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■ The third run (Run 3) of the LHC has started from the last year (2022) with
upgraded collision energy.
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Three frontiers of research in particle physics (U.S. DOE Office of Science)

■ The Energy Frontier (to produce new heavy particles):

LHC, Future Colliders (CEPC, FCC-ee, FCC-hh, ILC, Muon Collider, . . . )
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Upper image taken from Barr et al., 1105.2977 (PRD 2011)

■ Basic strategy to search for new heavy particles at high-energy colliders

through dimensionality reduction of collider data by using
�� ��kinematic variables
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■ Applications of the kinematic variables for high-energy colliders

to the Intensity Frontier (to search for rare new physics process)?

▶ Belle/Belle II, LHCb, . . . (aka B- and τ-factories)
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Outline

1. The MT2 and M2 variables

2. Searching for a new invisible particle: τ → ℓ+ ϕ

3. Search for rare B decays: B → Kτµ

4. Conclusions
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Pair production, two invisible particles
■ Pair production of heavy resonances:

�� ��Y1Y2 → v1χ1 + v2χ2

f1

f2

Y1

v1 (p1)

x2 (k2)

x1 (k1)

v2 (p2)

Y2

▶ v: (collections of) visible particles (jets, charged leptons, . . . )

▶ χ: (stable or long-lived) invisible particles (neutrinos, dark matter, . . . )

■ A common decay topology arising in many physics models:

q̃q̃ → qχ̃0
1 + qχ̃0

1, ℓ̃ℓ̃ → ℓχ̃0
1 + ℓχ̃0

1, g̃g̃ → qq̄χ̃0
1 + qq̄χ̃0

1 (supersymmetry),

tt̄ → bℓ+ν + b̄ℓ− ν̄, H → WW∗ → ℓ+ν + ℓ− ν̄ (SM), . . .
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Pair production, two invisible particles: MT2

MT2 = mink1T , k2T∈R2

[
max

{
M1T , M2T

}]
subject to k1T + k2T = /PT

Lester, Summers, PLB (1999), Barr, Lester, Stephens, J. Phys. G (2003).

where MaT are transverse masses,

MaT
2 = (EaT + eaT)

2 − (paT + kaT)
2

= m2
a + M2

χ + 2(EaTeaT − paT · kaT) (a = 1, 2)

■ Why transverse mass?

— because we don’t know the longitudinal components
(kaL).

■ Why max?

— to access the heaviest physics scale of the decay

(the mass of the heaviest parent particle mass, MY ).

■ Why min?

— to get an event-by-event lower bound on MY .

MT2 ≤ MY (if Mχ = Mtrue
χ )

T (measurable)

L 
(u
nk
no
w
n)
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Pair production, two invisible particles: MT2

■ In the current LHC analyses, it often serves as the main variable in searching for
new particles from missing energy events.
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Pair production, two invisible particles: M2

Q: Should we use the transverse mass?

Can we extend it to (1 + 3)-dim and minimize over
three-momenta (kaT , kaL)?

T (measurable)

L 
(u
nk
no
w
n)

?

M2 = min
k1 , k2∈R3

[
max

{
M(p1, k1), M(p2, k2)

}]
subject to k1T + k2T = Pmiss

T

where M(pa, ka) are invariant masses,

M(pa, ka) = (pa + ka)
2 = (Ea + ea)

2 − (pa + ka)
2 (a = 1, 2)

Barr et al., PRD 2011, Cho et al., JHEP 2014

■ We can add more kinematic constraints to the definition of M2

=⇒ a family of M2 variables.

M2 = min
k1 , k2∈R3

[
max

{
M(p1, k1), M(p2, k2)

}]
subject to

{
k1T + k2T = Pmiss

T ,
more constraints
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Pair production, two invisible particles: M2

f1

f2

A1

a1 (p1)

C2 (k2)

C1 (k1)

a2 (p2)

A2

B1

B2

b1 (q1)

b2 (q2)

■ For two-step symmetric decay chains (e.g., dileptonic tt̄) where

MA1 = MA2 , MB1 = MB2 , MC1 = MC2 ,

M2 = min
k1 , k2∈R3

[
max

{
M (p1 + q1, k1, MC) , M (p2 + q2, k2, MC)

}]

subject to


k1T + k2T = Pmiss

T ,

(p1 + q1 + k1)
2= (p2 + q2 + k2)

2,

(q1 + k1)
2= (q2 + k2)

2.

▶ “Constrained” numerical minimization

(Cho et al, ‘OPTIMASS’, JHEP 2016, CBP, ‘YAM2’, CPC 2021)
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Pair production, two invisible particles: M2
■ The distribution of M2 is bounded by MY (∵ min). Furthermore,

MT2 ≤ M2 ≤ MY

■ The addition of kinematic constraints generally increases the value of M2

=⇒ the distribution becomes sharper near the upper edge.
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MT2 = M2XX(least constrained) −→ M2CC(most constrained)
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τ → ℓ+ ϕ
■ Consider a new invisible particle ϕ in the MeV–GeV range.

▶ E.g., axion-like particle,

Lint =
∂µa
2fa

ℓ̄iγ
µ(cV + cAγ5)ℓj

■ Such a light invisible particle can be searched for from lepton flavor violating�� ��τ → ℓ+ ϕ (ℓ = e, µ).

▶ searches performed at

Mark III (SLAC) (1985), ARGUS (DESY) (1995), and Belle II (2212.03634)

by using
�� ��e+e− → τ+τ− data.

▶ At SuperKEKB, σ(e+e− → τ+τ−) = 0.9 nb =⇒ ∼ 5 × 1010 τ pairs for L = 50 ab−1
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τ → ℓ+ ϕ

e+ e-
 τ 

 τ 

 π  π 
 π 

 ν 

 ℓ 
  ϕ

“tag” 

“signal” 

e+ e-
 τ 

 τ 

 π  π 
 π 

 ν 

 ℓ 
 ν  ν 

■ The irreducible SM background:

τ + τ → ℓνν̄ + 3πν

■ Signal and background have the identical event topology:

τsig(→ visible + invisible) + τtag(→ visible + invisible)
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τ → ℓ+ ϕ

e+ e-
 τ 

 τ 

 π  π 
 π 

 ν 

 ℓ 
  ϕ

“tag” 

“signal” 

■ If we could reconstruct the momentum of τsig,

|pℓ| =
m2

τ − m2
ϕ

2mτ
= const. for a given mϕ (∵ two-body kinematics)

in the rest frame of τsig.

▶ At lepton colliders,
√

s is fixed (At Belle,
√

s = 10.58 GeV).

In the center-of-mass (CM) frame of e+e− collision, Eτ ≈
√

s/2, and

pτ =

√
s

2

(
1, p̂τ

√
1 − 4m2

τ

s

)
(p̂τ : the flying direction of τ)

▶
�� ��p̂τ ≈ ? =⇒ How to get approximate τ-rest frame?
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τ → ℓ+ ϕ: ARGUS and thrust method

■ ARGUS method: p̂sig
τ = −p̂3π (∵ p̂sig

τ
CM
= −p̂tag

τ ≈ −p̂3π)

■ Thrust method (the current state-of-the-art): p̂sig
τ = n̂, where n̂ is the thrust axis of

T = max
n̂

∑i |n̂ · pi|
∑i |pi|

(T → 1 for back-to-back and T → 0.5 for spherically symmetric events)

▶ The thrust axis n̂ is used to define the hemisphere of each tau decay products.

e+ e-
 τ 

 τ 

 π  π 
 π 

 ν 

 ℓ 
  ϕ

 pτ ≈ p3π 

e+ e-
 τ 

 τ 

 π  π 
 π 

 ν 

 ℓ 
  ϕ

 pτ ≈ -n 

 n 
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τ → ℓ+ ϕ: ARGUS and thrust method

■ ARGUS method: p̂sig
τ = −p̂3π (∵ p̂sig

τ
CM
= −p̂tag

τ ≈ −p̂3π)

■ Thrust method (the current state-of-the-art): p̂sig
τ = n̂, where n̂ is the thrust axis of

T = max
n̂

∑i |n̂ · pi|
∑i |pi|

(T → 1 for back-to-back and T → 0.5 for spherically symmetric events)

▶ The thrust axis n̂ is used to define the hemisphere of each tau decay products.

from Tenchini et al. (Belle II), ICHEP 2020
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τ → ℓ+ ϕ

e+ e-
 τ 

 τ 

 π  π 
 π 

 ν 

 ℓ 
  ϕ

“tag” 

“signal” 

e+ e-
 τ 

 τ 

 π  π 
 π 

 ν 

 ℓ 
 ν  ν 

■ Signal has two invisibles: ϕ and ν, while background has three invisibles: 3 ν’s.

We should solve the problem of �� ��2 vs 3
(or

�� ��3 vs 4 if τtag → ℓνν̄)

▶ Kinematic features sensitive to the number of invisibles?
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τ → ℓ+ ϕ: MT2

■ The shape of the MT2 distribution depends on the number of invisibles!
(Agashe, Kim, Walker, Zhu, PRD 2011, Giudice, Gripaios, Mahbubani, PRD 2012)
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▶ The smaller the number of invisibles, the more the MT2 distribution is populated towards
the upper edge.

■ How about M2? — How to define M2 for e+e− → ττ → ℓϕ + 3πν?
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τ → ℓ+ ϕ: M2
■ M2 for lepton collider (where

√
s is fixed) Guadagnoli, CBP, Tenchini, PLB 2021:

M2 = min
k1 , k2∈R3

[
max

{
M(p1, k1), M(p2, k2)

}]
subject to

{
k1 + k2 = Pmiss,
(p1 + p2 + k1 + k2)

2 = s.
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■ M2 is an “invisible-savvy” variable.
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τ → ℓ+ ϕ: MAOS method

M2 = min
k1 , k2∈R3

[
max

{
M(p1, k1), M(p2, k2)

}]
subject to

{
k1 + k2 = Pmiss,
(p1 + p2 + k1 + k2)

2 = s.

■ The solution to the minimization can be used to an estimate of the invisible
momenta k1, k2,

kmaos
a ≈ ktrue

a

=⇒ M2-assisted on-shell (MAOS) invisible momenta
(Cho, Choi, Kim, CBP, PRD 2009, Kim, Matchev, Moortgat, Pape, JHEP 2017)

▶ The “M2”-based MAOS momenta are more efficient than the “MT2”-based counterparts.

(Kim, Matchev, Moorgat, Pape, JHEP 2017)
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τ → ℓ+ ϕ: MAOS method

■ With the MAOS momenta we can reconstruct |pℓ| in the rest frame of τsig.

|pℓ| =
m2

τ − m2
ϕ

2mτ

for the signal events.
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▶ The MAOS method performs much better than the thrust method.
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τ → ℓ+ ϕ: Invisible-savvy variables
■ Using kmaos

1, 2 , we can construct the ratio

ξk =
min {|k1|, |k2|}
max {|k1|, |k2|}

∈ [0, 1]

▶ The distribution of ξk is populated around 1 for symmetric decay chains:

this is the case for the ℓνν + ℓνν background.

▶ We can also construct ξp of visible particle momenta.
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▶ Earlier literature proposed “max / min” (∈ [1, ∞], leading to a long distribution tail)

to distinguish 2 and 3 (Agashe, Kim, Walker, Zhu, PRD 2011)
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τ → ℓ+ ϕ: Invisible-savvy variables
■ We also include variables that do not require MAOS momenta.

▶ Mrecoil
2 = (pCMS − p1 − p2)2: invariant mass of the full invisible system

(pCMS = p1 + p2 + k1 + k2).

▶ Backgrounds have more invisibles than the signal =⇒ Mrecoil(bkg) > Mrecoil(sig)

▶ Emiss =
∣∣Pmiss

∣∣ = |k1 + k2| =
∣∣pCMS − p1 − p2

∣∣
▶ the more symmetric the two decay chains (as in ℓνν + ℓνν), the more the invisible momenta

tends to cancel
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τ → ℓ+ ϕ

■ We collectively denote the kinematic variables sensitive to the number of
invisibles

M2, ξk, ξp, Mrecoil, Emiss

as “Invisible-Savvy” or ‘ISy’ classifiers.

▶ We also include pmaos
ℓ and pthrust

ℓ in our analysis.
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(1 × 3: τtag → 3π + ν, 1 × 1: τtag → ℓ+ νν̄)
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τ → ℓ+ ϕ

∫ 𝐿𝑑𝑡 = 100 fb−1
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■ With 3 benchmark Belle II luminosities we
get

BR(τ → eϕ) ≤

5.4 × 10−5
(

L = 0.1 ab−1
)

1.7 × 10−5
(

L = 1 ab−1
)

2.4 × 10−6
(

L = 50 ab−1
)

for mϕ = 1 MeV (95% C.L.).

▶ improvement by a factor of 3 than pthrust
ℓ .
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B → Kτµ
■ “B anomalies” suggest new physics dominantly coupled to the third generation

of down-type fermions (Glashow, Guadagnoli, Lane, PRL 2015).

HNP =
1

ΛNP
b̄LγλbLτ̄LγλτL.

■ Flavor mixing =⇒ dominant effects in b → s transitions and in final states with τ
including lepton-flavor violating ones.

■ These observations were made properly SU(2)L-compliant
(Bhattacharya, Datta, London, Shivashankara, PLB 2015),

thus paving the way for joint explanations of b → s and b → c data
(See also Greljo, Isidori, Marzocca, JHEP 2015).

■ Another avenue is a minimally broken U(2)5 global symmetry
(Barbieri et al., EPJC 2011, JHEP 2012).

■ One of the most dramatic signatures of new physics explaining the B anomalies is�� ��B± → K±τµ

which can be searched at Belle and Belle II.
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B → Kτµ
■ At Belle, B mesons are produced in a pair, e+e− → Υ(4S) → B+B−, and

signal-side : B+
sig → K+

sigτℓsig

tag-side : B−
tag → D0(→ K−

tagπ+)π−

▶ τ decays into the final states including invisible neutrino(s): e.g., τ → πν/ℓνν.

▶ The search reduces to a “bump hunt” by employing
�� ��Mrecoil for τ:

pe+e− = pBsig + pBtag = (pKsigℓsig + pτ) + pBtag

=⇒ M2
recoil = p2

τ = (pe+e− − pKsigℓsig − pBtag )
2

= m2
Btag + m2

Ksigℓsig
− 2

(
EBtag EKsigℓsig + |pBtag

||pKsigℓsig
| cos θ

)
cos θ = p̂Btag

· p̂Ksigℓsig

▶ All quantities are in the CM frame. =⇒ EBsig
= EBsig

=
√

s/2 and pBsig
= −pBtag

.

▶ “Hadronic” tag: pBtag
can be fully reconstructed.

=⇒ we can get event-by-event cos θ value. ©

▶ “Semi-leptonic” (SL) tag: pBtag
CANNOT be reconstructed due to invisible neutrino.

tag-side : B−
tag → D0(→ K−

tagπ+)ℓ− ν̄

How can we get the cos θ value in the SL tag?
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B → Kτµ
■ cos θ ⇐= pBtag

= p2 + k2 ⇐= k2

BsigBtag → V1(p1)χ1(k1) + V2(p2)χ2(k2)

▶ Vi are visible, χi are invisible (sets of) particles.

■ Strategy: construct M2,

M2 = min
k1 , k2

[
max

{
M(1), M(2)

}]
(M2

(i) = (pi + ki)
2)

subject to constraints,

▶ and use the MAOS momenta kmaos
1, 2 as the estimator of k1, 2

=⇒ pBtag
= p2 + kmaos

2 =⇒ cos θ

▶ Which constraints for M2?

■ At lepton colliders (such as Belle),

k1 + k2 = Pmiss, (p1 + p2 + k1 + k2)
2 = s.

M2s = min
k1 , k2

[
max

{
M(1), M(2)

}]
subject to

{
k1 + k2 = Pmiss,
(p1 + p2 + k1 + k2)

2 = s.
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B → Kτµ: M2sB

■ Furthermore, because we know mB,

(p1 + k1)
2 = (p2 + k2)

2 = m2
B,

M2sB = min
k1 , k2

[
max

{
M(1), M(2)

}]

subject to


k1 + k2 = Pmiss,
(p1 + p2 + k1 + k2)

2 = s,
(p1 + k1)

2 = (p2 + k2)
2 = m2

B.

■ The constraints reduce to zero the number of d.o.f.

4 + 4 = 8 unknowns

choose Mχi−−−−−−→ 6
k1+k2=Pmiss
−−−−−−−→ 3

(p1+p2+k1+k2)
2=s−−−−−−−−−−−→ 2

(p1+k1)
2=(p2+k2)

2=m2
B−−−−−−−−−−−−−→ 0

▶ M2sB is not a distribution — its minimum is a solver of the constraint equations.
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B → Kτµ: M2sV
■ At present and upcoming high-intensity colliders, accurate vertex information is

available. =⇒ constraints on the flight direction of parent B,

v̂sig =
rsig − r0∣∣rsig − r0

∣∣
▶ r0: the location of the primary vertex (interaction point),

rsig: the location of the Bsig-decay vertex

▶ The constraint could be implemented as

arccos
(

p̂Bsig
· v̂sig

)
≤ δsig (pBsig

= p1 + k1)

▶ δsig parametrizes the experimental uncertainties of r0 and rsig .

▶ Constraint on v̂tag is redundant since pBtag
= −pBsig

in the CM frame.

M2sV = min
k1, k2

[
max

{
M(1) , M(2)

}]

subject to


k1 + k2 = Pmiss ,
(p1 + p2 + k1 + k2)

2 = s,

arccos
(

p̂Bsig
· v̂sig

)
≤ δsig .

▶ We can omit the “s” constraint if it’s unavailable (such as in LHCb) =⇒ M2V .

▶ For simplicity, we replace the true v̂sig with a vector estimated by smearing r0 and rsig
and take δsig → 0 (inequality → equality constraint).
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B → Kτµ
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■ At Belle and Belle II, the beam has a non-negligible size mostly in the z axis:

At Belle, σIP
z ∼ 4 mm =⇒ v̂sig constraint is ineffectual.

At Belle II, σIP
z ≃ 350 µm (to further improve to 150 µm).

▶ M2sV would be useful when the precise vertex information is available.

■ With some simplifications, we get a 90% CL upper bound:

B(B± → K±τ±µ∓) ≤ 1.2 × 10−5

using M2sB alone at Belle II (L = 710 fb−1).

▶ Cf. If we use the true momenta of invisible particles, B(B± → K±τ±µ∓) ≤ 0.6 × 10−5.
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Outline

1. The MT2 and M2 variables

2. Searching for a new invisible particle: τ → ℓ+ ϕ
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Conclusions

■ The MT2 and its generalizations M2 were conceived fro high-pT events such as
the pair productions of heavy particles.

▶ We port these ideas to low-energy processes at high-intensity colliders.

■ We devise a novel search strategy that we apply to pair productions of τ and B
mesons,

τ → ℓϕ (ϕ : light invisible particle, mϕ in MeV–GeV)

B → Kτµ (rare B decay)

at Belle II.

■ Our strategy has a vast domain of applicability: B → Kνν, B → τµ, etc. at Belle II
and LHCb.
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Thank you for your attention!



Backup
■ In the leptonic decays of τ, we have two neutrinos (cf. τ → πν),

B → Kτµ → Kℓµ + νν̄

▶ A simple ansatz is to take mνν̄ = 0.

■ We can get an approximate mνν̄ value, assuming the back-to-back momentum of
B–B̄ pair is negligible (mB = 5.279 GeV

√
s = 10.58 GeV at Belle II).

1. B is assumed to be at rest, pB = (mB, 0).

2. Boost the B momentum to the LAB frame (pe− = 7 GeV, pe+ = 4 GeV at Belle II).

3. Then, m2
νν̄ = (pB − pKℓµ)

2.
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