matter stability and improves the stability of electroweak
vacuum as well as assisting the Higgs inflation at the same time.
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Figure 3. Jordan-frame Higgs potential Ve↵ (left panel) and the running of �H (right panel) in
SFDM for ⇠h = 440, ⇠s = 0, ms = 600GeV, �SH = 0.1, �S = 0.2, and � = 0.3 chosen at Mt scale.

↵ ms �SH �S � ⇠h Ne 109PS ns r ↵s

0.036 500 0.1 0.2 0.3 433 57.3 2.2 0.9758 0.0926 �0.0003
0.03885 500 0.1 0.1 0.1 396 57.3 2.2 0.9775 0.0878 �0.0003

Table 1. Cosmological observables in SFDM. Two parameter sets which result in a sizeable value
of the tensor-to-scalar ratio r are presented. Here the pivot scale k⇤ = 0.05Mpc�1 is chosen. For the
upper (lower) case, we obtained x ⇡ 0.25 (0.26) and y ⇡ 0.11 (0.11), where x and y are defined as
eq. (3.15).

delicate interplay between ↵ and �SH . Note that one can achieve nearly the same behavior
of the Higgs potential by adjusting ms instead of ↵. Therefore one may easily avoid the
vacuum instability due to the presence of additional model parameters, while generating a
large value of tensor-to-scalar ratio r ⇠ O(0.01�0.1) at the same time. In other words, for a
given value of top quark pole mass Mt ⇠ 173.2GeV, the vacuum instability may be avoided
once the mixing angle takes nonzero value, e.g., ↵ & 0.023 in the case of figure 3.

The e-foldings associated with a cosmological scale � = 2⇡/k is given by [42]

N = 62� ln
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where ⇢R = (⇡2
/30)g⇤T 4

R, g⇤ ⇡ 100, TR is the reheating temperature, H0 ⇡ 0.67/(3000Mpc
is the Hubble parameter today [3], and UI (Uend) is the Einstein-frame potential at the
horizon crossing (end of inflation). For the SM Higgs inflation the reheating temperature is
TR ⇡ 1.8 ⇥ 1014GeV [10]. It is also pointed out in ref. [10] that the upper bound on the
reheating temperature is given by TR . 5 ⇥ 1015GeV which corresponds to the “critical”
Higgs inflation case. We choose TR ⇡ 1.0 ⇥ 1015GeV for our numerical analysis presented
in table 1 since the values used are near the critical point. Let us comment that the exact
value of TR barely alters our results in the sense that all the cosmological observables are in
consistent with the latest Planck results.

Based on this, we performed a numerical analysis to obtain cosmological observables,
for a pivot scale k⇤ = 0.05Mpc�1, by considering perturbativity; namely all the coupling
constants except the nonminimal couplings should be less than 4⇡, vacuum stability, and
latest Planck result (3.9). Although a wide range in parameter space generates small tensor-
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Large  is possible in HP assisted HI, 
without tight connection to  
r ∼ O(0.1)

mt, mh

HP assisted HI w/ SFDM


