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Nucleon as a three-quark dynamical system 2

Obrázek: A nucleon in a stable state is white, i.e. blue
+ red + green = white.



History of the problem 3

For the first time, the nucleon as a three-quark system was studied
within the framework of a non-relativistic quantum representation
in 1968-1969 years in the works;
1. D. Fayman and A. W. Hendry, Phys. Rev. 173, 1720, (1968);
180, 1572, (1969).
2. L. A. Copley, G. Karl and E. Obryk, Phys. Letters 29B, 117,
(1969), Nucl. Physics B13, 303, (1968).
These works stimulated Feynman and co-authors to develop a
relativistic three-quark system in the framework of 4D harmonic
oscillator model in 1971;
3. R. P. Feynman, M. Kislinger and F. Ravandal, Phys. Rev, D3,
2706, (1971).
The relativistic quark-model was further explored for study of the
electromagnetic excitations of the nucleon
4. R. G. Lipes, Phys. Rev. D11, 2849 (1972).



Main goals of the work 4

1. Construct a consistent mathematical theory of a
relativistic three-quark dynamical system immersed
in a colored gluon thermostat, within the framework
of a stochastic extension of the Klein-Gordon-Fock
equation.

2. Study the geometric and topological features of
the three-quark system depending on the spectrum
of the color gluon thermostat.

3. Development of mathematical algorithms for
calculating various parameters of a quark system
during the self-organization of a unified system
three-quark+thermostat.



Formulation of a regular problem 5
Lorentz invariant Eq. for the three-quark system can be written as:{ ∑
ζ=a,b,c

□ζ+Ω2
0

[
(xa−xb)

2+(xa−xc)
2+(xb−xc)

2
]
+m2

0

}
Ψ0 = 0,

(1)
where xa, xb and xc are the space-time coordinates of the quarks
a, b and c , in addition, Ω0 is the some constant m0 denotes the
nucleon rest mass, and □ζ denotes the d’Alembert operator acting
on the ζ-th quark, which in natural units ℏ = c = 1 is written as:

□ζ = ∂2tζ −∆ζ = ∂2tζ − ∂2xζ − ∂2yζ − ∂2zζ . (2)

For further research, let us move on to new coordinates:

qa = xa − xb, qb = xb − xc , qc = xc − xa, (3)

in which the equation (1) can be converted to the form:{ ∑
ζ=a,b,c

[
□ζ +Ω2

0q
2
ζ

]
+m2

0

}
Ψ0 = 0, (4)

where Ψ0(xa, xb, xc) = Ψ0(qa,qb,qc).



Reducing three-quark problem to an oscillator problem 6
Representing the solution of the equation (4) as a product of
space-like and time-like wave functions:

Ψ0(qa,qb,qc) =

[
3Ω0

π

]1/4
e−3Ω0t2/2Ψ̃0(q̄a, q̄b, q̄c), (5)

where qζ = (t, q̄ζ) and q̄ζ = (qζ(x), qζ(y), qζ(z)), from (4) we get
the following stationary harmonic oscillator equation:∑

ζ=a,b,c

{
−∆ζ +Ω2

0q̄
2
ζ

}
Ψ̃0(q̄a, q̄b, q̄c) = 0, Ω0 = m2

0. (6)

Further representing the solution of Eq. (6) in factorized form:

Ψ̃0(q̄a, q̄b, q̄c) = ψ0a(q̄a)ψ0b(q̄b)ψ0c(q̄c), (7)

from (6) we can get the following Schrödinger-type equation:{
−∆ζ +Ω2

0q̄
2
ζ

}
ψ0ζ(q̄ζ) = 0. (8)



Wave function of a three-quark system 7
Using the spherical coordinate system (qζ , ϑζ , φζ) as variables, the
following solution for equation (8) can be found:

ψ0ζ(q̄ζ) = Rλζ ,lζ (qζ)Ylζmζ
(ϑζ , φζ)e

−Ω0q2ζ/2, (9)

where Rλζ ,lζ (qζ) denotes the normalized radial wave function with

qζ =
√

q2ζ(x) + q2ζ(y) + q2ζ(z), and Ylζmζ
(ϑζ , φζ) is the spherical

harmonics.
Taking into account the above calculations, we can construct the
Lorentz-invariant full wave function of the three-quark dynamical
system:

Ψ0(qa,qb,qc) =

[
3Ω0

π

]1/4
e−3Ω0t2/2

∏
ζ=a,b,c

ψ0ζ(q̄ζ) =∏
ζ=a,b,c

Rλζ ,lζ (qζ)Ylζmζ
(ϑζ , φζ)e

−Ω0(q2ζ+3t2)/2, (10)



Three-quark system immersed in a colored gluon TB 8

Let us consider the following Eq. for the three-quark system:{ ∑
ζ=a,b,c

□ζ +Ω2
a(xa − xb)(xa − xb)

2 +Ω2
b(xb − xc)(xb − xc)

2

+Ω2
c(xc − xa)(xc − xa)

2 +m2
0

}
Ψ(xa, xb, xc) = 0. (11)

Since the quarks a, b and c in a nucleon are in three different color
states, so that the overall color is always white, then the pair
interactions of quarks inside the nucleon will be different, and,
accordingly, the space-time functions characterizing these interac-
tions will be denoted by Ωa(xa − xb), Ωb(xb − xc) and Ωc(xc − xa)
in general complex random functions. In what follows, we will
assume that these functions represent complex random processes
that describe elastic and inelastic interactions of quarks through
gluons.



Eq. of motion for a “3-quark+TB ” joint system 9
Using (3) the equation (11) can be written as:{ ∑

ζ=a,b,c

[
□ζ +Ω2

ζ(qζ)q
2
ζ

]
+m2

0

}
Ψ(qa,qb,qc) = 0. (12)

Further, representing the total wave function as a product:

Ψ(qa,qb,qc) =

[
3Ω0

π

]1/4
e−3Ω0t2/2Ψ̃(qa,qb,qc), (13)

the equation (12) can be reduced to the form:{ ∑
ζ=a,b,c

[
□ζ +Ω2

ζ(qζ)q
2
ζ

]
− 3Ω2

0t
2
}
Ψ̃(qa,qb,qc) = 0. (14)

Now let us present the solution to equation (14) in factorized form:

Ψ̃(qa,qb,qc) = ψa(qa)ψb(qb)ψc(qc), (15)

Using (14) from equation (13), we can obtain three new equations:{
□ζ +Ω2

ζ(qζ)q
2
ζ − Ω2

0t
2
}
ψζ(qζ) = 0, ζ = a, b, c , (16)

Note that these three equations are related by one source- by GB.



Stochastic Eq.s describing the color gluon thermostat 10

Since we are considering a relativistic problem, it is natural to use
a 4-vector defining a point or event in space-time as a parameter
describing the evolution of a dynamical system:

s2ζ = t2 − q2ζ(x) − q2ζ(y) − q2ζ(z), ζ = a, b, c. (17)

In view of the foregoing, the solution of each of the equations (16)
can be represented as:

ψζ(qζ) = ψ0ζ(q̄ζ) exp

(∫ sζ

0
Λζ(s

′; q̄ζ , t)ds
′
)
. (18)

Recall that the wave function (18) is a complex probabilistic pro-
cess, which should be further averaged to obtain the mathemati-
cal expectation of the wave function of the relative motion of two
quarks, taking into account the influence of the gluon thermostat.



→ 12
Now we define the function Ωζ(qζ), representing it as a sum:

Ω2
ζ(qζ) = Ω2

0 + Fζ(sζ), Fζ(sζ) = f
(r)
ζ (sζ) + if

(i)
ζ (sζ).

For definiteness, we will assume that random number generators
satisfy Markov-Gaussian random processes or white noise
correlation relations:

E
[
f
(υ)
ζ (s)

]
= 0, E

[
f
(υ)
ζ (s)f

(υ)
ζ (s ′)

]
= 2ε

(υ)
ζ δ(s − s ′), (19)

where E
[
...
]
is mean value of the random variable and υ = (i , r).

Substituting (18) into Eq. (16) taking into account that Λζ(sζ) =
uζ1(sζ) + uζ2(sζ), we get:{

u̇ζ1 + u2ζ1 − u2ζ2 − kuζ1 +Ω2
0hq̄

2
ζ + hq̄2ζ f

(r)(sζ) = 0,

u̇ζ2 + 2uζ1uζ2 − kuζ2 + q̄2ζhf
(i)
ζ (sζ) = 0.

(20)

where

k(q̄ζ , t) =
2− q̄ζ∇ lnψ0ζ(q̄ζ)

t − xζ − yζ − zζ
, h(q̄ζ , t) =

sζ
t − xζ − yζ − zζ

.



→ 13
Using the equations (20) taking into account the synchronization
of 4D event intervals s = min{sa, sb, sc}, we can write:

u̇a1 + u2a1 − u2a2 − kaua1 +Ω2
0q̄

2
aha + q̄2ahaf

(r)
a (s) = 0,

u̇a2 + 2ua1ua2 − kaua2 + q̄2ahaf
(i)
a (s) = 0,

u̇b1 + u2b1 − u2b2 − kbub1 +Ω2
0q̄

2
bhb + q̄2bhbf

(r)
b (s) = 0,

u̇b2 + 2ub1ub2 − kbub2 + q̄2bhbf
(i)
b (s) = 0,

u̇c1 + u2c1 − u2c2 − kcuc1 +Ω2
0q̄

2
chc + q̄2chc f

(r)
c (s) = 0,

u̇c2 + 2uc1uc2 − kcua2 + q̄2chc f
(i)
c (s) = 0.

(21)

Let us represent the distribution of colored gluon fields in the form:

P(u, s|u, s0) =
〈 ∏

ζ=a,b,c

∏
i=1,2

δ
(
uζi (s)− u0ζi

)〉
, (22)

u(s) =
{(

ua1(s), ua2(s)
)
;
(
ub1(s), ub2(s)

)
;
(
uc1(s), uc2(s)

)}
∈

Ξ{u(s)} denotes the six-component colored gluon field of the event
“s”and u0ζi - component of the gluon field of the event s = 0.



Gluon fields distribution equation 14
Using (21) taking into account (20), for the distribution of gluon
fields (22) we find the following Fokker-Planck type equation:

∂P
∂s

= L̂(u|q̄, t)P, q̄ = (qa,qb,qc), (23)

where

L̂(u|q̄, t) =
∑

ζ=a,b,c

{
hζ(q̄ζ , t)q̄

2
ζ

(
ε
(r)
ζ

∂

∂u2ζ1
+ ε

(i)
ζ

∂

∂u2ζ2

)
+

σζ1(uζ |q̄ζ , t)
∂

∂uζ1
+ σζ2(uζ |q̄ζ , t)

∂

∂uζ2
+ σζ0(uζ |q̄ζ , t)

}
, (24)

where the following notations are made:

σζ0(uζ |q̄ζ , t) = 4uζ1−2kζ , σζ1(uζ |q̄ζ , t) =
(
u2ζ1−u22−kζuζ1+Ω2

0hζ q̄
2
ζ

)
,

σζ2(uζ |q̄ζ , t) =
(
2uζ1 − kζ

)
uζ2, uζ = (uζ1, uζ2).



Definition of a functional space measure 15
Let us the probability distribution at each point of Minkowski
space-time (q̄, t) ∈ R4 satisfy the following limit condition:

lim
s→s′

P(u, s; q̄, t|u′, s ′) = δ(u− u′), s = s ′ +∆s. (25)

Taking into account (25) for small intervals of events, that is, for
∆s = s − s ′ ≪ 1, we can present the solution to Eq. (24) as:

P(u, s; q̄, t|u′, s ′) = exp

{
−
[
u− u′ − σ(u, s; q̄, t)∆s

]T
√
2∆s

×

ε̄−1
[
u− u′ − σ(u, s; q̄, t)∆s

]
√
2∆s

}
1

2π
√

| det ε̄|∆s
, (26)

where ε̄ = εhq̄2 is the second-rank matrix with elements;
ε11 = ε̄(r), ε22 = ε̄(i) and ε12 = ε21 = 0, while [· · ·]T denotes a
vector transposition. Additionally, in (26) vector σ is defined as:

σ(u, s; q̄, t) =

{
σ1 = u21 − u22 − k(q̄, t)u1 +Ω2

0h(q̄, t)q̄
2,

σ2 = [2u1 − k(q̄, t)]u2.
(27)



Nucleon wavefunction mathematical expectation 16

Finally we can write down the mathematical expectation of the
nucleon internal motion:

E[Ψ(q)] =
Ψ0(q̄)

α(s)

∫
· · ·

∫
Ξ{u(s)}

Dµ(u) e
∑

ζ=a,b,c

∫ s
0 Λζ(s

′;q̄ζ ,t)ds
′
,

(28)
where α(s) is the normalization constant:

α(s) =

∫
· · ·

∫
Ξ{u(s)}

Dµ(u) =

∫
· · ·

∫
Ξ6
u

P(u, s; q̄)
∏

ζ=a,b,c

duζ1duζ2.

Calculating the functional integral (28) we find:

E[Ψ(q)] =
Ψ0(q̄)

α(s)

∫
· · ·

∫
Ξ6
u

Q(u, t, s; q̄)
∏

ζ=a,b,c

duζ1duζ2, (29)

where Q(u, s;q) is the solution of the following partial differential
equation:



Fields equation and gluon color synchronization 17

∂sQ =
{
L̂(u|q̄t, t) +

∑
ζ=a,b,c

(uζ1 + iuζ2)
}
Q. (30)

Representing the solution Q(u, s;q) in the form of following sum:

Q(u, s;q) = Q(r)(u, s;q) + iQ(i)(u, s;q),

from Eq. (28) can find a system of two real coupled PDEs:{
∂sQ

(r) =
{
L̂(u|q̄, t) +

∑
ζ=a,b,c uζ1

}
Q(r) −

∑
ζ=a,b,c uζ2Q

(i),

∂sQ
(i) =

{
L̂(u|q̄, t) +

∑
ζ=a,b,c uζ1

}
Q(i) +

∑
ζ=a,b,c uζ2Q

(r).

Having given the functions Q(r) and Q(i) a probabilistic meaning,
we write:

Q̄(υ)(u, s; q̄) = λ−1(q̄, s)Q(υ)(u, s; q̄),

λ(q̄, s) =

∫
· · ·

∫
Ξ6
u

∑
υ=r ,i

Q(υ)(u, s; q̄)
∏

ζ=a,b,c

duζ1duζ2, (31)

and, correspondingly;
∫
· · ·

∫
Ξ6
u

∑
υ=r ,i Q̄

(υ)(u, s; q̄)du1du2 = 1.



Fields equation and gluon color synchronization 18

Theorem. If the motion of a dynamical system is
described by a Langevin-type stochastic differential
equations (21), then in the limit of statistical equi-
librium, the functional space Ξ{u(s)} is compactified
into the 6D subspace Ξ6

u, which, in general, has an
antisymmetric metric tensor and, accordingly, its
geometry is a non-commutative.

It is proved that antisymmetric elements obey alge-
braic equations of the fourth degree, which can
generate two-dimensional manifolds with topological
Betti singularities of order n ≤ 4. In this case, the
additional submanifold is represented as a decompo-
sition; Ξ6

{u} = Ξ2
{u}

⊗
Ξ2
{u}

⊗
Ξ2
{u}.



Conclusion remarks 18

Within the framework of the stochastic extension of the Klein-
Gordon-Fock equation, the nucleon problem is considered as a
problem of self-organization of a three-quark system in a color
gluon thermostat.

1. The mathematical expectation of the total wave function of the
internal motion of a three-quark system is constructed, taking into
account colored gluon exchanges between quarks and conservation
of nucleon color in the form of a six-fold integral representation.

2. Within the framework of the proposed approach, the influence
of only six out of eight color quarks on the evolution of the quark
system is taken into account, and this is due to the neglect of
quarks spin.

3. It is shown that the additional six-dimensional subspace Ξ6
u,

depending on the magnitude of the fluctuation powers, can have
the character of a non-commutative geometry with topological
features.
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