

Probing hybrid stars and the properties of the special points with radial oscillations

Oleksii Ivanytskyi

Christoph Gärtlein, Violetta Sagun and David Blaschke

based on CG, OI, CG & DB, 2301.10765 [nucl-th] additional OI & DB, PRD 2022 and OI & DB, Particles 2022

MPCSRG 2023, Yerevan, 12 September 2023

Phase diagram of strongly interacting matter

Figure from T. Kojo arXiv:1912.05326 [nucl-th]

3

pQCD vs $2M_{\odot}$ compact stars

E. Annala, T. Gorda, A. Kurkela, J. Nättilä, A. Vuorinen, Nature Physics 16, 907 (2020)

Existence of parameterization consistent with pQCD and $2M_{\odot}$

Argument in favor of quark cores?

∜

Oleksii Ivanystkyi Compact stars and special points

Quark matter in supernova explosions

- 2M_☉ stars formation? (accretion is too slow)
- Supernovae with progenitor mass \sim 50 M_{\odot}
- Quark-hadron transition stabilizes collapse
- T. Fischer et al., Nature Astronomy 2, 980-986 (2018)

Table 1 Summary of the supernova simulation results with hadron-quark phase transition											
M _{zams} (M _☉)	t _{onset} (s)	t _{collapse} (s)	$\left. \begin{array}{c} \rho \right _{\mathrm{collapse}} \\ \left(\rho_{\mathrm{sat}} \right) \end{array} \right)$	T _{collapse} (MeV)	M _{PNS,collapse} ª (M _☉)	t _{final} (s)	$\left. \begin{array}{c} \rho \right _{final} \\ \left(\rho_{sat} \right) \end{array} \right)$	T _{final} (MeV)	M _{PNS,final} ª (M _☉)	E [*] _{expl} (10 ⁵¹ erg)	
12 ¹²	3.251	3.489	2.49	28	1.727	3.598	5.5	17	1.732	0.1	
1812	1.465	1.518	2.53	27	1.958	1.575	5.9	18	1.964	1.6	
250	0.905	0.976	2.40	31	2.163	0.983	9.6	19	2.171	-	
501	1.110	1.215	2.37	32	2.105	1.224	5.8	31	2.092	2.3	

Deconfinement is a supernova engine for massive blue giants

• Absence of a unified quark-hadron approach

independent modeling of quark, hadron EoSs

1

• Phase transition construction (e.g. Maxwell)

 $p_q(\mu_B) < p_h(\mu_B) \Rightarrow$ hadron phase $p_q(\mu_B) > p_h(\mu_B) \Rightarrow$ quark phase $p_q(\mu_B) = p_h(\mu_B) \Rightarrow$ mixed phase

 μ_{B}

• • = • • = •

a

Special points of the mass-radius diagram

• Special point - narrow range of intersection of M-R curves

A. V. Yudin et al., Astron. Lett. 40, 201 (2014)

(E)

Special points vs properties of hybrid EoS

• Weak sensitivity to hadron EoS

M. Cierniak and D. Blaschke, Eur. Phys. J. ST 229, 3663 (2020)

Weak sensitivity to details of quark-to-hadron transition

M. Cierniak and D. Blaschke, Astron. Nachr. 342, 819-825 (2021)

• Sensitivity to quark EoS only

SP can be used in order to test quark EoS

∜

Goal:

To probe properties of quark matter with SPs based on a microscopic model

A B M A B M

3

False quark dominance in hybrid quark-hadron EoS

• Hadronic EoS consistent with astro (DDf4) + NJL model

Effective quark "confinement" is needed

$$\mathcal{L} = \overline{q}(i\partial \!\!\!/ - \hat{m})q - \mathcal{U} + \mathcal{L}_V + \mathcal{L}_D$$

• Scalar & pseudoscalar interaction channels

 $\mathcal{U} - \chi$ -symmetric density functional (details below)

• Vector-isoscalar interaction channel

$$\mathcal{L}_V = -G_V (\overline{q} \gamma_\mu q)^2$$

(motivated by gluon exchange, stiff EoS needed to reach $2M_{\odot}$)

• Diquark interaction channel

$$\mathcal{L}_{D} = \mathcal{G}_{D} \sum_{A=2,5,7} (\overline{q}i\gamma_{5}\tau_{2}\lambda_{A}q^{c})(\overline{q}^{c}i\gamma_{5}\tau_{2}\lambda_{A}q)$$

(motivated by Cooper theorem, color superconductivity)

$$\mathcal{U} = D_0 \left[(1+\alpha) \langle \overline{q}q \rangle_0^2 - (\overline{q}q)^2 - (\overline{q}i\vec{\tau}\gamma_5 q)^2 \right]^{\varkappa}$$

Parameters

 D_0 - dimensionfull coupling, controls interaction strength α - dimensionless constant, controls vacuum quark mass $\langle \overline{q}q \rangle_0$ - χ -condensate in vacuum (introduced for the sake of convenience)

$$\begin{split} \varkappa &= 1/3 & \varkappa = 1 \\ & \downarrow & & \downarrow \\ \text{motivated by String Flip model} & \text{Nambu-Jona-Lasinio model} \\ & \mathcal{U}_{SFM} \propto \langle q^+ q \rangle^{2/3} \\ \Sigma_{SFM} &= \frac{\partial \mathcal{U}_{SFM}}{\partial \langle q^+ q \rangle} \propto \langle q^+ q \rangle^{-1/3} \propto \textit{separation} \end{split}$$

• Dimensionality

$$[\mathcal{U}] = energy^4$$

 $[\overline{q}q] = energy^3 \Rightarrow [D_0]_{\varkappa=1/3} = energy^2 = [string tension]$

self energy = string tension \times separation \Rightarrow confinement

Expansion around $\langle \overline{q}q \rangle$ and $\langle \overline{q}i\vec{\tau}\gamma_5q \rangle = 0$

$$\mathcal{U} = \underbrace{\mathcal{U}_{MF}}_{0^{\text{th}} \text{ order}} + \underbrace{\left(\overline{q}q - \langle \overline{q}q \rangle\right)\Sigma_{5}}_{1^{\text{st}} \text{ order}} - \underbrace{G_{S}\left(\overline{q}q - \langle \overline{q}q \rangle\right)^{2} - G_{PS}\left(\overline{q}i\vec{\tau}\gamma_{5}q\right)^{2}}_{2^{\text{nd}} \text{ order}} + \dots$$

• Mean-field scalar self-energy
$$\Sigma_{S} = \frac{\partial \mathcal{U}_{MF}}{\partial \langle \overline{q}q \rangle}$$
• Effective medium dependent couplings
$$G_{S} = -\frac{1}{2} \frac{\partial^{2} \mathcal{U}_{MF}}{\partial \langle \overline{q}q \rangle^{2}}, \quad G_{PS} = -\frac{1}{6} \frac{\partial^{2} \mathcal{U}_{MF}}{\partial \langle \overline{q}i\vec{\tau}\gamma_{5}q \rangle^{2}}$$

回とくほとくほと

æ

Expansion around $\langle \overline{q}q \rangle$ and $\langle \overline{q}i\vec{\tau}\gamma_5q \rangle = 0$

$$\mathcal{U} = \underbrace{\mathcal{U}_{MF}}_{0^{\text{th}} \text{ order}} + \underbrace{(\overline{q}q - \langle \overline{q}q \rangle) \Sigma_{MF}}_{1^{\text{st}} \text{ order}} - \underbrace{G_{S} (\overline{q}q - \langle \overline{q}q \rangle)^{2} - G_{PS} (\overline{q}i\vec{\tau}\gamma_{5}q)^{2}}_{2^{\text{nd}} \text{ order}} + \dots$$

• Mean-field scalar self-energy
$$\Sigma_{S} = \frac{\partial \mathcal{U}_{MF}}{\partial \langle \overline{q}q \rangle}$$
• Effective medium dependent couplings
$$G_{S} = -\frac{1}{2} \frac{\partial^{2} \mathcal{U}_{MF}}{\partial \langle \overline{q}q \rangle^{2}}, \quad G_{PS} = -\frac{1}{6} \frac{\partial^{2} \mathcal{U}_{MF}}{\partial \langle \overline{q}i\vec{\tau}\gamma_{5}q \rangle^{2}}$$

回 と く ヨ と く ヨ と

æ

Comparison to NJL model

$$\mathcal{L} = \overline{q}(i\partial - (m + \Sigma_S))q + G_S(\overline{q}q)^2 + G_{PS}(\overline{q}i\vec{\tau}\gamma_5 q)^2 + \dots + \mathcal{L}_V + \mathcal{L}_D$$

effective mass m*

• Similarities:

- current-current interaction
- (pseudo)scalar, vector, diquark, ... channels

• Differences:

- high m^* at low T, $\mu \Rightarrow$ "confinement"

 $\mathbf{T} = \mathbf{0}$

(E)

- medium dependent couplings:

Model setup

(Pseudo)scalar interaction channels
 (chiral condensate & π, σ mesons)

<i>m</i> [MeV]	Λ [MeV]	α	$D_0 \Lambda^{-2}$
4.2	573	1.43	1.39
M_{π} [MeV]	F_{π} [MeV]	M_{σ} [MeV]	$\langle \bar{l}l \rangle_0^{1/3}$ [MeV]
140	92	980	-267

Pseudocritical temperature

$$T_c = 163 \text{ MeV}$$

- low T: 2m_{quark} > M_π, M_σ (stable mesons, confined quarks)
- high T: 2m_{quark} < M_π, M_σ (unstable mesons, deconfined quarks)

3

• Vector repulsion channel (ω -meson)

$$M_\omega =$$
 783 MeV $\Rightarrow~\eta_V \equiv rac{G_V}{G_S} = 0.452$

• Diquark pairing channel (Fierz transformation) $\eta_D \equiv \frac{G_D}{G_S} = 1.5 \eta_V = 0.678$

High density asymptotic at constant G_V and G_D

•
$$G_V
eq 0$$

 $p
ightarrow G_V \langle q^+ q \rangle^2 \propto \mu_B^2, \quad c_S^2
ightarrow 1$

•
$$G_V = 0$$
, $G_D \neq 0$

$$p \to G_D |\langle \overline{q}^c i \gamma_5 \tau_2 \lambda_2 q \rangle^2 | \propto \mu_B^6, \quad c_S^2 \to \frac{1}{5}$$

• Perturbative QCD

$$p \rightarrow 0.8 p_{SB} \propto \mu_B^4, \quad c_S^2 \rightarrow rac{1}{3}$$

A. Kurkela, P. Romatschke, A. Vuorinen, Phys. Rev. D 81, (2010)

Medium dependent couplings?

High density asymptotic at constant G_V and G_D

•
$$\mathbf{G_V} \neq \mathbf{0}$$

 $p \rightarrow G_V \langle q^+ q \rangle^2 \propto \mu_B^2, \quad c_S^2 \rightarrow 1$

•
$$\mathbf{G}_{\mathbf{V}}=\mathbf{G}_{\mathbf{I}}=\mathbf{0},\ \mathbf{G}_{\mathbf{D}}
eq\mathbf{0}$$

$$p
ightarrow G_D |\langle \overline{q}^c i \gamma_5 au_2 \lambda_2 q
angle^2 | \propto \mu_B^6, \quad c_S^2
ightarrow rac{1}{5}$$

Perturbative QCD

$$p
ightarrow 0.8 p_{SB} \propto \mu_B^4, \quad c_S^2
ightarrow rac{1}{3}$$

A. Kurkela, P. Romatschke, A. Vuorinen, Phys. Rev. D 81, (2010)

Medium dependent couplings?

Effective repulsion from non-perturbative gluon exchange

• Fock energy with $D_{gluon} \propto rac{1}{k^2 - M_{gluon}^2}$

$$\varepsilon_{repulsion} = G_V \langle q^+ q \rangle^2$$
 with $G_V = \frac{4\pi \alpha_s/3}{9M_{gluon}^2 + 8k_F^2}$, α_s – frozen

Y. Song, G. Baym, T. Hatsuda, and T. Kojo Phys. Rev. D 100, 034018 (2019)

• Density dependent coupling

$$k_{F} = \left(\frac{6\pi^{2}\langle q^{+}q\rangle}{2\cdot 2\cdot 3}\right)^{1/3} \quad \Rightarrow \quad G_{V} = \frac{G_{V}^{\text{vacuum}}}{1 + \frac{8}{9M_{\text{stung}}^{2}} \left(\frac{\pi^{2}\langle q^{+}q\rangle}{2}\right)^{2/3}}$$

• High density asymptotic

$$arepsilon_{repulsion} \propto \langle q^+ q
angle^{4/3} \quad \Rightarrow \quad c_S^2 o rac{1}{3}$$

向下 イヨト イヨト ニヨ

Medium dependent couplings

$$G_V(n_V) = G_V^{vacuum} \cdot f(n_V), \qquad G_D(n_D) = G_D^{vacuum} \cdot f(n_D)$$

$$n_V = \langle q^+ q \rangle, \qquad n_D = |\langle \overline{q}^c i \tau_2 \gamma_5 \lambda_2 q \rangle|$$

Medium dependence

$$f(n) = \left[1 + \frac{8}{9M_{gluon}^2} \left(\frac{\pi^2 n}{2}\right)^{2/3}\right]^{-1}$$

• Rearrangement terms (needed for thermodynamic consistency)

$$\langle f^+f\rangle = -\frac{\partial\Omega}{\partial\mu_f}$$

$$\Downarrow$$

$$\Omega \to \Omega - \Theta_V + \Theta_D \quad with \quad \Theta_i = \int_0^{n_i} dn \ n^2 \frac{\partial G_i(n)}{\partial n}$$

э

Asymptotically conformal EoS (symmetric matter @T=0)

Conformal matter

Conformality is reached at $\mu_B/3 \gg M_{gluon}$

Asymptotically conformal EoS of neutron stars

- Setup: electric neutrality, β -equilibrium, Maxwell construction with DD2 EoS
- Scanning over $\eta_V = \frac{G_V}{G_S}\Big|_{vacuum}$ and $\eta_D = \frac{G_D}{G_S}\Big|_{vacuum}$

The ω -meson value of η_V and the Fierz value of η_D prefer early deconfinement?

▲御▶ ▲ 国▶ ▲ 国▶

2

Mass-radius diagram

Observational data prefer early deconfinement?

< ロ > < 同 > < 回 > < 回 >

э

Tidal deformability

Observational data prefer early deconfinement?

< 同 > < 三 > < 三 >

э

Conformality in neutrons stars?

- Speed of sound
 - $c_{S}^{2} = \frac{1}{3}$ in conformal matter
- Compression modulus
 - $K_{NM} = 9n_B^2 \frac{\partial^2}{\partial n_B^2} \frac{E}{A}$ $K_{NM} = -\frac{3\mu_B}{2} < 0$ in conformal matter

Both c_5^2 and K_{NM} contradict conformality in neutron stars

Summary of quark EoS

- Phenomenological "confinement" $p \simeq -B$ at small densities Asymptotically conformal $p \propto \mu_B^4$ at high densities Color superconductivity correction $\propto \mu_B^2 \Delta^2$ • **ABPR-like parameterization** ($M_{gluon} = 600 \text{ MeV}$) $p = A_4 \mu_B^4 + \Delta^2 \mu_B^2 - B$
 - $A_4, \ \Delta, \ B$ depend on η_V , η_D
 - C. Gärtlein et al., 2301.10765 [nucl-th]

Special points of the mass-radius diagram

Is it possible to constrain η_V and η_D ?

(E)

M_{max}, M_{onset} and special point

Constraining vector and diquark couplings

• No vacuum color-superconductivity 0.5

 $\eta_{\mathsf{D}} < 0.78$

O. Ivanytskyi, D. Blaschke, PRD (2022)

• $M_{max} = 2.08^{+0.07}_{-0.07} M_{\odot}$

E. Fonseca et al., Astrophys. J. Lett. 915, L12 (2021)

• Not too early deconfinement

 $n_{onset} > n_{saturation}$

Stability of the quark branch

Are the couplings constrained to the small region suggesting $M_{onset} < 0.5 M_{\odot}$ and $M_{max} > 2.4 M_{\odot}$?

Compact stars and special points

- Effective "confining" chiral model with color superconductivity is derived based on the χ -symmetric density functiobal
- Medium dependent quark-meson couplings provide conformal limit
- Neutron star matter is unlikely to be conformal
- Simple analytical parameterization of the model
- Constraint on the parameters of quark matter, suggesting an early deconfinement and heavy compact stars

3

Hyperon puzzle

FIG. 7. Neutron-star masses as a function of the radius R. Solid (dashed) curves are with (without) hyperon (Λ and Σ^-) mixing for ESC+MPa and ESC+MPb. The dot-dashed curve for MPb is with Λ mixing only. Also see the caption of Fig. 3.

Yamamoto et al., Phys.Rev.C 96 (2017) 06580; arXiv:<u>1708.06163</u> [nucl-th] Yamamoto et al., Eur. Phys. J. A 52 (2016) 19; arXiv:1510.06099 [nucl-th] JI & Sedrakian, Phys. Rev. C 100 (2019) 015809; arXiv:1903.06057 [astro-ph.HE]

Examples for realistic hadronic EoS which suggest a Berlin Wall is inferito the line M = 2.0 M_sun

Fig. 9. Neutron-star masses as a function of the radius R. Solid, dashed and dotted curves are for MPa, MPa⁺ and MPb. Two dotted lines show the observed mass $(1.97 \pm 0.04)M_{\odot}$ of J1614-2230.

< ロ > < 同 > < 回 > < 回 >

Hyperons soften EoS, prevent neutron stars from reaching $2M_{\odot}$

Context: Density functional theory

(Dirac)Brueckner-Hartree-Fock T-, G-matrix based theories

Density functional theory

- Many body problems
- Quantum chemistry
- Skyrme-type models for nuclear physics
- String Flip model for quark matter

```
• ...
```

・ロト ・ 一下・ ・ ヨト・

3

Bosonization

• Hubbard-Stratonovich transformation

$$\exp\left[\int dx \ G(\overline{q}\widehat{\Gamma}q)^2\right] = \int [D\phi] \exp\left[-\int dx \left(\frac{\phi^2}{4G} + \phi \overline{q}\widehat{\Gamma}q\right)\right]$$

• Vertexes:
$$\hat{\Gamma}_{S} = 1 \Rightarrow$$
 scalar-isoscalar σ -field
 $\hat{\Gamma}_{PS} = i\gamma^{5}\vec{\tau} \Rightarrow$ pseuscalar-isoscalar $\vec{\pi}$ -field
 $\hat{\Gamma}_{V}^{\mu} = \gamma^{\mu} \Rightarrow$ vector-isoscalar ω^{μ} -field
 $\hat{\Gamma}_{I}^{\mu} = \gamma^{\mu}\vec{\tau} \Rightarrow$ vector-isovector $\vec{\rho}^{\mu}$ -field
 $\hat{\Gamma}_{D}^{A} = i\gamma^{5}\lambda_{A}\tau_{2} \Rightarrow$ scalar diquark Δ_{A} -field

• Bosonized Lagrangian ($m^* = m + \Sigma_{\sf S}$ - effective mass, ${\sf Q}^{\sf T} = ({\sf q} | {\sf q}^{\sf c})/\sqrt{2})$

$$\mathcal{L} + q^{+}\hat{\mu}q = \overline{Q}\hat{S}^{-1}Q - \frac{\sigma^{2}}{4G_{S}} - \frac{\vec{\pi}^{2}}{4G_{PS}} + \frac{\omega^{2}}{4G_{V}} + \frac{\vec{\rho}^{2}}{4G_{I}} - \frac{\Delta_{A}\Delta_{A}^{*}}{4G_{D}} - \mathcal{U}_{MF} + \langle \overline{q}q \rangle (\Sigma_{S} + \sigma)$$

$$\hat{S}^{-1} = \begin{pmatrix} \hat{S}_{+}^{-1} & i\Delta_{A}\gamma_{5}\tau_{2}\lambda_{A} \\ i\Delta_{A}^{*}\gamma_{5}\tau_{2}\lambda_{A} & \hat{S}_{-}^{-1} \end{pmatrix}, \quad \hat{S}_{\pm}^{-1} = i\partial - m^{*} - \sigma - i\gamma^{5}\vec{\pi}\cdot\vec{\tau} \pm (\gamma_{0}\hat{\mu} + \psi + \vec{\phi}\cdot\vec{\tau})$$

 $\rightarrow \rightarrow -$

Mean field

• Field equations for σ and $\vec{\pi}$

$$\begin{cases} \sigma = 2G_{S}(\langle \overline{q}q \rangle - \overline{q}q) \\ \vec{\pi} = -2G_{PS}\overline{q}i\vec{\tau}\gamma_{5}q \end{cases} \Rightarrow \langle \sigma \rangle = \langle \vec{\pi} \rangle = 0 \Rightarrow \sigma, \vec{\pi} - \text{beyond MF}$$

comment: $\langle \sigma \rangle = 0$ does not assume χ -symmetry since $\langle \overline{q}q \rangle \neq 0$

• Thermodynamic potential

$$\langle \omega_{\mu} \rangle = \delta_{\mu 0} \omega, \quad \langle \rho_{\mu}^{a} \rangle = \delta_{\mu 0} \delta_{a3} \rho, \quad |\langle \Delta_{A} \rangle| = \delta_{A2} \Delta$$

$$\Omega = -rac{1}{2eta V} extsf{Tr} \ln(eta \hat{S}^{-1}) - rac{\omega^2}{4 G_V} - rac{
ho^2}{4 G_I} + rac{\Delta^2}{4 G_D} + \mathcal{U}_{MF} - \langle \overline{q}q
angle \Sigma_S$$

∜

• Vector fields, diquark gap, χ -condensate

$$\frac{\partial\Omega}{\partial\omega} = 0, \quad \frac{\partial\Omega}{\partial\rho} = 0, \quad \frac{\partial\Omega}{\partial\Lambda} = 0, \quad \langle \overline{q}q \rangle = \sum_{\alpha} \frac{\partial\Omega}{\partial m_{\alpha}} \quad \forall \alpha \in \mathbb{R}$$

Superconductivity onset

• Single quark energy and distribution

$$E_f^{\pm} = sgn(E_f \mp \mu_f)\sqrt{(E_f \mp \mu_f)^2 + \Delta^2}$$

$$f_f^{\pm} = [\exp(E_f^{\pm}/T) + 1]^{-1}$$

• Gap equation $\frac{\partial \Omega}{\partial \Delta} = \frac{\Delta}{2G_D} - 2\Delta \sum_{f,a=\pm} \int \frac{d\mathbf{k}}{(2\pi)^3} \frac{1 - 2f_f^a}{E_f^a} = 0$ \Downarrow

two solutions : $\Delta=0$ or $\Delta\neq 0$

• Two solutions coincide \Rightarrow SC onset

$$\left. \frac{\partial^2 \Omega}{\partial \Delta^2} \right|_{\Delta=0} = 0 \quad \Rightarrow \quad \mu_B = \mu_B(G_D)$$

 $\eta_D \lesssim$ 0.78 (agrees with the Fierz value)

Oleksii Ivanystkyi Compact stars and special points

Asymptotic of pressure

• Perturbative QCD: $p/p_{SB} \simeq 0.8$, $\delta \rightarrow +0$ in symmetric matter

• Scanning over M_{gD} vs M_{gV} at different η_D

hatchet region: $\delta
ightarrow -0$ - contradiction with pQCD

 $M_{gV}\simeq 400~MeV$ and $M_{gV}\simeq 800~MeV?$

How to define G_V , G_I and G_D ?

Mesonic correlations

$$\mathcal{L} = \dots + \overline{q}(\sigma + i\gamma_5 \vec{\pi} \cdot \vec{\tau} + \psi + \vec{\phi} \cdot \tau)q - \frac{\sigma^2}{4G_S} - \frac{\vec{\pi}^2}{4G_{PS}} + \frac{\omega^2}{4G_V} + \frac{\vec{\rho}^2}{4G_I}$$
$$D_i^{-1}(p^2) = \frac{1}{2G_i} - \cdots - \text{one-loop mesonic propagator}$$
$$D_i^{-1}(M_i^2) = 0 \implies \text{mesonic masses}$$

• Fierz transformation - rearrangement of Dirac, color and flavor indexes

$$(\gamma^{\mu})_{mn}(\gamma_{\mu})_{m'n'} = \mathbf{1}_{mn'}\mathbf{1}_{m'n} + (i\gamma_{5})_{mn'}(i\gamma_{5})_{mn'} - \frac{1}{2}(\gamma^{\mu})_{mn'}(\gamma_{\mu})_{m'n} - \frac{1}{2}(\gamma^{\mu}\gamma_{5})_{mn'}(\gamma_{\mu}\gamma_{5})_{m'n} \\ \lambda^{ab}_{\alpha}\lambda^{a'b'}_{\alpha} = \frac{16}{9}\mathbf{1}_{ab'}\mathbf{1}_{a'b} - \frac{1}{3}\lambda^{ab'}_{\alpha}\lambda^{a'b}_{\alpha}$$

coefficients - proportional to couplings

$$G_S: G_V: G_I: G_D = 1: 0.5: 0.5: 0.75$$

Phase diagram (Q-neutral, β -equilibrium, $M_{gluon} \rightarrow \infty$)

