Symmetry Energy from Experiment, Theory and Observation

J. M. Lattimer

Department of Physics & Astronomy

STONY BROOK UNIVERSITY

The Modern Physics of Compact Stars and Relativistic Gravity 2023

Yerevan, Armenia, Sep. 12-16, 2023

Acknowledgements

Funding Support:

- **DOE** Nuclear Physics
- DOE Toward Exascale Astrophysics of Mergers and Supernovae (TEAMS)
- NASA Neutron Star Interior Composition ExploreR (NICER)
- NSF Neutrinos, Nuclear Astrophysics and Symmetries (PFC N3AS)
- DOE Nuclear Physics from Multi-Messenger Mergers (NP3M)

Recent Collaborators:

Duncan Brown & Soumi De (Syracuse), Christian Drischler, Madappa Prakash & Tianqi Zhao (Ohio), Sophia Han (TDLI), Evgeni Kolomeitsev (Matej Bei, Slovakia), Akira Ohnishi (YITP, Kyoto), Sanjay Reddy (INT), Achim Schwenk (Darmstadt), Andrew Steiner (Tennessee) & Ingo Tews (LANL)

Nuclear Symmetry Energy and Pressure

The symmetry energy is the difference between the energies of pure neutron matter (x = 0) and symmetric (x = 1/2) nuclear matter: S(n) = E(n, x = 0) - E(n, x = 1/2).

J. M. Lattimer

Symmetry Energy from Experiment, Theory and Observation

Why is the Symmetry Energy Important?

The equation of state in a neutron star depends strongly on the density dependance of the symmetry energy $(u = n_B/n_s)$:

$$P_{NSM}(u) \simeq n_s u^2 \left[\frac{L}{3} + \frac{K_N}{9}(u-1) + \frac{Q_N}{54}(u-1)^2 + \cdots \right]$$

A strong correlation exists between radii and P_{NSM} near n_s : $R_{1.4} \sim P_{NSM} (n_B)^{1/4}$.

J. M. Lattimer

Symmetry Energy from Experiment, Theory and Observation

Fitting Nuclear Binding Energies

Meaning of J - L Correlations

The slope dL/dJ is an indicator of the most sensitive density u_s for the measurement of the symmetry energy S(u).

If the correlation line goes through (J, L), a change dJ can be compensated by a change dL.

$$\frac{dJ}{dL} = -\left(\frac{\partial S(u_s)}{\partial L}\right)_J / \left(\frac{\partial S(u_s)}{\partial J}\right)_L.$$

Example: $S(u) = S_{\kappa}u^{2/3} + S_{V}u^{\gamma}$, $S_{\kappa} \simeq 12.5 \text{ MeV}$ $J = S_{\kappa} + S_{V}$, $L = 2S_{\kappa} + 3\gamma S_{V} = S_{\kappa}(2 - 3\gamma) + 3\gamma J$

$$\frac{dJ}{dL} = -\frac{\ln u_s}{3}, \quad u_s = \exp\left(-3\frac{dJ}{dL}\right).$$

For binding energies, $dL/dJ \simeq 11$, $u_s \simeq 0.76$.

・ロン ・回 と ・ ヨン ・ ヨ

Saturation Properties of Nuclear Interactions

Empirical Saturation Window

 $B=16.06\pm0.20~{
m MeV}$

 $n_s = 0.1558 \pm 0.0054 \ {\rm fm}^{-3}$

 $K_{1/2} = 236.5 \pm 15.4 \text{ MeV}$

Theoretical Neutron Matter Studies

Recently developed chiral effective field theory allows a systematic expansion of nuclear forces at low energies based on the symmetries of quantum chromodynamics. It exploits the gap between the pion mass (the pseudo-Goldstone boson of chiral symmetry-breaking) and the energy scale of short-range nuclear interactions established from experimental phase shifts. It provides the only known consistent framework for estimating energy uncertainties.

Symmetry Parameters From Chiral EFT

Two approaches to extracting J and Lsymmetric matter $E/A \pm 1\sigma$ $P \pm 1\sigma$ 1. Take the difference 10 $[MeV \, fm^{-3}]$ MeV 20 between pure neutron (b) (e) and symmetric matter 15 χ EFT N³LO energies and pressures -1010 ċ۵ at the calculated saturation density. 52. Use pure neutron matter energy and 0.20.30.20.30.10.1171 empirical Density $n \, [\mathrm{fm}^{-3}]$ pressure with the 16 empirical saturation +Skyrme () 15 MeV window from nuclear VEFT SNM mass fits. 14 $J = E_N(n_s) + B,$ 13 $L = 3P_N(n_s)/n_s$. 0.16 0.18 0.20 0.14 n (fm⁻³)

J. M. Lattimer

Symmetry Energy from Experiment, Theory and Observation

Symmetry Parameters From Neutron Matter

Pure neutron matter calculations are more reliable than symmetric matter calculations.

Symmetric matter emerges from a delicate cancellation sensitive to short- and intermediate-range three-body interactions at N^2LO that are Pauli-blocked in pure neutron matter.

N³LO symmetric matter calculations don't saturate within

empirical ranges for n_s and B, and introduce spurious correlations in symmetric matter. We infer symmetry parameters $\sum_{r=1}^{n} 15$ from $E_N(n_s)$ and $P_N(n_s)$ using \ge

$$J=E_N(n_s)+B$$

 $L = 3P_N(n_s)/n_s$

and include uncertainties in E_N, P_N, n_s and B.

Correlations From Chiral EFT

Bounds From The Unitary Gas Conjecture

120 The Conjecture (UGC): NL3 STOS.TM1 Δ Neutron matter energy always Excluded 100 larger than unitary gas energy. ΤΜΑ Δ ΝΙρδ $E_{UG} = \xi_0(3/5)E_F$, or $E_{UG} \simeq 12.6 \left(\frac{n}{n_s}\right)^{2/3} \text{MeV.}$ 80 LS220 A KVOR FSUgold TKHS 60 **KVR** DD2. The unitary gas consists of DD.D³C.DD-F IUFSU SEHo fermions interacting via a 40 GCR pairwise short-range s-wave (S_0^{LB}, L_0) MKVOR interaction with infinite scat-20 u,=1 SFHx Allowed terring length and zero range. Tews, Lattimer, Ohnishi & Kolomeitsev (2017 Cold atom experiments show n a universal behavior with the 24 26 28 30 32 34 36 38 40 Bertsch parameter $\xi_0 \simeq 0.37$. J (MeV)

For $n \ge n_s$, one also observes $P_N > P_{UG}$ (UGPC). $J \ge 28.6$ MeV; $L \ge 25.3$ MeV; $P_N(n_s) \ge 1.35$ MeV fm⁻³; $R_{1.4} \ge 9.7$ km $_{\odot}$

Applying Unitary Gas Constraints

Neutron Skin Thickness

Calculated $L - r_{np}$ Correlations

Implied L Values

Historical experimental weighted average ²⁰⁸Pb $r_{np}^{208} = 0.166 \pm 0.017$ fm, implying $L = 45 \pm 13$ MeV. Historical experimental weighted average ⁴⁸Ca $r_{np}^{48} = 0.137 \pm 0.015$ fm, implying $L = 14 \pm 21$ MeV. Combined $L = 36 \pm 11$ MeV.

Parity-violating electron scattering measurements at JLab: PREX I+II ²⁰⁸Pb (Adhikari et al. 2021): $r_{np}^{208} = 0.283 \pm 0.071$ fm, implying $L = 119 \pm 46$ MeV. CREX ⁴⁸Ca (Adhikari et al. 2022): $r_{np}^{48} = 0.121 \pm 0.035$ fm, implying $L = -5 \pm 42$ MeV. Combined $L = 51 \pm 31$ MeV.

A (1) × A (2) × A (2) ×

$r_{np}^{208} - r_{np}^{48}$ Linear Correlation

Detail

J. M. Lattimer Symm

Symmetry Energy from Experiment, Theory and Observation

Implied J - L

The Radius – Pressure Correlation

Implied $R_{1.4} - L$

Neutron Star Interior Composition ExploreR (NICER)

Reveal stellar structure through lightcurve modeling, long-term timing, and pulsation searches

Lightcurve modeling constrains the compactness (*M*/*R*) and viewing geometry of a non-accreting millisecond pulsar through the depth of modulation and harmonic content of emission from rotating hot-spots, thanks to gravitational light-bending...

... while phase-resolved spectroscopy promises a direct constraint of radius R.

J. M. Lattimer Symmetry Energy from Experiment, Theory and Observation

GW170817

- LVC detected a signal consistent with a BNS merger, followed 1.7 s later by a weak gamma-ray burst.
- $\blacktriangleright~\simeq$ 10100 orbits observed over 317 s.
- $\blacktriangleright \ \mathcal{M} = 1.186 \pm 0.001 \ M_{\odot}$
- $M_{\rm T,min} = 2^{6/5} \mathcal{M} = 2.725 M_{\odot}$
- $\blacktriangleright E_{\rm GW} > 0.025 M_{\odot} c^2$
- $D_L = 40^{+8}_{-14}$ Mpc
- ► $75 < \tilde{\Lambda} < 560$ (90%)
- \blacktriangleright $M_{
 m ejecta} \sim 0.06 \pm 0.02$ M_{\odot}
- \blacktriangleright Blue ejected mass: $\sim 0.01 M_{\odot}$
- \blacktriangleright Red ejected mass: $\sim 0.05 M_{\odot}$
- Probable r-process production
- Ejecta + GRB: $M_{max} \lesssim 2.22 M_{\odot}$

J. M. Lattimer

Tidal Deformability

The tidal deformability λ is the ratio of the induced dipole moment Q_{ii} to the external tidal field E_{ii} , $Q_{ii} \equiv -\lambda E_{ii}$.

0.12

0.10

Use $\beta = GM/Rc^2$ and $\Lambda = \frac{\lambda c^{10}}{C^4 M^5} \equiv \frac{2}{3} k_2 \beta^{-5}.$ $k_2 \propto 1/\beta$ is the dimensionless Love number, so $\Lambda \simeq a\beta^{-6}$. For $1 < M/M_{\odot} < 1.6$, $a = 0.0093 \pm 0.0007$.

For a neutron star binary, the mass-weighted $\tilde{\Lambda}$ is the relevant observable:

J. M. Lattimer

Symmetry Energy from Experiment, Theory and Observation

0.4

Binary Deformability and the Radius

$$\begin{split} \tilde{\Lambda} = & \frac{16}{13} \frac{(1+12q)\Lambda_1 + q^4(12+q)\Lambda_2}{(1+q)^5} \simeq & \frac{16a}{13} \left(\frac{R_{1.4}c^2}{G\mathcal{M}}\right)^6 \!\! \frac{q^{8/5}(12\!-\!11q\!+\!12q^2)}{(1+q)^{26/5}} \\ & \text{This is very insensitive to } q \text{ for } q > 0.5 \text{, so} \\ & \tilde{\Lambda} \simeq a' \left(\frac{R_{1.4}c}{G\mathcal{M}}\right)^6 . \end{split}$$

For $\mathcal{M} = (1.2 \pm 0.2) \ M_{\odot}$, $a' = 0.0035 \pm 0.0006$, $R_{1.4} = (11.5 \pm 0.3) \frac{\mathcal{M}}{M_{\odot}} \left(\frac{\tilde{\Lambda}}{800}\right)^{1/6} \text{km}.$

For GW170817, $\mathcal{M} = 1.186 M_{\odot}$, $a' = 0.00375 \pm 0.00025$, $R_{1.4} = (13.4 \pm 0.1) \left(\frac{\tilde{\Lambda}}{800}\right)^{1/6}$ km.

< 17 > <

Implied $\Lambda_{1.4} - L$

HESS J1731-347

- Doroshenko et al. quote $M = 0.77^{+0.20}_{-0.17} M_{\odot}$, $R = 10.4^{+0.86}_{-0.78}$ km, $D = 2.5 \pm 0.3$ km.
- Source is buried in a dust shell of estimated $2M_{\odot}$ with uncertain effects on atmospheric emission modeling.
- And corrected Gaia parallax indicates $D = 2.63^{+0.35}_{-0.24}$ kpc, and *M* and *R* inferences are both proportional to *D*.
- Single-temperature C atmosphere model gives $M = 0.83^{+0.17}_{-0.13} M_{\odot}$, $R = 11.25^{+0.53}_{-0.37}$ km, $D = 2.89^{+0.20}_{-0.16}$ kpc.
- Source flux variations have 10% upper limit, but if due to nonuniform surface T, M and R are underestimated.

Let $T_2 = aT_1$ with $a \sim 1.3$ and flux variation $f \sim 0.1$.

$$R^{2}T^{4} = R_{1}^{2}T_{1}^{4} + R_{2}^{2}T_{2}^{4} = R_{1}^{2}T_{1}^{4}/f$$
$$R^{2} = R_{2}^{2}\left[\frac{1+f(a^{4}-1)}{1-f}\right] \sim 1.32R_{2}^{2}$$

Summary of Astrophysical Observations

Symmetry Energy from Experiment, Theory and Observation

Moment of Inertia

- Spin-orbit coupling is of same magnitude as post-post-Newtonian effects (Barker & O'Connell 1975, Damour & Schaeffer 1988).
- Precession alters orbital inclination angle (observable if system is face-on) and periastron advance (observable if system is edge-on).
- More EOS sensitive than $R: I \propto MR^2$.
- Detection requires system to be extremely relativistic.
- ▶ Double pulsar PSR J0737-3037 ($P_b = 0.102 \text{ d}$) is an edge-on candidate; $M_A = 1.338185 \pm 0.000004 M_{\odot}$.
- ▶ More relativistic systems have been found: PSR J1757-1854 ($M_A = 1.3412 \pm 0.0004 M_{\odot}$, $P_b = 0.164$ d) and J1946+2052 ($M_A < 1.31 M_{\odot}$, $P_b = 0.078$ d).
- Accurate (10%) / measurements expected by 2030 for both PSR J0737-3037 and J1757-1854

Recent Moment of Inertia Measurement

S190426c: First Black Hole-Neutron Star Merger?

Information from LVC indicated a marginal case, with 58% chance of being 'terrestrial anomaly'.

Assuming it is cosmic in origin, GCN circular 24411 stated $p_{\rm BHNS} = 0.60, p_{\rm gap} = 0.35, p_{\rm BNS} = 0.15, p_{\rm BBH} < 0.01, p_{\rm HasNS} > 0.99$ and $p_{\rm rem} = 0.72$.

LVC defined BNS if both $M_{1,2} \leq 3M_{\odot}$, BH if both $M_{1,2} \geq 5M_{\odot}$ and gap if either mass satisfied $3M_{\odot} < M < 5M_{\odot}$.

LVC won't immediately release the chirp mass \mathcal{M} (even though it's known precisely), the mass ratio $q = M_1/M_2 > 1$ (and therefore M_1 and M_2 , known much less precisely), and the spin parameter χ if one component is a BH.

But it is still possible to recover \mathcal{M}, M_1, M_2 and χ in cases where $p_{\text{BHNS}}, p_{\text{gap}}, p_{BNS}$ and/or p_{rem} are nonzero.

Suitable Variables

Probabilities

Assume

・ 回 ト ・ ヨ ト ・ ヨ ト …

크

ヘロア 人間 アメヨア 人間 アー

æ

LVC uses model of Foucart et al. (2012, 2018) to determine mass M_d remaining outside the remnant more than a few ms after a BHNS merger:

$$M_d/M_{
m NS}^b \simeq lpha' \eta^{-1/3} (1-2eta) - \hat{R}_{
m ISCO} eta eta' \eta^{-1} + \gamma',$$

 $eta = GM_{
m NS}/R_{
m NS} c^2, \ \eta = q(1+q)^{-2} \ \text{and}$
 $\hat{R}_{
m ISCO} = R_{
m ISCO} c^2/GM_{
m BH}. \ lpha' \simeq 0.406, \ eta' \simeq 0.139, \ \gamma' = 0.255.$
For the Kerr metric

$$\chi = \sqrt{\hat{R}_{\rm ISCO}} \left(4/3 - \sqrt{\hat{R}_{\rm ISCO}/3 - 2/9} \right).$$

 $M_d = 0$ implies

$$\hat{R}_{\rm ISCO} = (\beta'\beta)^{-1} (\alpha' \eta^{2/3} (1-2\beta) + \gamma' \eta).$$

 χ is found from $p_d = \int \int_{M_d \ge 0} \frac{d^2 p}{d \mathcal{M} d \bar{q}} d \mathcal{M} d \bar{q}$.

Convergence For Large σ_q

New LIGO/VIRGO/KAGRA Detections 2023

J. M. Lattimer

Symmetry Energy from Experiment, Theory and Observation

S230518h

S230529ay

S230529ay

S230627c

S230627c

Conclusions

Nuclear experiments and theory, including EDF fits to nuclear binding energies, chiral EFT calculations, and neutron skin and dipole polarizability measurements of ⁴⁸Ca and ²⁰⁸Pb, consistently predict narrow ranges for the symmetry energy parameters **without any astrophysical inputs**:

 $J = (32 \pm 2) \text{ MeV}, \quad L = (50 \pm 10) \text{ MeV}, \quad K_N = (140 \pm 70) \text{ MeV}.$

Neutron star radius predictions are about $R_{1.4} = (11.5 \pm 1.0)$ km.

This is consistent with inferences from GW170817, NICER X-ray timing measurements and X-ray observations of quiescent thermal and photospheric radius expansion burst sources.

We eagerly anticipate new neutron skin and dipole polarizability experiments, LIGO/Virgo/Kagra observations of neutron star mergers, radio pulsar timing measurements of masses and moments of inertia measurements, and NICER and other planned X-ray telescope observations of neutron stars.