Halo-independent bounds on the non-relativistic effective theory of WIMP-nucleon scattering from direct detection and neutrino observations

Arpan Kar

Center for Quantum Spacetime (CQUeST), Sogang University

Based on arXiv:2212.05774

in collaboration with S. Scopel, and S. Kang

CAU BSM Workshop February 20-24, 2023

WIMP dark matter searches

- Cold Dark Matter (CDM): provides ~25% of the energy density of the Universe, only detected through gravitational effects.
- WIMPs are the most popular candidates for CDM.
- A popular technique that is used to search for WIMPs is Direct Detection (DD).
- The physics of DD is mainly based on the scattering of WIMPs against nuclear targets.
- Same WIMP-nucleus scattering can trigger capture of WIMPs in celestial bodies.
- Neutrino Telescopes (NTs) (e.g., IceCube, Super-K), searching for ν 's produced by the annihilation of captured WIMPs inside Sun or Earth, are also used to search for WIMPs.
- Estimated WIMP signals in both cases depend on the velocity distribution of local WIMPs.

Uncertainties in signal prediction

- Non-detection of any new signal in DD and NT experiments
 pupper-limits on WIMP-nucleus interaction.
- Two classes of major uncertainties in the signal prediction:
 - The nature of the WIMP-nucleus interaction.
 - **3** The WIMP speed distribution f(u) (in the Solar reference frame) that determines the WIMP flux.
- WIMP-nucleus interaction:
 Most common choices: standard spin-independent (SI) or
 spin-dependent (SD) interactions.
- WIMP speed distribution f(u): Most common choice: a Maxwell-Boltzmann (MB) speed distribution in the galactic frame (and boosted to the solar frame) with a speed dispersion $\sim 300 \text{ km/s}$, Standard Halo Model(SHM).

WIMP speed distribution: Halo-independent approach

- The MB distribution (based on Isothermal Model) provides a zero-order approximation to f(u).
 - \rightarrow Numerical simulations of Galaxy formation can only tell us about statistical average properties of halos.
 - \rightarrow Merger events can add sizeable non-thermal components in f(u).
 - \rightarrow The growing number of observed dwarf galaxies suggests that our halo is not perfectly thermalized.
- Halo-independent approach:
 - \rightarrow The strategy is to find the most conservative bounds from null searches with the only constraint:

$$\int_{u=0}^{u_{\text{max}}} f(u) du = 1, \quad f(u) \Rightarrow \text{any possible speed distribution}$$

WIMP speed distribution: Halo-independent approach

- DD experiments are sensitive to $u > u_{\rm th}^{\rm DD}$ $(u_{\rm th}^{\rm DD^2} = \frac{m_T}{2\mu_{\chi T}^2} E_{R_{\rm th}})$ \Rightarrow can not cover the full WIMP speed range $[0, u_{\rm max}]$.
 - $u_{
 m max} \equiv$ Galactic escape speed (in solar frame)
- Capture in the Sun is favoured for low (even vanishing) WIMP speeds.

annihilation of captured WIMPs

$$\chi\chi \to b\bar{b}, \mu^+\mu^-, W^+W^-...$$

 $\Rightarrow \nu(\bar{\nu})$

- (S. Scopel, CQUeST 2022 workshop)
 - Possible solution: DD constraints "+" constraints from expected ν -signal from the annihilation of WIMPs captured in the Sun.
 - Extra assumptions! (1) Equilibrium between capture and annihilation (2) primary WIMP annihilation channel

WIMP speed distribution: Halo-independent approach

• The complementarity between DD and capture was used to develop a straightforward method that gives conservative constraints on WIMP interaction independent of f(u):

[Ferrer et al. (JCAP09(2015)052)]

Halo-independent upper-limits.

 The halo-independent method was applied to the case of standard SI/SD scenario without assuming any general structure for the WIMP-nucleus interaction.

Non-relativistic effective theory of WIMP-nucleon scattering

- Non-observation of new physics predicted by popular extensions of the Standard Model (e.g., SUSY)
 - \Rightarrow motivation for the bottom–up approaches that go beyond the standard SI/SD scenario.
- Usually the WIMP scattering process is non–relativistic (NR). In general the WIMP–nucleon interaction can be parameterized with an effective Hamiltonian \mathcal{H} , complies with Galilean symmetry:

$$\mathcal{H} = \sum_{ au=0,1} \sum_i c_i^{ au} \mathcal{O}_i$$

 \mathcal{O}_i : Galilean–invariant operators.

 c_i^{τ} : Wilson coefficients, with τ (= 0,1) the isospin.

$$c_i^p = c_i^0 + c_i^1$$
, $c_i^n = c_i^0 - c_i^1$.

[Fitzpatrick et al. (JCAP02(2013)004)], [Anand et al. (PRC 89, 065501 (2014))]

Non-relativistic effective theory

NR Galilean invariant operators for a WIMP of spin 1/2 (up to linear terms in the WIMP velocity \vec{v})

[Fitzpatrick et al. (JCAP02(2013)004)], [Anand et al. (PRC 89, 065501 (2014))]

$$\begin{array}{c|c} \mathcal{O}_1 = 1_\chi 1_N \; (\mathrm{standard} \; \mathrm{SI}) \\ \mathcal{O}_3 = i \vec{S}_N \cdot (\frac{\vec{q}}{m_N} \times \vec{v}^\perp) \\ \mathcal{O}_4 = \vec{S}_\chi \cdot \vec{S}_N \; (\mathrm{standard} \; \mathrm{SD}) \\ \mathcal{O}_5 = i \vec{S}_\chi \cdot (\frac{\vec{q}}{m_N} \times \vec{v}^\perp) \\ \mathcal{O}_6 = (\vec{S}_\chi \cdot \frac{\vec{q}}{m_N}) (\vec{S}_N \cdot \frac{\vec{q}}{m_N}) \\ \mathcal{O}_7 = \vec{S}_N \cdot \vec{v}^\perp \\ \mathcal{O}_8 = \vec{S}_\chi \cdot \vec{v}^\perp \\ \end{array} \quad \begin{array}{c|ccc} \mathcal{O}_9 = i \vec{S}_\chi \cdot (\vec{S}_N \times \frac{\vec{q}}{m_N}) \\ \mathcal{O}_{11} = i \vec{S}_\chi \cdot \frac{\vec{q}}{m_N} \\ \mathcal{O}_{12} = \vec{S}_\chi \cdot (\vec{S}_N \times \vec{v}^\perp) \\ \mathcal{O}_{13} = i (\vec{S}_\chi \cdot \vec{v}^\perp) (\vec{S}_N \cdot \frac{\vec{q}}{m_N}) \\ \mathcal{O}_{14} = i (\vec{S}_\chi \cdot \frac{\vec{q}}{m_N}) (\vec{S}_N \cdot \vec{v}^\perp) \\ \mathcal{O}_{15} = -(\vec{S}_\chi \cdot \frac{\vec{q}}{m_N}) ((\vec{S}_N \times \vec{v}^\perp) \cdot \frac{\vec{q}}{m_N}) \end{array}$$

 $m_N \equiv$ nucleon mass ; $\vec{q} \equiv$ transferred momentum ; $\vec{v}^\perp . \vec{q} = 0$

- ullet \mathcal{O}_i 's are the most general building blocks of the low-energy theory.
- Discussion of the halo-independent method when the WIMP–nucleus interaction is driven by each \mathcal{O}_i is crucial for understanding the more general scenarios involving the sum of several NR operators.

WIMP-nucleus scattering

• Differential cross-section of WIMP-nucleus scattering $\frac{d\sigma_T}{dE_R}$: \rightarrow required for calculating both the DD signal and that from WIMP capture in the Sun.

$$\frac{d\sigma_T}{dE_R} = \frac{2m_T}{4\pi v^2} \left[\frac{1}{2j_\chi + 1} \frac{1}{2j_T + 1} |\mathcal{M}_T|^2 \right]$$

[Fitzpatrick et al. (JCAP02(2013)004)], [Anand et al. (PRC 89, 065501 (2014))]

$$\left|\mathcal{M}_{\mathcal{T}}
ight|^{2} = 4\pi(2j_{\chi}+1)\sum_{ au=0,1}\sum_{ au'=0,1}\sum_{k}R_{k}^{ au au'}\left[\left(c_{i}^{ au}
ight)^{2},\left(v^{\perp}
ight)^{2},rac{q^{2}}{m_{N}^{2}}
ight]W_{Tk}^{ au au'}(q)$$

$$(v^{\perp})^2 = v^2 - v_{\min}^2$$
, $v_{\min}^2 = \frac{q^2}{4\mu_{\chi T}^2} = \frac{m_T E_R}{2\mu_{\chi T}^2}$, $q^2 = 2m_T E_R$

WIMP response functions:
$$R_k^{\tau\tau'} = R_{0k}^{\tau\tau'} + R_{1k}^{\tau\tau'} (v^2 - v_{\min}^2)$$

Nuclear response functions (form factor): $W_{Tk}^{\tau\tau'}(q)$

$$k=M,\,\Phi'',\,\tilde{\Phi}',\,\Sigma'',\,\Sigma',\,\Delta$$
 index representing different effective nuclear operators

Direct detection events & capture rate

Number of expected events in a DD experiment:

$$R_{\rm DD} = M \tau_{\rm exp} \, \left(\frac{\rho_{\odot}}{m_{\chi}} \right) \int du \, f(u) \, u \sum_{T} N_{T} \, \int_{E_{R_{\rm th}}}^{2\mu_{\chi T}^{2} u^{2}/m_{T}} dE_{R} \, \, \epsilon(E_{R}) \, \frac{d\sigma_{T}}{dE_{R}} \label{eq:RDD}$$

• We assume equilibrium between WIMP capture and annihilation in the Sun ($\Gamma_{\odot} = C_{\odot}/2$). In this case the ν -flux from WIMP annihilations in the Sun is determined by C_{\odot} :

$$C_{\odot} = \left(\frac{\rho_{\odot}}{m_{\chi}}\right) \int du \, f(u) \, \frac{1}{u} \int_{0}^{R_{\odot}} dr \, 4\pi r^{2} \, w^{2}$$

$$\times \sum_{T} \eta_{T}(r) \, \Theta(u_{T}^{\mathrm{C-max}} - u) \int_{m_{\chi} u^{2}/2}^{2\mu_{\chi T}^{2} w^{2}/m_{T}} dE_{R} \, \frac{d\sigma_{T}}{dE_{R}}$$

$$w^2 = u^2 + v_{\rm esc}^2(r)$$
 $u_T^{\rm C-max} = v_{\rm esc}(r) \sqrt{\frac{4m_\chi m_T}{(m_\chi - m_T)^2}}$ (maximum WIMP speed for which capture through the scattering off target T is kinematically possible)

Single-stream halo-independent bound

 $c_{i_{\max}}(u) \equiv \text{upper-limit on } c_i \text{ when all WIMPs}$ are in a single speed stream u

For a DD and a NT experiment

$$\begin{array}{lll} \left(c^{\rm NT}\right)^2_{\rm max}(u) & \leq & c_*^2 & \quad \left[0 \leq u \leq \tilde{u}\right] \\ \left(c^{\rm DD}\right)^2_{\rm max}(u) & \leq & c_*^2 & \quad \left[\tilde{u} \leq u \leq u_{\rm max}\right] \end{array}$$

The halo-independent upper-limit:

$$c^2 \leq 2 c_*^2$$

NT: IceCube/Super-K $[\chi\chi\to bar{b}]$

- Halo-independent bound is obtained for each pairs of NT + DD
- The most constraining limit is taken

Halo-independent bounds on couplings

Halo-independent bounds on couplings

Relaxing factor (WIMP-neutron couplings)

relaxing factor=
$$\frac{(c_i)_{\text{halo-indep.}}}{(c_i)_{\text{SHM}}} (\equiv \frac{\sqrt{2} c_*}{(c_i)_{\text{SHM}}})$$

- $(c_i)_{halo-indp.} \equiv halo-independent upper-limit on coupling <math>c_i$
- $(c_i)_{SHM} \equiv strongest upper-limit on <math>c_i$ for a standard MB speed distribution

Explanation for the general pattern of the relaxing factor:

Small relaxing factor \Rightarrow MB (SHM) is not a very optimistic assumption

Relaxing factor (WIMP-proton couplings)

- Moderate relaxing factors (in the intermediate m_χ range) for "SD" operators
 - smallest relaxing factors for \mathcal{O}_4 and \mathcal{O}_7 ["SD" with no momentum suppression]
 - followed by \mathcal{O}_9 , \mathcal{O}_{10} and \mathcal{O}_{14} ["SD" with q^2 suppression]
 - followed by \mathcal{O}_6 ["SD" with q^4 suppression]

continued....

Explanation for the low relaxing factors (in the intermediate m_{χ} range) for "SD" WIMP-proton couplings:

- WIMP capture is strongly enhanced due to scattering off abundant ${}^{1}\mathbf{H}$ [more prominent for \mathcal{O}_{7} ("SD", no momentum suppression, velocity–dependent)]
 - $\Rightarrow c_*$ (peak value of the convolution of NT and DD limits) is low
 - ⇒ smaller relaxing factor

Summary

- Combining direct detection and ν -search results we obtain halo-independent bounds on each coupling of the NR effective ${\cal H}$ that drives the WIMP(spin 1/2)–nuclei scattering
- One single coupling at a time

 (a first step towards more general scenarios involving several NR operators at a time)
- ullet For most of the couplings the relaxation of the halo-independent bounds compared to those obtained for the SHM is relatively moderate in the low and high m_χ regimes
- More moderate values of the bound relaxation is observed for "SD"-type WIMP-proton couplings with comparatively small momentum suppression
 - ⇒ SHM is not a very optimistic choice
- Other cases are sensitive on the WIMP speed distribution

Thank you

Backup slides

Details of the Operator structure

operator	$R_{0k}^{ au au'}$	$R_{1k}^{ au au'}$	operator	$R_{0k}^{ au au'}$	$R_{1k}^{\tau \tau'}$
1	$M(q^0)$	-	3	$\Phi''(q^4)$	$\Sigma'(q^2)$
4	$\Sigma''(q^0), \Sigma'(q^0)$	-	5	$\Delta(q^4)$	$M(q^2)$
6	$\Sigma''(q^4)$	-	7	-	$\Sigma'(q^0)$
8	$\Delta(q^2)$	$M(q^0)$	9	$\Sigma'(q^2)$	-
10	$\Sigma''(q^2)$	-	11	$M(q^2)$	-
12	$\Phi''(q^2), \tilde{\Phi}'(q^2)$	$\Sigma''(q^0), \Sigma'(q^0)$	13	$\tilde{\Phi}'(q^4)$	$\Sigma''(q^2)$
14	-	$\Sigma'(q^2)$	15	$\Phi''(q^6)$	$\Sigma'(q^4)$

index k corresponding to each operator \mathcal{O}_i , for the velocity-independent and the velocity-dependent components parts of the WIMP response function. The power of q in the WIMP response function is in parenthesis.

Single stream method

Considering one effective coupling (c_i) at a time, expected number of events in a DD experiment/the expected WIMP capture rate in the Sun:

$$R_{\mathrm{exp}}(c_i^2) = \int du \, f(u) \, H_{\mathrm{exp}}(c_i^2, u) \leq R_{\mathrm{max}}$$

 $R_{
m max} \equiv$ corresponding experimental bound

Define

$$c_{i \max}^2(u) = \frac{R_{\max}}{H(c_i = 1, u)}$$

Using $H(c_i^2, u) = c_i^2 H(c_i = 1, u)$,

$$H(c_{i \max}^2(u), u) = R_{\max}$$

 $c_{i_{\max}}(u) \equiv$ upper-limit on c_i when all WIMPs are in a single speed stream u.

[Ferrer et al. (JCAP09(2015)052)]

Methodology

$$R(c_i^2) = \int_0^{u_{\text{max}}} du \, f(u) \, H(c_i^2, u) \le R_{\text{max}}$$

Since $H(c_i^2, u) = c_i^2 H(c_i = 1, u)$, one can write

$$\begin{split} R(c_i^2) &= \int_0^{u_{\max}} du \, f(u) \, H(c_i^2, u) \\ &= \int_0^{u_{\max}} du \, f(u) \, \frac{c_i^2}{c_{i \max}^2(u)} H(c_{i \max}^2(u), u) \\ &= \int_0^{u_{\max}} du \, f(u) \, \frac{c_i^2}{c_{i \max}^2(u)} R_{\max} \, \leq \, R_{\max} \end{split}$$

upper bound on the coupling c_i :

$$c_i^2 \le \left[\int_0^{u_{\text{max}}} du \frac{f(u)}{c_{i \text{ max}}^2(u)} \right]^{-1}$$

Methodology

$$c_i^2 \le \left[\int_0^{u_{\text{max}}} du \frac{f(u)}{c_{i \text{ max}}^2(u)} \right]^{-1}$$

$$\begin{array}{lll} \left(c^{\rm NT}\right)^2_{\rm max}(u) & \leq & c_*^2 & \qquad & {\rm for} \ \ 0 \leq u \leq \tilde{u} \\ \left(c^{\rm DD}\right)^2_{\rm max}(u) & \leq & c_*^2 & \qquad & {\rm for} \ \ \tilde{u} \leq u \leq u_{\rm max} \end{array}$$

$$c^{2} \leq c_{*}^{2} \left[\int_{0}^{\tilde{u}} du f(u) \right]^{-1} = \frac{c_{*}^{2}}{\delta} \qquad \text{with} \quad \delta = \int_{0}^{\tilde{u}} du f(u)$$

$$c^{2} \leq c_{*}^{2} \left[\int_{\tilde{u}}^{u_{\text{max}}} du f(u) \right]^{-1} = \frac{c_{*}^{2}}{1 - \delta} \qquad \text{with} \quad 1 - \delta = \int_{\tilde{u}}^{u_{\text{max}}} du f(u)$$

$$\Rightarrow \delta = 1/2$$

$$c^{2} \leq 2 c_{*}^{2}$$

Methodology

For a choice of a large $u_{\rm max}$ it may happen that

$$\left(c^{\rm DD}\right)^2_{\rm max}\left(u_{\rm max}\right)>c_*^2$$

[Mainly due to the suppression of the scattering amplitude by the nuclear form factor at large recoil energies (large WIMP speeds)]

$$c^{2} \leq c_{*}^{2} \left[\int_{0}^{\tilde{u}} du f(u) \right]^{-1} = \frac{c_{*}^{2}}{\delta}$$
 $c^{2} \leq (c^{\mathrm{DD}})^{2}_{\mathrm{max}}(u_{\mathrm{max}}) \left[\int_{\tilde{u}}^{u_{\mathrm{max}}} du f(u) \right]^{-1} = \frac{(c^{\mathrm{DD}})^{2}_{\mathrm{max}}(u_{\mathrm{max}})}{1 - \delta}$
 $c^{2} \leq (c^{\mathrm{DD}})^{2}_{\mathrm{max}}(u_{\mathrm{max}}) + c_{*}^{2}$

• A larger escape speed $u_{\rm max}$ (much larger than ~ 800 km/s) is also considered.

Equilibrium between WIMP capture and annihilation in the Sun

Searches for solar ν 's at neutrino telescopes (NTs) put bounds on Γ_{\odot}

$$\frac{d\phi_{\nu}}{dE_{\nu}} = \frac{\Gamma_{\odot}}{4\pi d_{\odot}^{2}} \sum_{f} B_{f} \left(\frac{dN_{\nu}}{dE_{\nu}}\right)_{f}$$

$$\Gamma_{\odot} = (C_{\odot}/2) \tanh^{2}(t_{\odot}/\tau_{\odot})
\frac{t_{\odot}}{\tau_{\odot}} = 330 \left(\frac{C_{\odot}}{\mathrm{s}^{-1}}\right)^{1/2} \left(\frac{\langle \sigma v \rangle}{\mathrm{cm}^{3} \mathrm{s}^{-1}}\right)^{1/2} \left(\frac{m_{\chi}}{10 \, \mathrm{GeV}}\right)^{3/4}$$

For the present sensitivities of IceCube and Super-Kamiokande and assuming $\langle \sigma v \rangle \simeq 3 \times 10^{-26}~{\rm cm^3~s^{-1}}$

$$\frac{t_{\odot}}{\tau_{\odot}} \gg 1$$
 [Equilibrium] $\Rightarrow \Gamma_{\odot} \simeq C_{\odot}/2$

 \Rightarrow The upper-limits on Γ_{\odot} , provided by NTs (assuming a particular WIMP annihilation channel), are converted directly into the upper-limits on C_{\odot} and hence on the WIMP-nucleon couplings that drive C_{\odot}