Shedding new light on Bosonic Dark Matter with X-ray and Gravitational-Wave observations of Neutron Stars

Davood Rafiei Karkevandi

ICRANet-Isfahan, Isfahan University of Technology, Iran

S. Shakeri, **D.R. K**, **Bosonic Dark Matter in Light of the NICER Precise Mass-Radius Measurements** arXiv:2210.17308v2 (Submitted to PRD)

The new version will be appeared on arXiv in the following month

D.R. K, S. Shakeri, V. Sagun, O. Ivanytskyi, **Phys. Rev. D 105, 023001 (2022),** [arXiv:2109.03801v2]

D.R. K, S. Shakeri, V. Sagun, O. Ivanytskyi, **Sixteenth Marcel Grossmann Meeting**, MG16 Proceedings, [arXiv:2112.14231]

University of Coimbra, Portugal University of Wroclaw, Poland

Violetta Sagun Oleksii Ivanytskyi

Soroush Shakeri

Isfahan University of Technology, Iran ICRANet-Isfahan, Iran

Neutron stars as a natural laboratory for high density matter

DENSE MATTER

Neutron stars get denser with depth. Although researchers have a good sense of the composition of the outer layers, the ultra-dense inner core remains a mystery.

Inner crust Free neutrons and electrons, heavier atomic nuclei

Outer core Neutron-rich quantum liquid

Inner core Unknown, ultra-dense matter

Core scenarios

 $\frac{dM(r)}{dr} = \frac{4\pi r^2 \varepsilon(r)}{c^2}$

Mass: 1.4 – 2 solar mass $(M\odot)$

Radius: 11 – 13 km

$$
\frac{dP(r)}{dr} = -\frac{GM(r)\varepsilon(r)}{c^2r^2} \left[1 + \frac{P(r)}{\varepsilon(r)}\right] \left[1 + \frac{4\pi r^3 P(r)}{M(r)c^2}\right] \left[1 - \frac{2GM(r)}{c^2r}\right]^{-1}
$$

Tolman-Oppenheimer-Volkof (TOV) equations

R. C. Tolman, Phys. Rev. 55, 364 (1939). J. R. Oppenheimer and G. M. Volko, Phys. Rev. 55,374 (1939).

A number of possibilities have been suggested for the inner core, including these three options.

 0000 000 \bullet 0000 000 \circ \circ $\begin{array}{ccc} 0 & 0 & 0 & 0 \end{array}$

Quarks The constituents of protons and neutrons - up and down quarks - roam freely.

Bose-Einstein condensate Particles such as pions containing an up quark and an anti-down quark combine to form a single quantum-mechanical entity.

O Up quark **O** Strange quark O Down quark C Anti-down quark

Hyperons Particles called hyperons form. Like protons and neutrons, they contain three quarks but include 'strange' quarks.

A. Mann, Nature (London) 579, 20 (2020)

X-ray and Gravitational-Wave (GW) observations of neutron stars

X-ray pulse profile of hot spots on neutron stars surface

Neutron star Interior Composition ExploreR (NICER)

Measuring Mass and Radius

Gravitational waves of neutron stars merger

GW 170817 LIGO & Virgo GW detectors

Measuring Tidal deformability

Gravitationally stable astrophysical objects composed of dark matter

Fermionic or Bosonic dark matter even with self-interaction

Dark Star Boson or Fermion star

Andrea Maselli, et al. **PRD 96, 023005 (2017)** Joshua Eby, et al. **JHEP 02 (2016) 028** G. Narain, J. Schaffner-Bielich, et al. **PRD 74, 063003 (2006)** Chris Kouvaris, et al. **PRD 92 (2015) 6, 063526** P.A.Seoane, J.Barranco, A.Bernal, L. Rezzolla, **JCAP 11 (2010) 002**

Dark matter admixed neutron star/white dwarf

A. Nelson**,** S. Reddy, D. Zhou, **JCAP07(2019)012** John Ellis, et al**. PRD 97, 123007 (2018)** Y.Dengler**,** J. Schaffner-Bielich, L. Tolos, **PRD 105 (2022) 4, 043013** S.-C. Leung, et al. **PRD 87, 123506 (2013)** C.J. Horowitz**, PRD 102 (2020) 8, 083031**

Dark matter (DM) admixed neutron star (NS)

Accretion of

DM into a NS

Neutron decay anomaly

Accumulation of DM by a star or a NS during its life time

DM production in the NS matter or supernova explosions

NS exists in a dense halo or region of DM or passes through it (Near the center of galaxy)

A) Progenitor B) Main sequence (MS) star, C) Supernova explosion & formation of a proto-NS D) Equilibrated NS

Dark star as an accretion center of baryonic matter

John Ellis, et al. PRD 97, 123007 (2018) A. Nelson, S. Reddy, D. Zhou, JCAP07(2019)012 A. Del Popolo, et al. Universe 6 (2020) 12, 222

O. Ivanytskyi, V. Sagun, I. Lopes. PRD 102, 063028 (2020) **D.R. Karkevandi***, S. Shakeri, V. Sagun, O. Ivanytskyi, PRD 105, 023001 (2022) Raul Ciancarella, et al. Phys.Dark Univ. 32 (2021) 100796*

DM capture by NS in a binary system including Dark star or Dark star – NS merger

> *S. Shirke, S. Ghosh, D. Chatterjee, L. Sagunski, J. Schaffner-Bielich, arXiv:2305.05664 Ang Li, et al. astropartphys.2012.07.006 W. Husain, T. F. Motta, A.W. Thomas, JCAP 10 (2022) 028*

065044 PRD. 99, 043011 (2019) D. Singh, A. Gupta , E. Berti , S. Reddy , B. S. Sathyaprakash, Phys.Rev.D 107 (2023) 8, 083037

N. F. Bell, A. Melatos, K. Petraki, Phys.Rev.D 87 (2013) 12, 123507

Gravitational waves signals

H. C. Das, Ankit Kumar , et al. Mon.Not.Roy.Astron.Soc. 57 (2021) 4053

Black hole formation inside NSs Numerical simulation of compact objects

M. Emma, F. Schianchi , F. Pannarale , V. Sagun , T. Dietrich, Particles 5 (2022) 3, 273-286 Andreas Bauswein, et al. Phys.Rev.D 107 (2023) 8, 083002

> **Mass-Radius profile , Tidal deformability and moment of inertia**

Pulse profile modeling

Z. Miao, Y. Zhu, Ang Li, F. Huang, Ap.J. 936 (2022) 1, 69 S. Shakeri, **D.R. K**, *arXiv:2210.17308v2*

S. Shirke, S. Ghosh, D. Chatterjee, L. Sagunski, J. Schaffner-Bielich, arXiv:2305.05664 Pinku Routray et al. *Phys. Rev. D 107, 103039 (2023) John Ellis, et al. Phys.Lett.B 781 (2018) 607-610*

1.8

 $2.0\,$

2.2

 1.6

 $M(M_{\odot})$

 $\left(\mathrm{kHz}\right)$

ڇ

 $1.0\,$

 $k^{\rm DM}_{\ell}=0.00\,\,{\rm GeV}\,$ $k_{\epsilon}^{\rm DM} = 0.01~\rm GeV$

 $k^{\rm DM}_{\ell}=0.02\,\,{\rm GeV}\,$ $k_{\rm \ell}^{\rm DM} = 0.03~\rm GeV$ $k^{\rm DM}_{\scriptscriptstyle \cal F} = 0.04 \; {\rm GeV}$

 $k_\tau^\mathrm{DM} = 0.05\,\, \mathrm{GeV}$

 $1.4\,$

 $1.2\,$

Baryonic matter and dark matter equation of states

Two-fluid DM admixed NS

BM and DM fluids interact only gravitationally

$$
G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = 8\pi (T^{\mu\nu}_{DM} + T^{\mu\nu}_{BM})
$$

Energy-momentum tensors are conserved separately

Two-fluid Tolman-Oppenheimer-Volkof equation

P. Ciarcelluti & F. Sandin. Phys.Lett. B695:19-21,2011. F. Sandin & P. Ciarcelluti. Astropart.Phys.32:278-284,2009.

dp_B	$-(p_B + \varepsilon_B) \frac{m + 4\pi r^3 p}{r (r - 2m)}$	dp_B	dp_B	$m(r) = \int_0^r 4\pi r^2 \varepsilon_B + \int_0^r 4\pi r^2 \varepsilon_D$						
Q_B	Q_B	Q_B	Q_B	Q_B	Q_B	Q_B	Q_B			
Q_B	Q_B	Q_B	Q_B	Q_B	Q_B	Q_B				
Q_B	Q_B	Q_B	Q_B	Q_B	Q_B	Q_B				
Q_B	Q_B	Q_B	Q_B	Q_B						
Q_B	Q_B	Q_B	Q_B	Q_B	Q_B	Q_B	Q_B	Q_B	Q_B	Q_B
Q_B	Q_B	Q_B	Q_B	Q_B						
Q_B	Q_B	Q_B	Q_B	Q_B	<math< th=""></math<>					

Three Possible DM distributions within NSs

DM halo

D.R. Karkevandi, S. Shakeri, V. Sagun, O. Ivanytskyi, The Proceedings of Sixteenth Marcel Grossmann Meeting (MG16), [arXiv:2112.14231]

Two-fluid TOV → **Energy density profile of a DM admixed NS**

Solid lines: DM fluid (R_D) Dashed lines: BM fluid (R_B)

DM core and DM halo formation in the mixed compact object

A transition can be seen from DM core to DM halo formation

S. Shakeri, **D.R. K**, *arXiv:2210.17308v2*

Tidal deformability of DM admixed NSs

Gray solid line : $M = 1.4 M\odot$ Gray dashed line: $\Lambda = 580$

 $\Lambda = \frac{2}{3}$

 $\frac{1}{3}k_2$

 \boldsymbol{R}

5

<u>М</u>

Black solid line: Only BM (without DM)

1000

 \lt

DM core ⇒ Decreases tidal deformability

DM halo ⇒ Increases tidal deformability

admixed NSs in comparison to the pure baryonic NS

Considering multi-messenger constraints from GW and X-ray observations

M. C. Miller, *et al.* **2021** *ApJL* **918 L28**

S. Huth et al. *Nature 606 (2022) 276-280.* LIGO Scientific and Virgo Collaborations T. E. Riley, *et al.* **2021** *ApJL* **918 L27** Tim Dietrich, et al. *Science 370 (2020) 652.*

Phys.Rev.Lett. **121 (2018) 16**

investigating the possible DM fraction (F_γ) inside DM admixed NSs and probing the bosonic DM model parameters (m_y, λ)

Scan over the $\overline{F}_{\chi} - m_{\chi}$ **parameter space of DM admixed NSs for** $\lambda = \pi$

Low DM fractions in NSs $\mathbf{F}_{\gamma} \leq 5\%$, are **favorable for sub-GeV bosonic particles in strong coupling regime.**

D.R. K, S. Shakeri, V. Sagun, O. Ivanytskyi, *Phys. Rev. D 105, 023001 (2022)*

Scan over the $\lambda - m_{\chi}$ parameter space of DM admixed NSs for $\mathbf{F}_{\chi} = 5\%$

It is seen that the $\lambda - m_{\chi}$ **parameter space of bosonic DM is significantly limited by the astrophysical constraints of NSs.**

S. Shakeri, **D.R. K**, *arXiv:2210.17308v2*

Scan over the $\lambda - m_{\gamma}$ parameter space of DM admixed NSs for $F_{\gamma} = 10\%$

For $F_\gamma \gtrsim 5\%$ the **Sub-GeV bosonic particles in strong self-coupling regime are not consistent** with $M_{T_{max}}$, $R_{1.4}$ and $\Lambda_{1.4}$ constraints.

S. Shakeri, **D.R. K**, *arXiv:2210.17308v2*

Pulse profile modeling as a novel probe for DM halo formation around NSs

X-ravs

 $\mathfrak{t}\mathfrak{t}\mathfrak{h}$ X-ravs

X-ray hot spots on NSs surface

The effect of compactness on the visible surface

Gravitational light bending due to the curved space-time in the vicinity of NSs surface.

PSR J0030+0451, NASA's Neutron star Interior Composition ExploreR (NICER)

The impact of Gravity on the X-ray pulse profile

Credit: NASA's Goddard Space Flight Center Conceptual Image Lab

Neutron star Interior Composition ExploreR (NICER)

PSR J0030+0451 light curve (pulse profile)

M. C. Miller *et al* **2021** *ApJL* **918 L28 T. E. Riley** *et al* **2021** *ApJL* **918 L27**

By coupling such lightcurve models to a sampler, one can use Bayesian inference to derive posterior probability distributions for mass and radius, or the EOS parameters, directly from pulse profile data.

The effect of compactness on the pulse profile of neutron stars

As the photons propagate through the curved space-time of the star, information about mass and radius is encoded into the shape of the waveform (pulse profile) via special and general relativistic effects.

The effect of compactness on the pulse profile of DM admixed NSs with DM halo

DM halo around NSs changes the compactness of the object

DM halo alters the geometry outside the visible surface of the star

The light propagation will be affected due to the halo of DM

Visible surface is increasing with the compactness C_1 C_2 C_3 $C_1 > C_2 > C_3$ $M = 1.4 M_{\odot}$ For all cases

We need to determine the metric function g(r) outside the surface of NS by taking into **account the DM halo contribution**

 $g(r) = f(r)^{-1} = 1 - 2M(r)/r$

 R_B **R_D** We assume a

spherically symmetric nonrotating space-time (Schwarzschild metric) outside R_B

 $M_T(R_D) = 1.4 M\odot$ for all of the cases, thus for an **observer outside the DM halo, the mixed objects are similar to a star with total mass 1.4** M \odot **.**

S. Shakeri, **D.R. K**, *arXiv:2210.17308v2*

The pulse profile of DM admixed NSs

The fall and grow of the flux as a function of the rotational phase is due to changing the position of the spot compare to a distant observer, **the minimum flux corresponds to the far-side position**.

The **depth of the minimums** crucially depends on the **compactness,** *the less compact object gives more deeper minimum*.

The deviation of the minimums of the fluxes compare to the pure NS is a remarkable signature of the DM halo.

Our results show that the **DM admixed NSs** could be considered **as a novel possibility** in the **Pulse Profile modeling** and **numerical simulation codes** to interpret X-ray observations of compact objects during the **(Bayesian) analysis** of NICER, STROBE-X and eXTP telescopes.

S. Shakeri, **D.R. K**, *arXiv:2210.17308v2*

Exotic measurements

THE ASTROPHYSICAL JOURNAL LETTERS, 896:L44 (20pp), 2020 June 20

GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object

Article | Published: 24 October 2022

A strangely light neutron star within a supernova $M = 0.77 M\odot$, $R = 10.4 km$

Victor Doroshenko^I, Valery Suleimanov, Gerd Pühlhofer & Andrea Santangelo

<u>Nature Astronomy</u> 6, 1444–1451 (2022) <u>Cite this article</u>

PRD. 105, 063005 APJ. 922 (2021) 242 PRD. 104, 063028 (2021) arXiv:2306.12326 arXiv:2307.12748

Optical observations of Neutron Stars

Iranian National Observatory (INO) 3.4 meter optical telescope *3600m above the sea level*

Iranian National Observatory (INO), the largest home-grown scientific facility project, has recorded the first light image of its 3.4m optical telescope on October 2022.

'The door is open': Iranian astronomers seek collaborations for their new, world-class telescope.

Science NAAAS

Thank you very much for your attention and also for organizing this outstanding conference

