

Mapping the SMEFT to UV models for 4F operators

with Ricardo Cepedello, Martin Hirsch and Veronica Sanz

JHEP 09 (2022) 229 || arxiv: 2207.13714

arxiv:2302.03485

Fabian Esser IFIC Universidad de Valencia

HEFT 2023 Manchester 21.06.2023

1. Standard Model Effective Field Theory

Fabian EsserMapping the SMEFT to UV models for 4F operators

Top-down vs bottom-up EFT

Top-down EFT: We know the full theory and want to calculate its effects to a low energy EFT

- \rightarrow e.g. matching the MSSM to SM, probe it at the LHC, ...
- \rightarrow matching well understood and easy to automise

What if we do *NOT* know the full theory?

 \rightarrow *Bottom-up* EFT: Build a tower of UV completions starting from an EFT at low energies

Fabian Esser

SMEFT

• Bottom-up EFT, starting from SM at EW scale \rightarrow **SMEFT**

$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \delta \mathcal{L}^{d \leq 4} + c_5 \mathcal{O}_5 + \sum_i c_{6i} \mathcal{O}_{6i} + \sum_i c_{8i} \mathcal{O}_{8i} + \dots$$

 \rightarrow e.g. 4-fermion operators:

$$\mathcal{L}^{d=6} \supset c_{4F}(\bar{F}F)(\bar{F}F)$$

- Plethora of UV models the SMEFT can be matched to
- We can do global SMEFT fits, but it remains difficult and tedious to systematically list and classify possible UV completions

 \rightarrow need a tool that implements a systematic approach to classify these interesting UV models

 \rightarrow diagrammatic method

2. Motivation

 \rightarrow What class of UV models?

 \rightarrow Why 4F operators?

Fabian EsserMapping the SMEFT to UV models for 4F operators

Motivation - what class of UV models?

Identify classes of UV models which

1. Contribute to precise low-energy measurements

AND

- A. Could be discovered at the LHC (exit case)
- B. Can explain the DM relic abundance from CMB determination (DM case)

Scenarios where information from low-energy precision measurements, collider searches and CMB measurements would be complementary

- Map (parts of the) SMEFT to these UV models
- The tightest SMEFT bounds come from operators involving four fermions (4F)
 → we focus on 4F operators with *no flavour violation, no chirality violation and no B-violation*

4F operators: tree-level vs. 1-loop

New resonances producing 4F operators at **tree-level** are constrained to mass regions of the order of $m > (coupling)^2 \times (multi-TeV)$

In scenarios where 4F are **loop-induced** at leading order the constraints would be reduced by a factor of order $1/16\pi^2$

The new resonances, appearing only at 1-loop, could be much lighter, directly **accessible at colliders**

In this class of scenarios, there is an interplay between low-energy precision measurements and collider searches

Fabian Esser

Method

INSTITUT DE FÍSICA C O R P U S C U L A R

3. *"Mapping" -*The diagrammatic method

Fabian Esser Mapping the SMEFT to UV models for 4F operators

From operators to models

Fabian Esser

Notation: 3.) Insert all possible representations for scalars, Fermion, , fermions and vectors (i.e. specific particles)

From operators to models

→ <u>Model diagrams</u>

scalar, vector / sˈ

SU(3)

From operators to models

Choices for LHC testable UV models

- 1. **Exclude** all models of a 1-loop generated 4F operator whose particle content produce any other 4F operator at **tree-level**
- 2. Must avoid stable charged relics

a) models with **exits** (BSM particles that can decay at tree-level into SM particles): <u>arxiv: 2207.13714</u>

b) models with electrically neutral DM candidates: arxiv:2302.03485

- 3. No internal vectors in the loop
- 4. No SM Yukawa couplings in the loop (suppressed)

4. Example UV models

Fabian EsserMapping the SMEFT to UV models for 4F operators

Patterns and minimal models

Classify three types of scenarios

- Lepton-specific: strong low energy limits
- Quark-specific: interesting at the LHC
- Generic or hybrid

Minimal models:

- Lepton-/Quark-specific: 1 BSM fermion + 1 SM Higgs
- Hybrid models: at least 2 BSM particles

$$\mathcal{L}_{NP} = -\lambda_E \bar{E} L H^{\dagger} - \lambda_U \bar{U} Q H + \text{h.c.} - m_E \bar{E} E - m_U \bar{U} U$$

$$\mathcal{O}_{qq} = \mathcal{O}_{\ell\ell} \qquad SM \qquad Vector-like \qquad Vector-like \\ E = (1, 1, -1) \qquad U = (3, 1, 2/3)$$

$$U = (3, 1, 2/3)$$

Matching

Operator	General expression	
c_{ll}	$-rac{1}{8}rac{1}{16\pi^2}rac{ \lambda_E ^4}{m_E^2}$	
$c_{lq}^{(1)}$	$\frac{1}{8} \frac{1}{16\pi^2} \frac{ \lambda_E ^2 \lambda_U ^2 \log\left(\frac{m_E^2}{m_U^2}\right)}{m_E^2 - m_U^2}$	
$c_{lq}^{(3)}$	$-\frac{1}{8} \frac{1}{16\pi^2} \frac{ \lambda_E ^2 \lambda_U ^2 \log\left(\frac{m_E^2}{m_U^2}\right)}{m_E^2 - m_U^2}$	
$c_{qq}^{(1)}$	$-\frac{1}{16}\frac{1}{16\pi^2}\frac{ \lambda_U ^4}{m_U^2}$	
$c_{qq}^{(3)}$	$-\frac{1}{16}\frac{1}{16\pi^2}\frac{ \lambda_U ^4}{m_U^2}$	

Matching of the boxes (for SM Yukawa = 0), with MatchMakerEFT [*Carmona et al 2022*]

Limit of equal masses and couplings:

$$c_{ll} = -c_{lq}^{(1)} = c_{lq}^{(3)} = 2 c_{qq}^{(1)} = 2 c_{qq}^{(3)}$$

Interplay direct vs. indirect search

Fabian Esser

Summary

- We have focused on identifying UV scenarios leading to *loop-suppressed 4F operators*
- We presented a *diagrammatic approach* to classify the topologies, diagrams and models leading to loop-suppressed 4F operators
- We classified the 4F operators as
 - lepton-specific (strong low energy limits)
 - quark- specific (interesting at colliders)
 or mixed operators to connect with phenomenol
 - or mixed operators to connect with phenomenology
- We found an interesting complementarity between constraints from indirect low-energy constraints and direct searches at the LHC for exits and an interplay between the CMB DM relic abundance for DM models
- Outlook: dim-8!

Thank you!

UNIVERSITY OF MANCHESTER

企

ELEFF

Hallm