Precision LHC processes to $\mathcal{O}(1/\Lambda^4)$

Adam Martin (<u>amarti41@nd.edu</u>)

HEFT2023, June 19, 2023

Looking for heavy new physics

Looking for heavy new physics

In SMEFT framework

Determining Λ is THE goal of the SMEFT strategy — it's the scale where you build the next collider

Want to know Λ as well as we can ...

In SMEFT framework

What's the impact from $1/\Lambda^4$ corrections?

SMEFT Warsaw basis: $\mathcal{O}(60)$ operators at dim-6 (flavor universal) $\mathcal{O}(1000)$ operators at dim-8

Why do $1/\Lambda^4$?

- it's a form of uncertainty; 'theory error' on extracted scale Λ (loop $\times 1/\Lambda^2$ vs. $1/\Lambda^4$? Effect changes with energy, so role of $1/\Lambda^4$ different for inclusive xsec vs. high energy bins)
 - there are instances where $1/\Lambda^4$ can have an exaggerated impact
 - Hierarchy in coefficients, either from e.g. tree/loop origin or impact of existing constraints
 - Polarization mismatch suppresses $1/\Lambda^2$ interference
 - New kinematics

With **geoSMEFT** organization, can actually calculate $1/\Lambda^4$ without drowning in operators!

Why do $1/\Lambda^4$?

- it's a form of uncertainty; 'theory error' on extracted scale Λ (loop $\times 1/\Lambda^2$ vs. $1/\Lambda^4$? Effect changes with energy, so role of $1/\Lambda^4$ different for inclusive xsec vs. high energy bins)
 - there are instances where $1/\Lambda^4$ can have an exaggerated impact
 - Hierarchy in coefficients, either from e.g. tree/loop origin or impact of existing constraints
 - Polarization mismatch suppresses $1/\Lambda^2$ interference
 - New kinematics

With **geoSMEFT** organization, can actually calculate 1/ drowning in operators!


```
[2001.01453 Helset, AM, Trott]
```

<u>geoSMEFT:</u>

Generic ops have the form $D^a H^b \bar{\psi}^c \psi^d F^x$

While total # grows exponentially with mass dimension, # operators that can contribute to 2-, 3- particle vertices stays small, nearly constant

1.) can't have too many non-Higgs fields

2.) can be smart about where to put derivatives (IBP, EOM)

 $\mathcal{O}(D^4H^4): \qquad (\Box H^{\dagger}H)(\Box H^{\dagger}H) \qquad (DH^{\dagger})(DH)(DH^{\dagger})(DH)$

geoSMEFT:

Generic ops have the form $D^a H^b \bar{\psi}^c \psi^d F^x$

While total # grows exponentially with mass dimension, # operators that can contribute to 2-, 3- particle vertices stays small, nearly constant

3.) kinematics for 2-,3- body interactions is trivial

e.g.
$$D_{\mu}H(D^{\mu}\bar{\psi})\psi$$

 $\sim (p_{H}\cdot p_{\bar{\psi}})H\bar{\psi}\psi$
 $\sim \left(\frac{m_{\psi}^{2}-m_{H}^{2}-m_{\bar{\psi}}^{2}}{2}\right)H\bar{\psi}\psi$
 $p_{H}+p_{\bar{\psi}}+p_{\psi}=0$

1 1

Just changes coefficient of $H\bar{\psi}\psi$: <u>not</u> a new operator structure

geoSMEFT: Allowed 2, 3-pt structures:

[+ versions with G^A]

$$\begin{split} h_{IJ}(\phi)(D_{\mu}\phi)^{I}(D_{\mu}\phi)^{J}, \quad g_{AB}(\phi)\mathcal{W}^{A}_{\mu\nu}\mathcal{W}^{B,\mu\nu} \\ k^{A}_{IJ}(\phi)(D_{\mu}\phi)^{I}(D_{\nu}\phi)^{J}\mathcal{W}^{\mu\nu}_{A}, \quad f_{ABC}(\phi)\mathcal{W}^{A}_{\mu\nu}\mathcal{W}^{B,\nu\rho}\mathcal{W}^{C,\mu}_{\rho}, \\ Y(\phi)\bar{\psi}_{1}\psi_{2}, \quad L_{I,A}(\phi)\bar{\psi}_{1}\gamma^{\mu}\tau_{A}\psi_{2}(D_{\mu}\phi)^{I}, \quad d_{A}(\phi)\bar{\psi}_{1}\sigma^{\mu\nu}\psi_{2}\mathcal{W}^{A}_{\mu\nu}, \end{split}$$

Can't have derivatives in them, so only thing left is $H^{\dagger}H/\Lambda^2\equiv\phi^2$

Additionally, # of possible EW structures for the functions saturates

Ex.) h_{IJ} multiplies two doublets: can either be singlet = δ_{IJ} , or triplet. Can be worked out to <u>all orders</u> in ϕ !

geoSMEFT: Allowed 2, 3-pt structures:

[+ versions with G^A]

$$\begin{split} h_{IJ}(\phi)(D_{\mu}\phi)^{I}(D_{\mu}\phi)^{J}, \quad g_{AB}(\phi)\mathcal{W}^{A}_{\mu\nu}\mathcal{W}^{B,\mu\nu} \\ k^{A}_{IJ}(\phi)(D_{\mu}\phi)^{I}(D_{\nu}\phi)^{J}\mathcal{W}^{\mu\nu}_{A}, \quad f_{ABC}(\phi)\mathcal{W}^{A}_{\mu\nu}\mathcal{W}^{B,\nu\rho}\mathcal{W}^{C,\mu}_{\rho}, \\ Y(\phi)\bar{\psi}_{1}\psi_{2}, \quad L_{I,A}(\phi)\bar{\psi}_{1}\gamma^{\mu}\tau_{A}\psi_{2}(D_{\mu}\phi)^{I}, \quad d_{A}(\phi)\bar{\psi}_{1}\sigma^{\mu\nu}\psi_{2}\mathcal{W}^{A}_{\mu\nu}, \end{split}$$

Can't have derivatives in them, so only thing left is $H^{\dagger}H/\Lambda^2\equiv\phi^2$

Ex.)
$$h_{IJ} = \left[1 + \phi^2 C_{H\Box}^{(6)} + \sum_{n=0}^{\infty} \left(\frac{\phi^2}{2} \right)^{n+2} \left(C_{HD}^{(8+2n)} - C_{H,D2}^{(8+2n)} \right) \right] \delta_{IJ} + \frac{\Gamma_{A,J}^I \phi_K \Gamma_{A,L}^K \phi^L}{2} \left(\frac{C_{HD}^{(6)}}{2} + \sum_{n=0}^{\infty} \left(\frac{\phi^2}{2} \right)^{n+1} C_{H,D2}^{(8+2n)} \right) \right]$$

Dim-6 : 2 terms Dim-8+: 2 terms

Flat 'metric' in SM, curved in SMEFT. Geometric perspective -> geoSMEFT

[Burgess, Lee, Trott '10, Alonso, Jenkins, Manohar '15, '16] More recently [Cohen et al '22, Cheung et al '21, '22, Helset et al '22]

geoSMEFT at work:

SMEFT phenomenology for processes involving 2, 3-pt interactions now doable to any order in v^2/Λ^2

Specifically, $\mathcal{O}(1/\Lambda^4)$ easily calculated for a large set of processes

<u>4+-pt interactions: can we go 'full metric'?</u>

Key part of 2- and 3-pt result is that special kinematics made all momentum products trivial

No longer true at \geq 4-pt interactions, i.e. for 4-pt: $\mathcal{O} \sim s^n t^m$

→ infinite set of higher derivative operators can contribute, so we can't find 'all orders' results

Need to add results at each new mass dimension 'by hand'...

Can still manipulate derivatives to minimize # operators

dim-8 effects enter $\mathcal{O}(1/\Lambda^4)$ by interfering with SM, therefore need to match SM helicity/color/flavor structure

If we only care about energy enhanced effects, # is even smaller, easy to identify for a given process via derivative/vev/ propagator counting

In practice means # of `by-hand' operators is small for many relevant n = 4 processes

[though need a 'geoSMEFT compliant basis... neither 2005.00009 Murphy or 2005.00008 Li et al are!]

Redo classic SMEFT LEP1 analysis to $\mathcal{O}(1/\Lambda^4)$

Using:

$$\tilde{C}^{(6)} = C^{(6)} \frac{v^2}{\Lambda^2}, \tilde{C}^{(8)} = C^{(8)} \frac{v^4}{\Lambda^4}$$

$g_{\rm eff,pr}^{\mathcal{Z},\psi}$	=	$\frac{\bar{g}_Z}{2} \left[(2s_{\theta_Z}^2 Q_{\psi} - \sigma_3) \delta_{pr} + \bar{v}_T \langle L_{3,4}^{\psi,pr} \rangle + \sigma_3 \bar{v}_T \langle L_{3,3}^{\psi,pr} \rangle \right]$
	=	$\langle g_{\mathrm{SM,pr}}^{\mathcal{Z},\psi} \rangle + \langle g_{\mathrm{eff,pr}}^{\mathcal{Z},\psi} \rangle_{\mathcal{O}(v^2/\Lambda^2)} + \langle g_{\mathrm{eff,pr}}^{\mathcal{Z},\psi} \rangle_{\mathcal{O}(v^4/\Lambda^4)} + \cdots$

SMEFT correc	ctions in $\{\hat{m}_W,$	$\hat{m}_Z, \hat{G}_F\}/\{\hat{lpha}, \hat{m}_Z\}$	$Z, \hat{G}_F \}$ scheme	
$\mathcal{O}(rac{v^4}{\Lambda^4})$	$\langle g_{\mathrm{eff,pp}}^{\mathcal{Z},u_R} \rangle$	$\langle g_{ ext{eff,pp}}^{\mathcal{Z},d_R} angle$	$\langle g_{\mathrm{eff,pp}}^{\mathcal{Z},\ell_R} angle$	
$\langle g_{ ext{eff}}^{\mathcal{Z},\psi} angle^2$	14/5.5	-27/-11	-9.1/-3.6	
$\tilde{C}_{HB} C_{HWB}$	-0.21/0.39	0.10/-0.19	0.31/-0.58	
\tilde{C}_{HD}^2	0.28 / -0.026	-0.14/0.013	-0.42/0.040	
$ ilde{C}_{HD} ilde{C}_{H\psi}^{(6)}$	-0.83/-0.19	-0.83/-0.19	-0.83/-0.19	
$\tilde{C}_{HD}\tilde{C}_{HWB}$	0.59/-0.19	-0.29/0.097	-0.88/0.29	
$\tilde{C}_{HD} \langle g_{\text{eff}}^{\mathcal{Z},\psi} \rangle$	4.0/0.50	4.0/0.50	4.0/0.50	
$(ilde{C}_{H\psi}^{(6)})^2$	0.62/1.4	-1.2/-2.8	-0.42/-0.93	
$\tilde{C}_{HWB} \tilde{C}^{(6)}_{H\psi}$	-0.69/0.58	-0.69/0.58	-0.69/0.58	
$ ilde{C}_{H\psi}^{(6)} \langle g_{ ext{eff}}^{\mathcal{Z},\psi} angle$	-6.7/-5.8	13/12	4.5/3.9	
$\tilde{C}_{HWB} \langle g_{\text{eff}}^{\mathcal{Z},\psi} \rangle$	3.7/0.26	3.7/0.26	3.7/0.26	
$\tilde{C}_{HW} C_{HWB}$	-0.21/0.39	0.10/-0.19	0.31/-0.58	
$ ilde{C}^{(8)}_{HD}$	-0.014/0.026	0.0069/-0.013	0.021/-0.040	
$ ilde{C}^{(8)}_{HD,2}$	-0.21/0.026	0.10/-0.013	0.31/-0.040	
$ ilde{C}^{(8)}_{H\psi}$	0.19/0.19	0.19/0.19	0.19/0.19	
$ ilde{C}_{HW.2}^{(8)'}$ 13	-0.38, [210	2.02819 Corb	ett, Helset, AN	Л, Tro
~ (0)		1		

Redo classic SMEFT LEP1 analysis to $\mathcal{O}(1/\Lambda^4)$

e Z	f
	ĴZţţ
e ^g Zee	ŕf

Using:

$$\tilde{C}^{(6)} = C^{(6)} \frac{v^2}{\Lambda^2}, \tilde{C}^{(8)} = C^{(8)} \frac{v^4}{\Lambda^4}$$

Lowest order. Excludes 4-fermi terms, dipole operators.

$g_{\mathrm{eff,pr}}^{\mathcal{Z},\psi}$	=	$\frac{\bar{g}_Z}{2} \left[(2s_{\theta_Z}^2 Q_{\psi} - \sigma_3) \delta_{pr} + \bar{v}_T \langle L_{3,4}^{\psi,pr} \rangle + \sigma_3 \bar{v}_T \langle L_{3,3}^{\psi,pr} \rangle \right]$
	=	$\langle g_{\mathrm{SM,pr}}^{\mathcal{Z},\psi} \rangle + \langle g_{\mathrm{eff,pr}}^{\mathcal{Z},\psi} \rangle_{\mathcal{O}(v^2/\Lambda^2)} + \langle g_{\mathrm{eff,pr}}^{\mathcal{Z},\psi} \rangle_{\mathcal{O}(v^4/\Lambda^4)} + \cdots$

SMEFT correc	etions in $\{\hat{m}_W, \hat{m}_W, \hat$	$\hat{m}_Z, \hat{G}_F\}/\{\hat{lpha}, \hat{m}_Z\}$	$Z, \hat{G}_F \}$ scheme	
$\mathcal{O}(rac{v^4}{\Lambda^4})$	$\langle g_{\mathrm{eff,pp}}^{\mathcal{Z},u_R} angle$	$\langle g_{\mathrm{eff,pp}}^{\mathcal{Z},d_R} angle$	$\langle g_{\mathrm{eff},\mathrm{pp}}^{\mathcal{Z},\ell_R} angle$	
$\langle g_{\mathrm{eff}}^{\mathcal{Z},\psi} angle^2$	14/5.5	-27/-11	-9.1/-3.6	
$\tilde{C}_{HB} C_{HWB}$	-0.21/0.39	0.10/-0.19	0.31/-0.58	
\tilde{C}^2_{HD}	0.28 / -0.026	-0.14/0.013	-0.42/0.040	
$ ilde{C}_{HD} ilde{C}^{(6)}_{H\psi}$	-0.83/-0.19	-0.83/-0.19	-0.83/-0.19	
$\tilde{C}_{HD}\tilde{C}_{HWB}$	0.59/-0.19	-0.29/0.097	-0.88/0.29	
$\tilde{C}_{HD} \langle g_{\text{eff}}^{\mathcal{Z},\psi} \rangle$	4.0/0.50	4.0/0.50	4.0/0.50	
$(\tilde{C}_{H\psi}^{(6)})^2$	0.62/1.4	-1.2/-2.8	-0.42/-0.93	
$\tilde{C}_{HWB} \tilde{C}^{(6)}_{H\psi}$	-0.69/0.58	-0.69/0.58	-0.69/0.58	
$ ilde{C}_{H\psi}^{(6)} \langle g_{ ext{eff}}^{\mathcal{Z},\psi} angle$	-6.7/-5.8	13/12	4.5/3.9	
$\tilde{C}_{HWB} \left\langle g_{\text{eff}}^{\mathcal{Z},\psi} \right\rangle$	3.7/0.26	3.7/0.26	3.7/0.26	
$\tilde{C}_{HW}C_{HWB}$	-0.21/0.39	0.10/-0.19	0.31/-0.58	
$ ilde{C}^{(8)}_{HD}$	-0.014/0.026	0.0069/-0.013	0.021/-0.040	
$ ilde{C}^{(8)}_{HD,2}$	-0.21/0.026	0.10/-0.013	0.31/-0.040	
$ ilde{C}^{(8)}_{H\psi}$	0.19/0.19	0.19/0.19	0.19/0.19	
$ ilde{C}_{HW,2}^{(8)}$ 13	-0.38, [210]	2.02819 Corbo	ett, Helset, AN	/I, Tro
~ (0)	1		I	

<u>Redo classic SMEFT LEP1 analysis to \mathcal{O}(1/\Lambda^4)</u>

Ex.) 2D projections: Zero all dimension-6 operators except two but leave all dimension-8 on with coefficients +1. Fix Λ , then compare χ^2 ellipses with and without dimension-8 terms

Truncation error: Combining SM loops with $\mathcal{O}(1/\Lambda^4)$

Can combine $\mathcal{O}(1/\Lambda^4)$ with $\mathcal{O}(1/\Lambda^2) \times \text{SM}$ loop. Worked out for $gg \to h, \ h \to \gamma\gamma = \text{key processes for SMEFT global fit.}$

[NNPDF3.0, w/ $\mu = \mu_F = m_h$, BFM, \hat{m}_W scheme]

[2107.07470 Corbett, AM, Trott] [2305.05879 AM, Trott]

Truncation error: Combining SM loops with $\mathcal{O}(1/\Lambda^4)$

$$\begin{split} \frac{\Gamma_{SMEFT}^{\hat{m}_W}}{\Gamma_{SM}^{\hat{m}_W}} &\simeq 1 - 788 f_1^{\hat{m}_W}, \\ &+ 394^2 \, (f_1^{\hat{m}_W})^2 - 351 \, (\tilde{C}_{HW}^{(6)} - \tilde{C}_{HB}^{(6)}) \, f_3^{\hat{m}_W} + 2228 \, \delta G_F^{(6)} \, f_1^{\hat{m}_W}, \\ &+ 979 \, \tilde{C}_{HD}^{(6)} (\tilde{C}_{HB}^{(6)} + 0.80 \, \tilde{C}_{HW}^{(6)} - 1.02 \, \tilde{C}_{HWB}^{(6)}) - 788 \left[\left(\tilde{C}_{H\Box}^{(6)} - \frac{\tilde{C}_{HD}^{(6)}}{4} \right) \, f_1^{\hat{m}_W} + f_2^{\hat{m}_W} \right], \\ &+ 2283 \, \tilde{C}_{HWB}^{(6)} (\tilde{C}_{HB}^{(6)} + 0.66 \, \tilde{C}_{HW}^{(6)} - 0.88 \, \tilde{C}_{HWB}^{(6)}) - 1224 \, (f_1^{\hat{m}_W})^2, \\ &- 117 \, \tilde{C}_{HB}^{(6)} - 23 \, \tilde{C}_{HW}^{(6)} + \left[51 + 2 \log \left(\frac{\hat{m}_h^2}{\Lambda^2} \right) \right] \, \tilde{C}_{HWB}^{(6)} + \left[-0.55 + 3.6 \log \left(\frac{\hat{m}_h^2}{\Lambda^2} \right) \right] \, \tilde{C}_W^{(6)}, \\ &+ \left[27 - 28 \log \left(\frac{\hat{m}_h^2}{\Lambda^2} \right) \right] \, \operatorname{Re} \, \tilde{C}_{uB}^{(6)} + 5.5 \operatorname{Re} \, \tilde{C}_{uH}^{(6)} + 2 \, \tilde{C}_{H\Box}^{(6)} - \frac{\tilde{C}_{HD}^{(6)}}{2}, \\ &- 3.2 \, \tilde{C}_{HD}^{(6)} - 7.5 \, \tilde{C}_{HWB}^{(6)} - 3 \, \sqrt{2} \, \delta G_F^{(6)}. \end{split}$$

$$\begin{split} \delta G_F^{(6)} &= \frac{1}{\sqrt{2}} \left(\tilde{C}_{Hl}^{(3)} + \tilde{C}_{Hl}^{(3)} - \frac{1}{2} (\tilde{C}'_{\ \ \mu e e \mu} + \tilde{C}'_{\ \ e \mu \mu e}) \right), \\ f_1^{\hat{m}_W} &= \left[\tilde{C}_{HB}^{(6)} + 0.29 \ \tilde{C}_{HW}^{(6)} - 0.54 \ \tilde{C}_{HWB}^{(6)} \right], \\ f_2^{\hat{m}_W} &= \left[\tilde{C}_{HB}^{(8)} + 0.29 \ (\tilde{C}_{HW}^{(8)} + \tilde{C}_{HW,2}^{(8)}) - 0.54 \ \tilde{C}_{HWB}^{(8)} \right], \\ f_3^{\hat{m}_W} &= \left[\tilde{C}_{HW}^{(6)} - \tilde{C}_{HB}^{(6)} - 0.66 \ \tilde{C}_{HWB}^{(6)} \right], \end{split}$$

Combined result informs on how assumptions about coefficients affect uncertainty

Truncation error: Combining SM loops with $\mathcal{O}(1/\Lambda^4)$

Coefficient choice: i.e. $C_{GH}^{(6)}$ vs. $g_3^2 C_{GH}^{(6)}$ intertwines loop and SMEFT expansions!

$$\begin{split} \frac{\Gamma_{SMEFT}^{\hat{m}_W}}{\Gamma_{SM}^{\hat{m}_W}} &\simeq 1 - 788 f_1^{\hat{m}_W}, \\ &+ 394^2 \, (f_1^{\hat{m}_W})^2 - 351 \, (\tilde{C}_{HW}^{(6)} - \tilde{C}_{HB}^{(6)}) \, f_3^{\hat{m}_W} + 2228 \, \delta G_F^{(6)} \, f_1^{\hat{m}_W}, \\ &+ 979 \, \tilde{C}_{HD}^{(6)} (\tilde{C}_{HB}^{(6)} + 0.80 \, \tilde{C}_{HW}^{(6)} - 1.02 \, \tilde{C}_{HWB}^{(6)}) - 788 \left[\left(\tilde{C}_{H\Box}^{(6)} - \frac{\tilde{C}_{HD}^{(6)}}{4} \right) \, f_1^{\hat{m}_W} + f_2^{\hat{m}_W} \right], \\ &+ 2283 \, \tilde{C}_{HWB}^{(6)} (\tilde{C}_{HB}^{(6)} + 0.66 \, \tilde{C}_{HW}^{(6)} - 0.88 \, \tilde{C}_{HWB}^{(6)}) - 1224 \, (f_1^{\hat{m}_W})^2, \\ &- 117 \, \tilde{C}_{HB}^{(6)} - 23 \, \tilde{C}_{HW}^{(6)} + \left[51 + 2 \log \left(\frac{\hat{m}_h^2}{\Lambda^2} \right) \right] \, \tilde{C}_{HWB}^{(6)} + \left[-0.55 + 3.6 \log \left(\frac{\hat{m}_h^2}{\Lambda^2} \right) \right] \, \tilde{C}_W^{(6)}, \\ &+ \left[27 - 28 \log \left(\frac{\hat{m}_h^2}{\Lambda^2} \right) \right] \, \operatorname{Re} \, \tilde{C}_{uB}^{(6)} + 5.5 \operatorname{Re} \, \tilde{C}_{uH}^{(6)} + 2 \, \tilde{C}_{H\Box}^{(6)} - \frac{\tilde{C}_{HD}^{(6)}}{2}, \\ &- 3.2 \, \tilde{C}_{HD}^{(6)} - 7.5 \, \tilde{C}_{HWB}^{(6)} - 3 \, \sqrt{2} \, \delta G_F^{(6)}. \end{split}$$

$$\begin{split} \delta G_F^{(6)} &= \frac{1}{\sqrt{2}} \left(\tilde{C}_{Hl}^{(3)} + \tilde{C}_{Hl}^{(3)} - \frac{1}{2} (\tilde{C}'_{\ \ \mu e e \mu} + \tilde{C}'_{\ \ e \mu \mu e}) \right), \\ f_1^{\hat{m}_W} &= \left[\tilde{C}_{HB}^{(6)} + 0.29 \ \tilde{C}_{HW}^{(6)} - 0.54 \ \tilde{C}_{HWB}^{(6)} \right], \\ f_2^{\hat{m}_W} &= \left[\tilde{C}_{HB}^{(8)} + 0.29 \ (\tilde{C}_{HW}^{(8)} + \tilde{C}_{HW,2}^{(8)}) - 0.54 \ \tilde{C}_{HWB}^{(8)} \right], \\ f_3^{\hat{m}_W} &= \left[\tilde{C}_{HW}^{(6)} - \tilde{C}_{HB}^{(6)} - 0.66 \ \tilde{C}_{HWB}^{(6)} \right], \end{split}$$

Combined result informs on how assumptions about coefficients affect uncertainty

<u>Sneaky large dimension-8 effects: $h \rightarrow \gamma \gamma$ </u>

 $h \rightarrow \gamma \gamma$ affected by $H^{\dagger}HF^2$ at dim-6, $(H^{\dagger}H)^2F^2$ at dim-8.

Former are 'loop-level', while latter `tree-level', following classification of [Arzt'93, Craig et al '20] (weakly coupled UV completion)

Ex.) pick random values, study impact

 $loop = \mathcal{O}(0.01)$ tree = $\mathcal{O}(1)$

Large effect from dim-8, as coefficient hierarchy compensates for extra powers of v^2/Λ^2

[explicit UV example = kinetically mixed U(1): 2007.00565 Hays, Helset, AM, Trott]

Sneaky large dimension-8 effects: VH

[2306.00053 Corbett, AM]

Effects at large \hat{s} controlled by: $Q^{\dagger} \bar{\sigma}^{\mu} \tau^{I} Q H^{\dagger} \overleftrightarrow{D}_{I} H$ interference $\sim g_{SM}^{2} \frac{\hat{s}}{\Lambda^{2}}$ squared $\sim \frac{\hat{s}^{2}}{\Lambda^{4}}$ And

 $Q^{\dagger} \bar{\sigma}^{\mu} \tau^{I} D_{\nu} Q D^{\mu} H^{\dagger} \tau_{I} D_{\{\mu,\nu\}} H$ interference ~ $g_{SM}^{2} \frac{\hat{s}^{2}}{\Lambda^{4}}$

both contribute to V_L polarization, dominant SM piece

Sneaky large dimension-8 effects: VH

But, $Q^{\dagger} \bar{\sigma}^{\mu} \tau^{I} Q H^{\dagger} \overleftrightarrow{D}_{I} H$ etc. are constrained by LEP, while $Q^{\dagger} \bar{\sigma}^{\mu} \tau^{I} D_{\nu} Q D^{\mu} H^{\dagger} \tau_{I} D_{\{\mu,\nu\}} H$ are not

complying with those constraints, large \hat{s} is a window into dim-8

Sneaky large dimension-8 effects: diboson

Sneaky large dimension-8 effects: diboson

See also Degrande 2303.10493

But: dim 8 $(Q^{\dagger} \bar{\sigma}^{\mu} \tau^{I} \overleftrightarrow{D}_{\nu} Q) W^{I}_{\mu\rho} B_{\rho\nu}$ can interfere with dominant SM polarization

 $SM \times \text{dim-8} \sim \frac{s^2}{\Lambda^4}$

∴ tails tell you about the sum, not just C_W

Motivates polarization studies, 'taggers'

[Kim, AM in progress]

[similar behavior for $W^{\pm}Z$]

So where does this leave us?

- geoSMEFT: approach where 2 and 3 particle vertices sensitive to a minimal # of operators, # ~ constant with mass dimension. Physics with 2-, 3-particle vertices doable to any order in v/Λ (tree level)
- Can study select processes to $1/\Lambda^4$, use them to form guidelines for how to include truncation error more generally in SMEFT studies

Several key processes for global fits already known to $1/\Lambda^4$

Resonant
$$2 \rightarrow 2$$
: $gg \rightarrow h \rightarrow \gamma\gamma$, $pp \rightarrow Z \rightarrow \bar{f}f$

Drell Yan, $pp \rightarrow Vh$; diboson in progress

ready for use/study

[ex. 2109.05595 AM, Trott]

So where does this leave us?

Expanding the list of processes:

geoSMEFT pieces have same kinematics at dim 6 and 8
 ... can capture many effects by reweighing:

Only need to add contact terms/novel kinematics

- I've focused on 'bottom up' results, but top down also important [Dawson et al 2110.06929, 2205.01561, Mimasu et al 2304.06663]
- Interplay with positivity bounds?

Thank you!

[see also Boughezal et al 2106.05337, 2207.01703, Allwicher et al 2207.10714]

New kinematics from dimension-8

new spherical harmonics in angular distribution of Drell Yan show up at dimension-8 [2003.1615 Alioli et al]

$$\begin{aligned} \frac{d\sigma}{dm_{ll}^2 dy d\Omega_l} &= \frac{3}{16\pi} \frac{d\sigma}{dm_{ll}^2 dy} \left\{ (1+c_{\theta}^2) + \frac{A_0}{2} (1-3c_{\theta}^2) + A_0 (1-3c_{\theta}^2) + A_0$$

<u>**Redo classic SMEFT LEP1 analysis to** $\mathcal{O}(1/\Lambda^4)$ </u>

Ex.) 2D projections: Zero all dimension-6 operators except two but leave all dimension-8 on with coefficients +1. Fix Λ , then compare χ^2 ellipses with and without dimension-8 terms

Example: $L_{I,A}(\phi)\overline{\psi}_1\gamma^{\mu}\tau_A\psi_2(D_{\mu}\phi)^I$

contributing operators

$$\begin{array}{l} \mathcal{Q}_{H\psi}^{1,(6+2n)} = (H^{\dagger}H)^{n}H^{\dagger}\overset{\leftrightarrow}{i}\overrightarrow{D}^{\mu}H\overline{\psi}_{p}\gamma_{\mu}\psi_{r}, \\ \mathcal{Q}_{H\psi}^{3,(6+2n)} = (H^{\dagger}H)^{n}H^{\dagger}\overset{\leftrightarrow}{i}\overrightarrow{D}_{a}^{\mu}H\overline{\psi}_{p}\gamma_{\mu}\sigma_{a}\psi_{r}, \\ \mathcal{Q}_{H\psi}^{2,(8+2n)} = (H^{\dagger}H)^{n}(H^{\dagger}\sigma_{a}H)H^{\dagger}\overset{\leftrightarrow}{i}\overrightarrow{D}^{\mu}H\overline{\psi}_{p}\gamma_{\mu}\sigma_{a}\psi_{r}, \\ \mathcal{Q}_{H\psi}^{2,(8+2n)} = (H^{\dagger}H)^{n}(H^{\dagger}\sigma_{c}H)H^{\dagger}\overset{\leftrightarrow}{i}\overrightarrow{D}_{b}^{\mu}H\overline{\psi}_{p}\gamma_{\mu}\sigma_{a}\psi_{r}, \\ \mathcal{Q}_{H\psi}^{6,(8+2n)} = \epsilon_{bc}^{a}(H^{\dagger}H)^{n}(H^{\dagger}\sigma_{c}H)H^{\dagger}\overset{\leftrightarrow}{i}\overrightarrow{D}_{b}^{\mu}H\overline{\psi}_{p}\gamma_{\mu}\sigma_{a}\psi_{r}. \end{array} \right\} \begin{array}{c} \text{higher dim. versions} \\ \text{of ``class 7''} \\ \text{operators} \\ \text{operators} \\ \text{operators} \\ \text{from } d \geq 8 \end{array}$$

compact form for connection:

$$\begin{split} L_{J,A}^{\psi,pr} &= -(\phi \,\gamma_4)_J \delta_{A4} \sum_{n=0}^{\infty} C_{H\psi}^{1,(6+2n)} \left(\frac{\phi^2}{2}\right)^n - (\phi \,\gamma_A)_J (1-\delta_{A4}) \sum_{n=0}^{\infty} C_{H\psi_L}^{3,(6+2n)} \left(\frac{\phi^2}{2}\right)^n \\ &+ \frac{1}{2} (\phi \,\gamma_4)_J (1-\delta_{A4}) \left(\phi_K \Gamma_{A,L}^K \phi^L\right) \sum_{n=0}^{\infty} C_{H\psi_L}^{2,(8+2n)} \left(\frac{\phi^2}{2}\right)^n \\ &+ \frac{\epsilon_{BC}^A}{2} (\phi \,\gamma_B)_J \left(\phi_K \Gamma_{C,L}^K \phi^L\right) \sum_{n=0}^{\infty} C_{H\psi_L}^{\epsilon,(8+2n)} \left(\frac{\phi^2}{2}\right)^n \end{split}$$

What can we do with this? `EW inputs'

With geoSMEFT setup, can set EW inputs to <u>all orders</u>:

 $e, g_Z, \sin^2 \theta_Z \longrightarrow \text{functions of } g, g', h_{IJ}, g_{AB}$

$$\bar{g}_{2} = g_{2} \sqrt{g}^{11} = g_{2} \sqrt{g}^{22},$$

$$\bar{g}_{Z} = \frac{g_{2}}{c_{\theta_{Z}}^{2}} \left(c_{\bar{\theta}} \sqrt{g}^{33} - s_{\bar{\theta}} \sqrt{g}^{34} \right) = \frac{g_{1}}{s_{\theta_{Z}}^{2}} \left(s_{\bar{\theta}} \sqrt{g}^{44} - c_{\bar{\theta}} \sqrt{g}^{34} \right),$$

$$\bar{e} = g_{2} \left(s_{\bar{\theta}} \sqrt{g}^{33} + c_{\bar{\theta}} \sqrt{g}^{34} \right) = g_{1} \left(c_{\bar{\theta}} \sqrt{g}^{44} + s_{\bar{\theta}} \sqrt{g}^{34} \right),$$

$$for equation is a standard structure of the standard$$

$$\bar{m}_W^2 = \frac{\bar{g}_2^2}{4} \sqrt{h_{11}}^2 \bar{v}_T^2, \qquad \bar{m}_Z^2 = \frac{\bar{g}_Z^2}{4} \sqrt{h_{33}}^2 \bar{v}_T^2 \qquad \bar{m}_A^2 = 0.$$

[Helset, Martin, Trott 2001.01453]