

¹Hebrew University of Jerusalem ²Ioffe Institute

Self-similarities of Equations of State and M – R curves of Neutron Stars

<u>Dima Ofengeim^{1,2}, P. Shternin², T. Piran¹</u>

The Modern Physics of Compact Stars & Relativistic Gravity – 2023 12 September 2023

NS Equations of State

- > Equation of state = EoS
- > Cold degenerate matter $T < 10^{10}$ K, $T_F \sim 10^{12}$ K

 $\geq P(\rho), n(\rho), \text{composition}(\rho), \dots$

2/27

Oppenheimer-Volkoff Mapping

Oppenheimer-Volkoff Mapping

Oppenheimer-Volkoff Mapping

Dimension of EoS Manifold

Dimension of EoS Manifold

Plan of the Further Talk

- 1. Describe the zoo of used EoSs
- 2. Build the Inverse OV mapping
 - ≻ Step I: P_{\max} , ρ_{\max} ↔ M_{\max} , R_{\max}
 - > Step II: self-similar curves $P/P_{\text{max}} - \rho/\rho_{\text{max}}$
 - > Step III: self-similar curves $M/M_{\text{max}} - R/R_{\text{max}}$
- 3. Apply the Inverse OV to observations

Universal fits

EoS Zoo

...free npe, PAL, HHJ, variational, Skyrme, RMF, QMC, QHC,...

9/27

EoS Zoo

...free npe, PAL, HHJ, variational, Skyrme, RMF, QMC, QHC,...

10/27

Dima Ofengeim $P - \rho$ and M - R self-similarities

Dima Ofengeim $P - \rho$ and M - R self-similarities

13/27

Step II: Self-similar $P(\rho)$

Step II: Universal Fit $P(\rho)$

Dima Ofengeim $P - \rho$ and M - R self-similarities

Step III: Universal Fit R(M)

Dima Ofengeim $P - \rho$ and M - R self-similarities

Inverse Oppenheimer-Volkoff Mapping

Inverse Oppenheimer-Volkoff Mapping

Inverse Oppenheimer-Volkoff Mapping

Analysis of Observations: Method

 $M_{\rm max}$ > radiopulsars PSR J1614-2230 fit R(M)PSR J0348+0432 Arzoumanian+'18; Fonseca+'21 $c_{s \max}(P_{\max}, \rho_{\max}) < c^{2}$ **GWs:** $\Lambda = f\left(\frac{2GM}{Rc^2}\right)$ $R_{1/2} > R_{Mmax}$ Yagi & Younes'13,'16 $f_M(P_{\text{max}}, \rho_{\text{max}}) = M_{\text{max}}$ GW170817 Abbot+'18 $f_R(P_{\text{max}}, \rho_{\text{max}}) = R_{\text{Mmax}}$ $M_i, R_i \in \left(\begin{array}{c} \text{fit of NS} \\ \text{spectrum} \end{array} \right)_i$ $R_{1/2}$ PSR J0740+6620 Miller+'19; Riley+'19 fit $P(\rho)$ PSR J0030+0451 Miller+'21; Riley+'21 Cas A Shternin+'23

Dima Ofengeim $P - \rho$ and M - R self-similarities

Analysis of Observations: Results

Add More Observations

Dima Ofengeim $P - \rho$ and M - R self-similarities

Results for More Observations

Discussion

- Physics or antropology?
- Extend to $\rho < 3\rho_0$? > Lattimer & Prakash 2001: $R_{1.4} \propto P^{1/4}(2n_0)$
- Extend to M < 1M_☉?
 ➢ Sufficient dimension of M − R curves family?
- Account for rotation?
 Tolly by A Konstanting

Talk by A. Konstantinou

Conclusion

- Maximum-mass NS handful universal scale of hydrostatic properties of NSs
- Using this scale we
 - > provide universal fits for $P \rho$ and M R
 - > derived explicit (semi)analytic inverse Oppenheimer-Volkoff mapping
- This inverse OV mapping new handful tool to gain properties of superdense matter from NS onservations

Thank you!

More equations of state are welcome

Comparison with Other Works

90% Jiang, Ecker & Rezzolla 2023

27/27