Hot β-equilibrium hadronic matter in the neutrino-trapped regime within the framework of Relativistic Mean-Field theory

> Grigor Alaverdyan galaverdyan@ysu.am Yerevan State University

The Modern Physics of Compact Stars and Relativistic Gravity 2023 12-16 September 2023, Yerevan, Armenia

Research Outline

- Hot Hadronic Matter within the $RMF_{\sigma\omega\delta\rho}$ Model
 - Constituent composition and QHD Lagrangian density of many-particle system
 - Mean-field approximation
 - Equations for thermodynamic quantities
 - Computational scheme and numerical results
- Quark Matter within the SU(3) Local NJL Model
 - Constituent composition and Lagrangian density of many-particle system
 - Equations for thermodynamic quantities
 - Computational scheme and numerical results
- Phase transition (Maxwell construction)
 - Parameters of first-order phase transition in neutrino-trapped regime
 - Phase diagram, Critical endpoint

Hadronic Matter Description in Quantum Hadrodynamics (QHD)

Constituents: n, p, e, v_e, μ, v_μ

Lagrangian density: $\mathcal{L}_{HM} = \mathcal{L}_{Had} + \mathcal{L}_{Lept}$

$$\begin{aligned} \mathcal{L}_{Had} &= \overline{\psi_N} \left[\gamma^{\mu} \left(i\partial_{\mu} - g_{\omega} \omega_{\mu}(x) - \frac{1}{2} g_{\rho} \vec{\tau}_N \vec{\rho}_{\mu}(x) \right) \right] - \left(m_N - g_{\sigma} \sigma(x) - g_{\delta} \vec{\tau}_N \vec{\delta}(x) \right) \right] \psi_N + \\ &+ \frac{1}{2} \left(\partial_{\mu} \sigma(x) \partial^{\mu} \sigma(x) - m_{\sigma}^2 \sigma(x)^2 \right) - U(\sigma(x)) + \frac{1}{2} m_{\omega}^2 \omega_{\mu}(x) \omega^{\mu}(x) - \frac{1}{4} \Omega_{\mu\nu}(x) \Omega^{\mu\nu}(x) + \\ &+ \frac{1}{2} \left(\partial_{\mu} \vec{\delta}(x) \partial^{\mu} \vec{\delta}(x) - m_{\delta} \vec{\delta}(x)^2 \right) + \frac{1}{2} m_{\rho}^2 \vec{\rho}_{\mu}(x) \vec{\rho}^{\mu}(x) - \frac{1}{4} \mathcal{R}_{\mu\nu}(x) \mathcal{R}^{\mu\nu}(x) \end{aligned}$$

$$\mathcal{L}_{Lept} = \sum_{i=e,\nu_e,\mu,\nu_{\mu}} \overline{\psi_i} (i\gamma^{\mu}\partial_{\mu} - m_i)\psi_i$$

Meson fields: $\sigma(x)$, $\omega_{\mu}(x)$, $\vec{\delta}(x)$, $\vec{\rho}_{\mu}(x)$ $x = x_{\mu} = (t, x, y, z)$

$$U(\sigma) = \frac{b}{3} (g_{\sigma}\sigma)^{2} + \frac{c}{4} (g_{\sigma}\sigma)^{3}$$
$$\Omega_{\mu\nu}(x) = \partial_{\mu}\omega_{\nu}(x) - \partial_{\nu}\omega_{\mu}(x),$$
$$\Re_{\mu\nu}(x) = \partial_{\mu}\rho_{\nu}(x) - \partial_{\nu}\rho_{\mu}(x).$$

Mean-Field Approximation

$$g_{\sigma}\overline{\sigma} \equiv \sigma, \quad g_{\omega}\overline{\omega}_{0} \equiv \omega, \quad g_{\delta}\overline{\delta}^{(3)} \equiv \delta, \qquad g_{\rho}\overline{\rho}^{(3)} \equiv \rho,$$
$$\left(\frac{g_{\sigma}}{m_{\sigma}}\right)^{2} \equiv a_{\sigma}, \quad \left(\frac{g_{\omega}}{m_{\omega}}\right)^{2} \equiv a_{\omega}, \quad \left(\frac{g_{\delta}}{m_{\delta}}\right)^{2} \equiv a_{\delta}, \quad \left(\frac{g_{\rho}}{m_{\rho}}\right)^{2} \equiv a_{\mu}$$

Euler-Lagrange equations for meson mean fields

$$\sigma = a_{\sigma} \left(n_{sn} + n_{sp} - b \sigma^{2} - c \sigma^{3} \right)$$
$$\omega = a_{\omega} n_{B}$$
$$\delta = -a_{\delta} \left(n_{sn} - n_{sp} \right)$$
$$\rho = -\frac{1}{2} a_{\rho} n_{B} \alpha$$

Scalar density of nucleons

$$n_{si} = \frac{m_i^{(eff)}}{\pi^2} \int_0^\infty \frac{k^2 dk}{\sqrt{k^2 + m_i^{(eff)^2}}} (f_i^N - f_{ai}^N) \quad (i = p, n)$$

Number density of nucleons

$$n_{i} = \frac{1}{\pi^{2}} \int_{0}^{\infty} k^{2} dk (f_{i}^{N} - f_{ai}^{N}) \qquad (i = p, n)$$

Baryon number density: $n_B = n_n + n_p$ Asymmetry parameter: $\alpha = (n_n - n_p)/n_B$

 $m_n^{(eff)} = m_N - \sigma + \delta \qquad m_p^{(eff)} = m_N - \sigma - \delta$ $\mu_n^{(eff)} = \mu_n - \omega + \rho/2 \qquad \mu_p^{(eff)} = \mu_p - \omega - \rho/2$

Energy density

 $\varepsilon = \varepsilon_H + \varepsilon_L$

$$\varepsilon_{H} = \sum_{i=p,n} \frac{1}{\pi^{2}} \int_{0}^{\infty} k^{2} \sqrt{k^{2} + m_{n}^{(eff)^{2}}} (f_{i}^{N} + f_{ai}^{N}) dk + U(\sigma) + \frac{1}{2} \left(\frac{\sigma^{2}}{a_{\sigma}} + \frac{\omega^{2}}{a_{\omega}} + \frac{\delta^{2}}{a_{\delta}} + \frac{\rho^{2}}{a_{\rho}}\right)$$
$$\varepsilon_{L} = \sum_{i=e,\mu} \frac{1}{\pi^{2}} \int_{0}^{\infty} k^{2} \sqrt{k^{2} + m_{i}^{2}} (f_{i}^{L} + f_{ai}^{L}) dk + \sum_{i=\nu_{e},\nu_{\mu}} \frac{1}{2\pi^{2}} \int_{0}^{\infty} k^{3} (f_{i}^{L} + f_{ai}^{L}) dk$$

Pressure

 $P = P_H + P_L$

$$P_{H} = \sum_{i=p,n} \frac{1}{3\pi^{2}} \int_{0}^{\infty} \frac{k^{4}}{\sqrt{k^{2} + m_{n}^{(eff)^{2}}}} \left(f_{i}^{N} + f_{ai}^{N}\right) dk - U(\sigma) + \frac{1}{2} \left(-\frac{\sigma^{2}}{a_{\sigma}} + \frac{\omega^{2}}{a_{\omega}} - \frac{\delta^{2}}{a_{\delta}} + \frac{\rho^{2}}{a_{\rho}}\right)$$

$$P_{L} = \sum_{i=e,\mu} \frac{1}{3\pi^{2}} \int_{0}^{\infty} \frac{k^{4}}{\sqrt{k^{2} + m_{i}^{2}}} \left(f_{i}^{L} + f_{ai}^{L}\right) dk + \sum_{i=\nu_{e},\nu_{\mu}} \frac{1}{6\pi^{2}} \int_{0}^{\infty} k^{3} \left(f_{i}^{L} + f_{ai}^{L}\right) dk$$

Entropy

 $S = S_H + S_L$

$$S_{H} = -\sum_{i=p,n} \frac{1}{\pi^{2}} \int_{0}^{\infty} k^{2} [f_{i}^{N} ln f_{i}^{N} + (1 - f_{i}^{N}) ln (1 - f_{i}^{N}) + f_{i}^{N} ln f_{ai}^{N} + (1 - f_{ai}^{N}) ln (1 - f_{ai}^{N})] dk$$

$$S_{L} = -\sum_{i=e,\mu} \frac{1}{\pi^{2}} \int_{0}^{\infty} k^{2} [f_{i}^{L} ln f_{i}^{L} + (1 - f_{i}^{L}) ln (1 - f_{i}^{L}) + f_{ai}^{L} ln f_{ai}^{L} + (1 - f_{ai}^{L}) ln (1 - f_{ai}^{L})] dk$$

$$-\sum_{i=\nu_e,\nu_{\mu}}\frac{1}{2\pi^2}\int_0^\infty k^2 [f_i^L lnf_i^L + (1-f_i^L)ln(1-f_i^L) + f_{ai}^L lnf_{ai}^L + (1-f_{ai}^L)ln(1-f_{ai}^L)] dk$$

Model Parameters

 $a_{\sigma}, a_{\omega}, a_{\delta}, a_{\rho}, b, c$

Symmetric nuclear matter in Saturation density ($\alpha = 0$; $n = n_0$)

$$m_N^* = \gamma m_N, \qquad \sigma_0 = (1 - \gamma) m_N$$

$$\frac{d\varepsilon(n,\alpha)}{dn}\Big|_{\substack{n=n_0\\\alpha=0}} = \frac{\varepsilon(n_0,0)}{n_0} = m_N + f_0, \qquad f_0 = \frac{B}{A}, \quad \text{Binding energy per baryon}$$

$$\varepsilon_{0} = n_{0}(m_{N} + f_{0}) = \frac{2}{\pi^{2}} \int_{0}^{k_{F}(n_{0})} \sqrt{k^{2} + (m_{N} - \sigma_{0})^{2}} k^{2} dk + \frac{b}{3} m_{N} \sigma_{0}^{3} + \frac{c}{4} \sigma_{0}^{4} + \frac{1}{2} \left(\frac{\sigma_{0}^{2}}{a_{\sigma}} + n_{0}^{2} a_{\omega} \right)$$

$$K = 9 n_0^2 \frac{d^2}{dn^2} \left(\frac{\varepsilon(n,\alpha)}{n} \right) \bigg|_{\substack{n=n_0\\\alpha=0}}$$

Compressibility module

$RMF_{\sigma\omega\delta\rho}$ Model Parameters

Parameters	σωρ	σωρδ
a_{σ} , fm ²	9.154	9.154
${\sf a}_{_{\scriptscriptstyle \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	4.828	4.828
$a_\delta^{}$, fm²	0	2.5
a_{ρ} , fm ²	4.794	13.621
b , fm ⁻¹	1.654 10 ⁻²	1.654 10 ⁻²
С	1.319 10 ⁻²	1.319 10 ⁻²

Alaverdyan G.B., Astrophysics 52, 132–150 (2009)

Computational Scheme

10 equations

 $n \rightleftharpoons p + e + \tilde{v}_e \implies$

 $n \rightleftharpoons p + \mu + \tilde{\nu}_{\mu}$

Charge neutrality

Baryon number density

 $Y_e = 0.4$

 $Y_{\mu}=0$

$$\sigma = a_{\sigma} (n_{sn} + n_{sp} - b \sigma^{2} - c \sigma^{3})$$

$$\omega = a_{\omega} n_{B}$$

$$\delta = -a_{\delta} (n_{sn} - n_{sp})$$

$$\rho = -\frac{1}{2} a_{\rho} n_{B} \alpha$$

$$\mu_{n} = \mu_{p} + \mu_{e} - \mu_{\nu_{e}}$$

$$\mu_{n} = \mu_{p} + \mu_{\mu} - \mu_{\nu_{\mu}}$$

$$n_{p} = n_{e} + n_{\mu}$$

$$n_{B} = n_{p} + n_{n}$$

$$n_{e} + n_{\nu_{e}} = Y_{e} n_{B}$$

$$n_{\mu} + n_{\nu_{\mu}} = Y_{\mu} n_{B}$$

Neutron-proton effective mass splitting due to δ -meson

Cold neutrino-transparent hadronic matter

Constituents contribution to the energy density

Constituents contribution to the pressure

Particle composition

$$Y_i = \frac{n_i}{n_B}$$
, i =n,p,e, μ , ν_e , ν_μ

Meson mean-fields

T = 0, without neutrinos

T = 10 MeV, with neutrinos

Meson mean-fields

With neutrinos

Baryon and lepton contributions

Baryon and lepton contributions to the pressure

18

Energy Density

Quark Matter Description within NJL model

Constituents: $u, d, s, e, v_e, \mu, v_\mu, \tau, v_\tau$

$$\mathcal{L}_{QM} = \mathcal{L}_{NJL} + \mathcal{L}_{Lept}$$
$$\mathcal{L}_{NJL} = \bar{\psi} (i\gamma^{\mu}\partial_{\mu} - \hat{m}_{0})\psi + G \sum_{a=0}^{8} [(\bar{\psi}\lambda_{a}\psi)^{2} + (\bar{\psi}i\gamma_{5}\lambda_{a}\psi)^{2}] - K \{det_{f}(\bar{\psi}(1+\gamma_{5})\psi) + det_{f}(\bar{\psi}(1-\gamma_{5})\psi)\}$$

$$\mathcal{L}_{Lept} = \sum_{i=e,\nu_e,\mu,\nu_{\mu}} \overline{\psi_i} (i\gamma^{\mu}\partial_{\mu} - m_i)\psi_i$$

$$\psi_f^c \qquad f = u, d, s \qquad c = r, g, b \qquad \widehat{m}_0 = diag(m_{0u}, m_{0d}, m_{0s})$$

 $\lambda_a (a = 1, 2, ..., 8)$ Gell-Mann matrices, SU(3) generators

 $\lambda_0 = \sqrt{2/3}\,\hat{I}$

Constituent Quark Masses & Quark Condensates

$$M_{u} = m_{0u} - 4G \sigma_{u} + 2K\sigma_{d}\sigma_{s},$$

$$M_{d} = m_{0d} - 4G \sigma_{d} + 2K\sigma_{s}\sigma_{u},$$

$$M_{s} = m_{0s} - 4G \sigma_{s} + 2K\sigma_{u}\sigma_{d}.$$

$$\sigma_{f}(T, M_{f}, \mu_{f}) = \langle \bar{\psi}_{f} \psi_{f} \rangle = = -\frac{3}{\pi^{2}} M_{f} \int_{0}^{\Lambda} dk \, \frac{k^{2}}{E_{f}(k, M_{f})} \left[1 - \frac{1}{1 + e^{\frac{E_{f}(k, M_{f}) - \mu_{f}}{T}}} - \frac{1}{1 + e^{\frac{E_{f}(k, M_{f}) + \mu_{f}}{T}}} \right] \cdot \qquad (f = u, d, s)$$

$$E_f(k, M_f) = \sqrt{k^2 + M_f^2}$$

Grand Potential for Quark Matter

$$\Omega_{QP} = \frac{3}{\pi^2} \sum_{f=u,d,s} \int_0^{\Lambda} dk \ k^2 \left(E_f(k, M_{f0}) - E_f(k, M_f) \right) \\ - \frac{3T}{\pi^2} \sum_{f=u,d,s} \left\{ \int_0^{\Lambda} dk \ k^2 \left[ln \left(1 + e^{-\frac{E_f(k, M_f) - \mu_f}{T}} \right) + ln \left(1 + e^{-\frac{E_f(k, M_f) + \mu_f}{T}} \right) \right] \right\}$$

$$+2G(\sigma_{u}{}^{2}+\sigma_{d}{}^{2}+\sigma_{s}{}^{2}-\sigma_{u0}{}^{2}-\sigma_{d0}{}^{2}-\sigma_{s0}{}^{2})-4K(\sigma_{u}\sigma_{d}\sigma_{s}-\sigma_{u0}\sigma_{d0}\sigma_{s0})$$

$$-\frac{T}{2\pi^2} \sum_{l} g_l \int_{0}^{\infty} dk \, k^2 \left[ln \left(1 + e^{-\frac{E_l(k) - \mu_l}{T}} \right) + ln \left(1 + e^{-\frac{E_l(k) + \mu_l}{T}} \right) \right]$$

$$E_l(k) = \sqrt{k^2 + m_l^2}$$

Lepton spin degeneracy:

 $g_e = g_\mu = 2$ $g_{\nu_e} = g_{\nu_\mu} = 1$

Computation Scheme of Thermodynamic Quantities

 $m_{0u} = m_{0d} = 5.5 \text{ MeV}, \ m_{0s} = 140.7 \text{ MeV},$ P. Rehberg, S.P. Klevansky, J. Hüfner, $\Lambda = 602.3 \text{ MeV}, \ G = 1.835/\Lambda^2, \ K = 12.36/\Lambda^5.$ Phys. Rev. C, 53, 410, 1996. $M_{\mu} = m_{0\mu} - 4G \sigma_{\mu} + 2K\sigma_d\sigma_s$ $M_d = m_{0d} - 4G \sigma_d + 2K\sigma_s\sigma_u ,$ $M_{\rm s} = m_{0\rm s} - 4G \sigma_{\rm s} + 2K\sigma_u\sigma_d$. $n_f(T, M_f, \mu_f) = \frac{3}{\pi^2} \int_0^T dk \; k^2 \left[\frac{1}{1 + e^{\frac{E_f(k, M_f) - \mu_f}{T}}} - \frac{1}{1 + e^{\frac{E_f(k, M_f) + \mu_f}{T}}} \right] \qquad (f = u, d, s)$ $n_l(T,\mu_l) = \frac{g_l}{2\pi^2} \int dk \, k^2 \left[\frac{1}{1+e^{\frac{E_l(k)-\mu_l}{T}}} - \frac{1}{1+e^{\frac{E_l(k)+\mu_l}{T}}} \right]$ 13 equations $(l = e, v_e, \mu)$ $\frac{2}{3}n_u - \frac{1}{3}n_d - \frac{1}{3}n_s - n_e - n_\mu = 0$ $n_{\mu}+n_{\nu_{\mu}}=Y_{\mu}n_{B}=0$ $n_e + n_{\nu_e} = Y_e n_B$ $n_{\mu} + n_{d} + n_{s} = 3n_{B}$ $M_{u}, M_{d}, M_{s}, n_{u}, n_{d}, n_{s}, n_{e}, n_{\mu}, n_{\nu_{e}}, \mu_{u}, \mu_{e}, \mu_{\mu}, \mu_{\nu_{e}}$ T, n_B

Hadron-Quark Phase Transition Scenario

It was assumed that the surface tension is so high that the phase transition proceeds according to the Maxwell scenario.

$$P_{QM} = P_{HM} = P_0$$
$$\mu_B^{QM} = \mu_B^{HM} = \mu_B$$
$$T_{QM} = T_{HM} = T$$

Phase Transition Parameters

T = 0, without neutrinos

T = 10 MeV, with neutrinos

Phase Transition Parameters

Critical End Point

Two-Phase Coexistence Parameters

Т	P ₀	μ_B	n_H	n_O	\mathcal{E}_{H}	ε _Q	S _H	S_Q
MeV	MeV/fm ³	MeV	fm⁻₃	fm ⁻³	MeV/fm ³	MeV/fm ³	fm⁻₃	fm ⁻³
0	173.6	1391.8	0.639	0.918	716.3	1109.3	0	0
5	198.7	1377.9	0.683	0.829	795.9	1058.7	0.154	0.346
10	194.8	1370.5	0.676	0.821	787.2	1049.8	0.307	0.683
20	181.3	1343.8	0.652	0.972	756.1	1015.0	0.601	1.322
30	159.2	1298.4	0.609	0.738	703.4	950.1	0.865	1.858
50	101.9	1160.2	0.478	0.584	547.0	766.4	1.232	2.509
70	46.2	966.9	0.290	0.372	336.4	522.3	1.253	2.541
72	44.1	953.1	0.278	0.326	324.6	467.4	1.255	2.443
74	42.8	941.2	0.269	0.269	315.6	397.3	1.261	2.275

Phase Diagram

Strong quark-hadron interface tension

Ordinary first-order phase transition at constant pressure (Maxwell Construction)

Weak quark-hadron interface tension

Phase transition with the formation of a Quark-Hadron mixed phase (Gibbs Construction)

Conclusions

- \triangleright We investigate the thermodynamic properties of the hot β -equilibrated hadronic matter in a neutrinotrapped regime. To describe such matter, we use an improved version of RMF model at a finite temperature, where, in addition to the effective fields of σ -, ω -, and ρ -mesons, the scalar-isovector δ meson effective field is also taken into account.
- For different values of temperature *T* in the range of 0-100 MeV, the dependences of pressure *P*, energy density ε , entropy density *S*, and baryon chemical potential μ_B on the baryon number density n_B have been determined.
- ➢ We show that splitting of the proton and neutron effective masses slightly decreases with increasing temperature.
- The temperature dependencies of the parameters of the first-order phase transition from hadronic matter to strange quark matter are studied by using the quark phase described in the SU(3) local NJL model.
- → A phase diagram is obtained corresponding to the equilibrium coexistence of hadron and quark phases in $(T \mu_B)$ and $(T n_B)$ planes. The thermodynamic parameters of the critical endpoint in the phase coexistence curve are found.

