Four top quarks in SMEFT

Aoude, HF, Maltoni, Vryonidou, arXiv: 2208.04962

Hesham El Faham University of Manchester

The University of Manchester

HEFT, Manchester 2023

"I would like to live in Manchester, England. The transition between Manchester and death would be unnoticeable."

goodreads

- Mark Twain

"I would like to live in Manchester, England. The transition between Manchester and death would be unnoticeable."

goodreads

– Mark Twain

NOT TRUE!

Status

- Top quark plays a special role in SM and beyond
- So far, no direct signs of beyond the SM physics → effective theories?
- Keep measuring rare processes

Top Quark Production Cross Section Measurements

Status: November 2022

Four tops observed

ATLAS and CMS observe simultaneous production of four top quarks

The ATLAS and CMS collaborations have both observed the simultaneous production of four top quarks, a rare phenomenon that could hold the key to physics beyond the Standard Model

24 MARCH, 2023 | By Naomi Dinmore

Event displays of four-top-quark production from ATLAS (left) and CMS (right).

SMEFT in a nutshell

https://en.wikipedia.org/wiki/Four Tops

Four tops in SMEFT

Frederix, Pagani, Zaro, arXiv: 1711.02116

What did we need?

Courtesy of Ramon Winterhalder

Automated one-loop computations in the SMEFT

Céline Degrande,^{1,*} Gauthier Durieux,^{2,†} Fabio Maltoni,^{1,3,‡} Ken Mimasu,^{1,§} Eleni Vryonidou,^{4,¶} and Cen Zhang^{5,6,**}

What did we need?

Céline Degrande,^{1, *} Gauthier Durieux,^{2, †} Fabio Maltoni,^{1, 3, ‡}

Ken Mimasu,^{1,§} Eleni Vryonidou,^{4,¶} and Cen Zhang^{5,6,**}

Automated one-loop computations in the SMEFT

Four tops in SMEFT: interference

Four tops in SMEFT: interference

Degrande, Durieux, Maltoni, Mimasu, Vryonidou, Zhang, arXiv: 2008.11743

			4-heavy		
$\mathcal{O}_{QQ}^{_1}$	cQQ1	$2[C_{qq}^{(1)}]^{3333} - \frac{2}{3}[C_{qq}^{(3)}]^{3333}$	$\mathcal{O}^{\mathrm{s}}_{QQ}$	cQQ8	$8[C_{qq}^{(3)}]^{3333}$
$\mathcal{O}_{Qt}^{_1}$	cQt1	$[C^{(1)}_{qu}]^{3333}$	\mathcal{O}_{Qt}^{8}	cQt8	$[C_{qu}^{(8)}]^{3333}$
\mathcal{O}_{tt}^{1}	ctt1	$[C^{(1)}_{uu}]^{3333}$			

Aoude, HF, Maltoni, Vryonidou, arXiv: 2208.04962

Electroweak contributions are important

Who said what?

- Cao, Chen, Liu, arXiv: 1602.01934 ".. be careful at LO SM"
- Frederix, Pagani, Zaro, arXiv: 1711.02116
 ".. be careful at NLO SM"
- Degrande, Durieux, Maltoni, Mimasu, Vryonidou, Zhang, arXiv: 2008.11743
 ".. be careful at SMEFT for some operators"
- Aoude, HF, Maltoni, Vryonidou, arXiv: 2208.04962 "..we are being careful at SMEFT for all operators"

.. and a lot of other work considering four-fermion operators/ four tops in SMEFT [arXiv:1010.6304, 1708.05928, 1903.07725, 2010.05915, 2104.09512, ..]

And for all dimension-six operators..

	$\sigma_{SM}^{tttt}(LO) =$	6.46 <i>fb</i> @ v	/ <u>s</u> = 13TeV	/		2-h	eavy 2-l	ight $\sigma_{Int.}$	[fb]						
NCL-	0.07	0.34	0.25	0.39	0.14	0.21	0.13	0.07	-0.11	-0.07	-0.11	-0.05	-0.06	-0.06	- 0.3
σ3 -	0.08	0.28	0.20	0.32	0.11	0.18	0.10	-0.04	-0.14	-0.08	-0.13	-0.05	-0.09	-0.05	- 0.2
σ2 -	-0.02	0.02	0.02	0.04	0.02	0.01	0.01	0.08	0.02	0.01	0.02	0.00	0.02	-0.01	- 0.1
σ1 -	0.01	0.04	0.03	0.04	0.01	0.02	0.01	0.02	0.01	0.00	0.01	-0.00	0.01	-0.00	- 0.0
σ ₀ -	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	-0.00	0.00	-0.00	0.1
	cQq83	cQq81	cQu8	ctq8	cQd8	ctu8	ctd8	cQq13	cQq11	cQu1	ctq1	cQd1	ctu1	ctd1	

And for all dimension-six operators..

And for all dimension-six operators: summary

16

...where sub-leading interference is important

On the interference structure

On the interference structure

On the interference structure

Color-singlets feature 'stronger' subleading interference structure

On the interference structure: summary

solid: subleading interference, dashed: leading one

Toy fits and bounds

			4-heavy		
\mathcal{O}_{QQ}^{1}	cQQ1	$2[C_{qq}^{(1)}]^{3333} - \frac{2}{3}[C_{qq}^{(3)}]^{3333}$	$\mathcal{O}^{\mathrm{s}}_{QQ}$	cQQ8	$8[C_{qq}^{(3)}]^{3333}$
$\mathcal{O}_{Qt}^{_1}$	cQt1	$[C^{(1)}_{qu}]^{3333}$	\mathcal{O}_{Qt}^{8}	cQt8	$[C_{qu}^{(8)}]^{3333}$
\mathcal{O}_{tt}^{1}	ctt1	$[C^{(1)}_{uu}]^{3333}$			

Aoude, HF, Maltoni, Vryonidou, arXiv: 2208.04962

Electroweak contributions are important

			4-heavy		
\mathcal{O}_{QQ}^{1}	cQQ1	$2[C_{qq}^{(1)}]^{3333} - rac{2}{3}[C_{qq}^{(3)}]^{3333}$	$\mathcal{O}^{\mathrm{s}}_{QQ}$	cQQ8	$8[C_{qq}^{(3)}]^{3333}$
\mathcal{O}_{Qt}^1	cQt1	$[C^{(1)}_{qu}]^{3333}$	\mathcal{O}_{Qt}^{8}	cQt8	$[C_{qu}^{(8)}]^{3333}$
\mathcal{O}_{tt}^{1}	ctt1	$[C^{(1)}_{uu}]^{3333}$			

Differential information is important

Aoude, HF, Maltoni, Vryonidou, arXiv: 2208.04962

			4-heavy		
\mathcal{O}_{QQ}^{1}	cQQ1	$2[C_{qq}^{(1)}]^{3333} - rac{2}{3}[C_{qq}^{(3)}]^{3333}$	$\mathcal{O}^{\mathrm{s}}_{QQ}$	cQQ8	$8[C_{qq}^{(3)}]^{3333}$
\mathcal{O}_{Qt}^1	cQt1	$[C^{(1)}_{qu}]^{3333}$	\mathcal{O}_{Qt}^{8}	cQt8	$[C_{qu}^{(8)}]^{3333}$
\mathcal{O}_{tt}^1	ctt1	$[C^{(1)}_{uu}]^{3333}$			

Differential information is important FCC-hh provides a good handle

Aoude, HF, Maltoni, Vryonidou, arXiv: 2208.04962

Double insertions

Double insertions of dimension-six

Constraining qqtt operators from four-top production: a case for enhanced EFT sensitivity^{*}

Cen Zhang(张岑)¹

¹ Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

Abstract: Recently, experimental collaborations have reported $\mathcal{O}(10)$ upper limits on the signal strength of fourtop production at the LHC. Surprisingly, we find that the constraining power of four-top production on the qqtttype of operators is already competitive with the measurements of top-pair production, even though the precision level of the latter is more than two orders of magnitude better. This is explained by the enhanced sensitivity of the four-top cross section to qqtt operators, due to multiple insertion of operators in the squared amplitude, and to the large threshold energy of four-top production. We point out that even though the dominant contribution beyond

Reminder and a question $\mathcal{A} = \mathcal{A}_{\rm SM} + \frac{1}{\Lambda^2} \mathcal{A}_{(\rm d6)} + \frac{1}{\Lambda^4} \left(\mathcal{A}_{(\rm d6)^2} + \mathcal{A}_{(\rm d8)} \right)$ $d\sigma = d\sigma_{\rm SM} + \frac{1}{\Lambda^2} d\sigma_{\rm int} + \frac{1}{\Lambda^4} \left(d\sigma_{\rm quad} + d\sigma_{\rm dbl} + d\sigma_{\rm d8} \right)$

$$d\sigma_{\text{quad}} \sim |\mathcal{A}_{(\text{d6})}|^2, \qquad d\sigma_{\text{dbl}} \sim |\mathcal{A}_{\text{SM}} \mathcal{A}_{(\text{d6})^2}|, \qquad d\sigma_{\text{d8}} \sim |\mathcal{A}_{\text{SM}} \mathcal{A}_{(\text{d8})}|$$

Reminder and a question $\mathcal{A} = \mathcal{A}_{\rm SM} + \frac{1}{\Lambda^2} \mathcal{A}_{(\rm d6)} + \frac{1}{\Lambda^4} \left(\mathcal{A}_{(\rm d6)^2} + \mathcal{A}_{(\rm d8)} \right)$ $d\sigma = d\sigma_{\rm SM} + \frac{1}{\Lambda^2} d\sigma_{\rm int} + \frac{1}{\Lambda^4} \left(d\sigma_{\rm quad} + d\sigma_{\rm dbl} + d\sigma_{\rm d8} \right)$

$$d\sigma_{\text{quad}} \sim |\mathcal{A}_{(\text{d6})}|^2$$
, $d\sigma_{\text{dbl}} \sim |\mathcal{A}_{\text{SM}} \mathcal{A}_{(\text{d6})^2}|$, $d\sigma_{\text{d8}} \sim |\mathcal{A}_{\text{SM}} \mathcal{A}_{(\text{d8})}|$
Are those competitive in four tops? $d\sigma_{\text{d8}} \sim |\mathcal{A}_{\text{SM}} \mathcal{A}_{(\text{d8})}|$

Double insertions of dimension-six

2-heavy 2-light at $c_i = 1$								
		$\sqrt{s} = 13 \text{ TeV}$,	$\sqrt{s} = 100 \text{ TeV}$			
\mathcal{O}_i	$ \mathcal{A}_1 ^2$ [fb]	$\sum_k \mathscr{O}(\mathcal{A}_2)_k$ [fb]	ratio	$ \mathcal{A}_1 ^2$ [fb]	$\sum_k \mathscr{O}(\mathcal{A}_2)_k$ [fb]	ratio		
$\mathcal{O}^{3,8}_{Qq}$	0.27	0.01	0.04	6.40	0.40	0.06		
$\mathcal{O}_{Qq}^{1,8}$	0.28	0.05	0.18	6.36	0.63	0.10		
\mathcal{O}_{Qu}^{8}	0.21	0.03	0.14	5.34	0.50	0.09		
${\cal O}^8_{tq}$	0.34	0.06	0.18	8.44	0.76	0.09		
\mathcal{O}_{Qd}^{8}	0.13	0.03	0.23	3.13	0.35	0.11		
${\cal O}^{8}_{tu}$	0.17	0.03	0.18	3.97	0.41	0.10		
${\cal O}^{8}_{td}$	0.10	0.02	0.20	2.18	0.27	0.12		
$\mathcal{O}_{Qq}^{3,1}$	1.84	0.15	0.08	46.98	5.49	0.12		
$\mathcal{O}_{Qq}^{1,1}$	1.84	0.08	0.04	47.35	0.81	0.02		
\mathcal{O}_{Qu}^{1}	1.14	0.06	0.05	29.94	2.83	0.09		
${\cal O}^1_{tq}$	1.80	0.14	0.08	46.54	6.33	0.14		
\mathcal{O}_{Qd}^{1}	0.70	0.08	0.11	17.55	2.15	0.12		
${\cal O}^1_{tu}$	1.11	0.04	0.04	29.10	2.48	0.09		
${\cal O}^{\scriptscriptstyle 1}_{td}$	0.68	0.05	0.07	17.44	1.79	0.10		

Ratios of double insertions to quadratic contributions

Given the bounds by SMEFiT [2105.00006]

Double insertions of dimension-six

	$ ext{2-heavy 2-light at } c_i{=}1$								
		$\sqrt{s} = 13 \text{ TeV}$			$\sqrt{s} = 100 \text{ TeV}$				
\mathcal{O}_i	$ \mathcal{A}_1 ^2$ [fb]	$\sum_k \mathscr{O}(\mathcal{A}_2)_k$ [fb]	ratio	$ \mathcal{A}_1 ^2$ [fb]	$\sum_k \mathscr{O}(\mathcal{A}_2)_k$ [fb]	ratio	_		
$\mathcal{O}_{Qq}^{3,8}$	0.27	0.01	0.04	6.40	0.40	0.06	•		
$\mathcal{O}_{Qq}^{1,8}$	0.28	0.05	0.18	6.36	0.63	0.10			
\mathcal{O}_{Qu}^{8}	0.21	0.03	0.14	5.34	0.50	0.09			
\mathcal{O}^8_{tq}	0.34	0.06	0.18	8.44	0.76	0.09			
\mathcal{O}^{8}_{Qd}	0.13	0.03	0.23	3.13	0.35	0.11			
\mathcal{O}^{8}_{tu}	0.17	0.03	0.18	3.97	0.41	0.10			
${\cal O}^{8}_{td}$	0.10	0.02	0.20	2.18	0.27	0.12			
$\mathcal{O}_{Qq}^{3,1}$	1.84	0.15	0.08	46.98	5.49	0.12			
$\mathcal{O}_{Qq}^{1,1}$	1.84	0.08	0.04	47.35	0.81	0.02			
\mathcal{O}_{Qu}^{1}	1.14	0.06	0.05	29.94	2.83	0.09			
\mathcal{O}_{tq}^{1}	1.80	0.14	0.08	46.54	6.33	0.14			
\mathcal{O}_{Qd}^{1}	0.70	0.08	0.11	17.55	2.15	0.12			
${\cal O}^1_{tu}$	1.11	0.04	0.04	29.10	2.48	0.09			
${\cal O}^{\scriptscriptstyle 1}_{td}$	0.68	0.05	0.07	17.44	1.79	0.10			

Ratios of double insertions to quadratic contributions

Given the bounds by SMEFiT [2105.00006]

qq-initiated remain constrained somewhere else

Summary

- subleading interference in SMEFT is key for four tops
- differential information are important for four-fermion operators
- 2H2L are better constrained somewhere else