Covariant density [functionals for](#page-34-0) compact star studies

A Sedrakian

[Results](#page-16-0)

Covariant density functionals for compact star studies

Armen Sedrakian

Frankfurt Institute for Advanced Studies Institute for Theoretical Physics, Wroclaw University

The Modern Physics of Compact Stars and Relativistic Gravity, 12-16 Sept 2023 Yerevan, Armenia

Uniwersytet Wrocławski

Covariant density [functionals for](#page-0-0) compact star studies

A Sedrakian

[Results](#page-16-0)

[Results](#page-32-0)

Talk based on:

- A. Sedrakian and A. Harutyunyan, *Delta-resonances and hyperons in proto-neutron stars and merger remnants.* Eur. Phys. J. A 58 (2022) 137; Universe 7 (2021) 382
- M. Alford, A. Harutyunyan and A. Sedrakian, *Bulk Viscosity of Relativistic npe*µ *Matter in Neutron-Star Mergers.* Phys. Rev. D 104, (2021) 103027; arXiv:2306.13591; Particles 5 (2022) 361

For a review:

A. Sedrakian, J.-J. Li and F. Weber *Heavy Baryons in Compact Stars.* Prog. Part. Nucl. Phys. 131 (2023) 104041 [arXiv:2212.01086] [Introduction and motivation](#page-2-0)

Exploration of the strong sector of the Standard Model

Covariant density [functionals for](#page-0-0) compact star studies

A Sedrakian

Introduction [and motivation](#page-2-0)

[Results](#page-16-0)

[Results](#page-32-0)

The big picture of QCD phase diagram:

1 High-temperature and low-density HIC and lattice QCD simulations

2 High-temperature and high-density - CCSN and BNS mergers

Low-temperature and high-density - compact stars

4 Low-temperature and low density - HIC, nuclear structure, compact stars

Covariant density [functionals for](#page-0-0) compact star studies

A Sedrakian

Introduction [and motivation](#page-2-0)

-
-
- [Results](#page-16-0)
-
-
- [Results](#page-32-0)
-

Numerical simulations of binary neutron star mergers (from L. Rezzolla's group at Goethe-U, Frankfurt-Main). From left to right: density, temperature, angular frequency.

 $-15 -10 -5$ $\overline{0}$ $5 \t 10 \t 15$

 $5 - 10 - 15$

 $-15 -10 -5$ $\overline{0}$ $10 - 15$

 $-15 -10 -5$

[Hyperons and Delta-resonances](#page-4-0)

Covariant density [functionals for](#page-0-0) compact star studies

A Sedrakian

[Hyperons and](#page-4-0) Deltaresonances

[Results](#page-16-0)

[Bulk viscosity](#page-28-0)

[Results](#page-32-0)

Hyperons and delta-resonances in cold nuclear matter

Covariant density [functionals for](#page-0-0) compact star studies

A Sedrakian

Equation of [state of dense](#page-5-0) matter

[Results](#page-16-0)

[Results](#page-32-0)

CDF based equations of states

- Using EoS in the form of density functional: the pressure of dense zero-temperature matter is a functional of energy-density: $P(\varepsilon(r))$.
- The parameters of the functional are adjusted to the available data (astrophysics, laboratory, and ab initio calculations)
- DFT extended to baryon octet and includes hyperons and Delta-resonances
- \bullet Fast in implementation to generate quickly families of EoS
- **•** Relativistic models of nuclear matter as DFT: (a) relativistic covariance, causality is fulfilled $(+)$
	- (b) The Lorentz structure of interactions is maintained explicitly (+)
	- (c) straightforward extension to the strange sector and resonances $(+)$
	- (d) fast implementation (+)
	- (e) not a QFT in the QED/QCD sense (-)
- Extended to finite-temperature and iso-entropic case The models are studied at $S =$ Const. and $Y_e =$ Const. (early stages of evolution, no significant entropy gradients in the core)
- Mapping of CDF onto the Taylor expansion of energy of nuclear matter A family of models is generated with varying symmetry energy, its slope, etc.

Covariant density [functionals for](#page-0-0) compact star studies

A Sedrakian

-
-

Equation of [state of dense](#page-5-0) matter

[Results](#page-16-0)

[Results](#page-32-0)

Construct an EoS in the form of density functional: the pressure of dense zero-temperature matter is a functional of energy-density: $P(\varepsilon(r))$

- The parameters of the functional are adjusted to the available data; in our case astrophysics and laboratory data.
- *Ab initio* calculations are data → check compatibility and adjust if required.
- DFT must be versatile enough to accommodate the baryon spin-1/2 octet and . spin-3/2 decouplet.
- Fast in implementation to generate quickly families of EoS

DFT's :

Goals:

- Relativistic mean-field models of nuclear matter reinterpreted as DFT:
	- (a) relativistic covariance, causality is fulfilled automatically $(+)$
	- (b) The Lorentz structure of interactions is maintained explicitly (+)
	- (c) straightforward extension to the strange sector and resonances (+)
	- (d) fast implementation (+)
	- (e) the microscopic counterpart is unknown [not a QFT in the QED/QCD sense] (-) (f) uncertainties can be quantified in terms of Taylor expansion coefficients
- Non-relativistic DFTs (e.g. Skyrme or Gogny classes):
	- (a) high accuracy at low-densities (+)
	- (b) extensive tests on laboratory nuclei (+)
	- (c) relativistic covariance is lost and high-density extrapolation is not obvious (-)
	- (d) extensions to heavy baryons not straightforward (-)

Nuclear matter Lagrangian:

Covariant density [functionals for](#page-0-0) compact star studies

A Sedrakian

Equation of [state of dense](#page-5-0) matter

[Results](#page-32-0)

• Meson fields include σ meson, ρ_{μ} -meson and ω_{μ} -meson

 \bullet Leptons include electrons, muons and neutrinos for $T \neq 0$

Two types of relativistic density functionals based on relativistic Lagrangians

- \bullet linear mesonic fields, density-dependent couplings (DDME2, DD2, etc.)
- non-linear mesonic fields; coupling constants are just numbers (NL3, GM1-3, etc.)

Covariant density [functionals for](#page-0-0) compact star studies

A Sedrakian

Equation of [state of dense](#page-5-0) matter

[Results](#page-16-0)

[Results](#page-32-0)

Fixing the couplings: nucleonic sector

$$
g_{iN}(\rho_B) = g_{iN}(\rho_0)h_i(x), \qquad h_i(x) = a_i \frac{1 + b_i(x + d_i)^2}{1 + c_i(x + d_i)^2} \quad i = \sigma, \omega,
$$

$$
g_{\rho N}(\rho_B) = g_{\rho N}(\rho_0) \exp[-a_\rho(x - 1)], \quad i = \rho, (\pi - HF)
$$

 $h_i(1) = 1$, $h_i''(0) = 0$ and $h_{\sigma}''(1) = h_{\omega}''(1)$, which reduce the number of free parameters to three in this sector.

- DD-ME2 parametrization, G. Lalazissis, et al., Phys. Rev. C71, 024312 (2005)
- DD2 parametrizations, S. Typel, Eur. Phys. J. A52, 16 (2016)
- DD-ME2+LQ parametrizations, J. J. Li, Sedrakian, Phys. Rev. C100, 015809 (2019)

Taylor expansion of nuclear energy

Covariant density [functionals for](#page-0-0) compact star studies A Sedrakian

Equation of [state of dense](#page-5-0) matter [Results](#page-16-0)

[Results](#page-32-0)

$$
E(\chi, \delta) \simeq E_0 + \frac{1}{2!} K_0 \chi^2 + \frac{1}{3!} Q_{sym} \chi^3 + E_{sym} \delta^2 + L \delta^2 \chi + \mathcal{O}(\chi^4, \chi^2 \delta^2),
$$
 (1)

where
$$
\delta = (n_n - n_p)/(n_n + n_p)
$$
 and $\chi = (\rho - \rho_0)/3\rho_0$.

Consistency between the density functional and experiment

- saturation density \bullet $\rho_0 = 0.152$ fm⁻³
- \bullet binding energy per nucleon $E/A = -16.14$ MeV,
- **•** incompressibility $K_{\text{sat}} = 251.15 \text{ MeV}$,
- skweness $Q_{\text{sat}} = 479$ \bullet
- \bullet symmetry energy $E_{sym} = 32.30 \text{ MeV},$
- symmetry energy slope $L_{\text{sym}} = 51.27 \text{ MeV}$,
- **•** symmetry incompressibility $K_{sym} = -87.19 \text{ MeV}$

Credit: Tews, et al ApJ, 2017

Covariant density [functionals for](#page-0-0) compact star studies

A Sedrakian

Equation of [state of dense](#page-5-0) matter

[Results](#page-16-0)

[Results](#page-32-0)

Consistency between the density functional with experiment and ab initio theory

– Uncertainties will be quantified in terms of variation of higher-order characteristics around the central fit values.

– Low density physics depends strongly on the value of *L*sym with a strong correlation to the radius of the star and tidal deformability

 $-$ High-density physics strongly depends on the value of Q_{sym} with strong correlations to the mass of the star.

Covariant density [functionals for](#page-0-0) compact star studies

A Sedrakian

Equation of [state of dense](#page-5-0) matter

[Results](#page-16-0)

[Bulk viscosity](#page-28-0)

[Results](#page-32-0)

Beyond nucleons: Baryon octet $J^p = 1/2^+$ and baryon decuplet $J^p = 3/2^+$

Strangeness carrying baryons + resonances (nucleon excitations)

 α_{ps} = 0.40. κ is the ratio of the tensor to vector couplings of the vector mesons.

Covariant density [functionals for](#page-0-0) compact star studies

A Sedrakian

Equation of [state of dense](#page-5-0) matter

[Results](#page-16-0)

[Results](#page-32-0)

The depth of hyperonic potentials in the symmetric nuclear matter are used as a guide the range of hyperonic couplings:

- Λ particle: $V_{\Lambda}^{(N)}(\rho_0) \simeq -30 \text{ MeV}$
- Ξ particle: $V_{\Xi}^{(N)}(\rho_0) \simeq -14 \text{ MeV}$
- Σ particle: $V_{\Xi}^{(N)}(\rho_0) \simeq +30 \text{ MeV}$

These ranges capture the most interesting regions of the parameter space of masses and radii.

The depth of Δ-potentials in the symmetric nuclear matter is used as a guide for the range of the couplings:

- Electron and pion scattering: $-30 \text{ MeV} + V_{\Delta}^{(N)}(\rho_0) \le V_{\Delta}(\rho_0) \le V_N(\rho_0)$
- \bullet Use instead $R_{m\Delta} = g_{m\Delta}/g_{mN}$ for which the the typical range used is

$$
R_{\rho\Delta} = 1, \quad 0.8 \le R_{\omega\Delta} \le 1.6, \quad R_{\sigma\Delta} = R_{\omega\Delta} \pm 0.2.
$$

Covariant density [functionals for](#page-0-0) compact star studies

A Sedrakian

Equation of [state of dense](#page-5-0) matter

[Results](#page-16-0)

[Bulk viscosity](#page-28-0)

[Results](#page-32-0)

Hyperons and delta-resonances and in proto-neutron stars and merger remnants

Covariant density [functionals for](#page-0-0) compact star studies

A Sedrakian

Equation of [state of dense](#page-5-0) matter

[Results](#page-16-0)

[Results](#page-32-0)

The equation of state (EoS) and composition of dense and hot Δ -resonance admixed hypernuclear matter is studied under conditions that are characteristic of neutron star binary merger remnants and supernovas.

● Baryon and lepton charges:

$$
Y_Q = n_Q/n_B, \quad Y_{e,\mu} = (n_{e,\mu} - n_{e^+, \mu^+})/n_B
$$

$$
n_Q = n_p + n_{\Sigma^+} + 2n_{\Delta^{++}} + n_{\Delta^+} - (n_{\Sigma^-} + n_{\Xi^-} + n_{\Delta^-}).
$$

Trapped regime - fixed lepton numbers

$$
Y_{L,e} = Y_e + Y_{\nu_e} \quad Y_{L,\mu} = Y_{\mu} + Y_{\nu_{\mu}},
$$

 BNS : $Y_{L,e} = Y_{L,\mu} = 0.1$ Supernova : $Y_{L,e} = 0.4$ $Y_{L,\mu} = 0.$

Transparent regime (neutrino chemical potentials vanish) - equilibrium with respect \bullet to the weak processes imply

$$
\mu_{\Lambda} = \mu_{\Sigma^0} = \mu_{\Xi^0} = \mu_{\Delta^0} = \mu_n = \mu_B, \quad \mu_{\Sigma^-} = \mu_{\Xi^-} = \mu_{\Delta^-} = \mu_B - \mu_Q,
$$

$$
\mu_{\Sigma^+} = \mu_{\Delta^+} = \mu_B + \mu_Q, \quad \mu_{\Delta^{++}} = \mu_B + 2\mu_Q,
$$

where the baryon μ_B and charge $\mu_O = \mu_p - \mu_n$ chemical potentials are associated with conservations of these quantities.

Covariant density [functionals for](#page-0-0) compact star studies

A Sedrakian

Equation of [state of dense](#page-5-0) matter

[Results](#page-16-0)

[Results](#page-32-0)

• Thus the conditions are

 $\mu_e = \mu_\mu = -\mu_Q = \mu_n - \mu_p$, (free streaming) $\mu_e = \mu_{L,e} - \mu_{O}$, $\mu_{\mu} = \mu_{L,\mu} - \mu_{O}$. (trapped)

BNS mergers, the initial conditions correspond to two cold neutron stars,

$$
Y_{L,e}=Y_{L,\mu}=0.1,
$$

 \bullet For supernova matter the predicted electron and μ -on lepton numbers are typically

$$
Y_{L,e} = 0.4, \quad Y_{L,\mu} = 0.
$$

[Results](#page-16-0)

[Bulk viscosity](#page-28-0) [Results](#page-32-0)

A Sedrakian

[Results](#page-16-0)

[Bulk viscosity](#page-28-0) [Results](#page-32-0)

No significant changes in the composition compared to fixed *T*.

Dependence of pressure on baryon density for $S/A = 1$.

A Sedrakian

[Results](#page-16-0)

[Bulk viscosity](#page-28-0) [Results](#page-32-0)

 \boldsymbol{N}

 $Y_{Lc} = 0.1$

 $Y_{L_0} = 0.4$ -

11

 $NY \sim$ $NY\Delta$ -

GW170817

2.5

2.0

 1.0

 0.5 10

 MM_O 1.5

Covariant density [functionals for](#page-0-0) compact star studies

A Sedrakian

[Results](#page-16-0)

[Results](#page-32-0)

13

PSR J0740+6620

PSR J0030+0451 -

 14

15

ellipses show 90% CI regions for PSR J0030+0451, PSR J0740+6620 and gravitational wave event GW170817.

12

Dependence of pressure on baryon density for $S/A = 1$.

A Sedrakian

[Results](#page-16-0)

[Bulk viscosity](#page-28-0) [Results](#page-32-0)

Covariant density [functionals for](#page-0-0) compact star studies

A Sedrakian

[Results](#page-16-0)

[Results](#page-32-0)

Generated a large number of EoS based on DDME2, DD2 and MPE functionals $(9 \times 9 = 81$ for each)

- skweness −600 ≤ *Q* ≤ 1000 MeV
- symmetry energy slope $30 < L_{sym} < 110$ MeV

Cold nuclear matter equation of state

$$
E(\chi, \delta) \simeq E_0 + \frac{1}{2!} K_0 \chi^2 + \frac{1}{3!} Q_{\text{sym}} \chi^3 + E_{\text{sym}} \delta^2 + L \delta^2 \chi + \mathcal{O}(\chi^4, \chi^2 \delta^2), \tag{2}
$$

where $\delta = (n_n - n_p)/(n_n + n_p)$ and $\chi = (\rho - \rho_0)/3\rho_0$.

Covariant density [functionals for](#page-0-0) compact star studies

A Sedrakian

[Results](#page-16-0)

[Bulk viscosity](#page-28-0) [Results](#page-32-0)

Covariant density [functionals for](#page-0-0) compact star studies

A Sedrakian

[Results](#page-16-0)

[Bulk viscosity](#page-28-0) [Results](#page-32-0)

24 / 35

Covariant density [functionals for](#page-0-0) compact star studies

A Sedrakian

[Results](#page-16-0)

[Bulk viscosity](#page-28-0) [Results](#page-32-0)

-6 0 0 -4 -200 0 200 0 0 0 200 400 600 800 1 400 600 800 1000 0 0 2.6 $\frac{60\sqrt{190814} \text{ s secondary}}{60\sqrt{190814} \text{ s secondary}}$

2.4 $\frac{4}{\sqrt{190}} = 50$

2.2 $\frac{1}{\sqrt{190}} = 90$ -600 -400 -200 0 200 00 -200 0 200 400 600 800 1 400 600 800 1000 2 800 1000 25/35 0 1 2. 0 1 $\frac{M}{\frac{M}{\epsilon}}$ $\frac{M}{\epsilon}$ $\frac{M}{\$ Q_{sat} [MeV] V] **(a)** *L*sym = 50 *L*sym = 90 MPE **Note** PE **I** E II and the second D_D₂ $D2 \parallel -$ 2 \vert \vert DDME2 $ME2$ and $ME2$ E2 **E2** $\frac{4 \text{ MPE}}{1002}$ $W170817$ $\sqrt{ }$ (b)
 $\frac{1}{2}$ $\frac{1}{$ $R = 13.5$
 $R = 13.0$

[Conclusions-I](#page-25-0)

Covariant density [functionals for](#page-0-0) compact star studies

A Sedrakian

[Results](#page-16-0)

[Conclusions-I](#page-25-0)

[Results](#page-32-0)

Physics output:

- Large number of stellar models for injection studies of the Einstein Telescope (mass, radius, tidal deformabilities, variation of characteristics *L* and *Q* of the EoS).
- 3D tables for numerical simulations (in progress)
- \bullet More on properties of hot compact stars: rotation, universal relation, arXiv:2306.14190, arXiv:2102.00988, arXiv:2008.00213
- At a more fundamental level improved DFs and, in particular, CDFs... \bullet
- 2D EoS tables can be downloaded from \bullet https://github.com/asedrakian/DD_CDFs/ repository.

[Conclusions-I](#page-25-0)

Covariant density [functionals for](#page-0-0) compact star studies

A Sedrakian

[Results](#page-16-0)

[Conclusions-I](#page-25-0)

[Bulk viscosity](#page-28-0)

[Results](#page-32-0)

Dissipation and bulk viscosity

[Conclusions-I](#page-25-0)

Covariant density [functionals for](#page-0-0) compact star studies

A Sedrakian

-
-
- [Results](#page-16-0)
- [Conclusions-I](#page-25-0)
-
- [Results](#page-32-0)
-

- the gravitational wave signal carries information about the equation of state and \bullet eventually composition of hot and dense matter
- current modeling of the emitted gravitational wave is based on numerical relativity \bullet which uses ideal (non-dissipative) hydrodynamics
- Our motivation is *assessment of the effects of dissipation and effects of the equation* \bullet *of state and composition on these processes*

Covariant density [functionals for](#page-0-0) compact star studies

A Sedrakian

[Results](#page-16-0)

[Bulk viscosity](#page-28-0)

[Results](#page-32-0)

Urca rates including muons and leptonic processes

Urca reactions included $(\mu$ -ons as a new factor)

 $n \rightleftarrows p + e^- + \bar{\nu}_e$ (neutron e – decay), $p + e^- \rightleftarrows n + \nu_e$ (electron capture), $n \rightleftarrows p + \mu^- + \bar{\nu}_{\mu}$ (neutron μ – decay), $p + \mu^- \rightleftarrows n + \nu_\mu$ (muon capture).

Leptonic reactions:

$$
\mu \rightleftarrows e^- + \bar{\nu}_e + \nu_\mu \quad \text{(muon decay)},
$$

\n
$$
\mu + \nu_e \rightleftarrows e^- + \nu_\mu \quad \text{(neutrino scattering)},
$$

\n
$$
\mu + \bar{\nu}_\mu \rightleftarrows e^- + \bar{\nu}_e \quad \text{(antineutrino scattering)}.
$$

Covariant density [functionals for](#page-0-0) compact star studies

A Sedrakian

[Results](#page-16-0)

[Bulk viscosity](#page-28-0)

[Results](#page-32-0)

Density oscillations in neutron-star matter

Consider now small-amplitude density oscillations in baryonic matter with frequency ω

$$
n_j(t) = n_{j0} + \delta n_j(t), \quad \delta n_j(t) = \delta n_j^{\text{eq}}(t) + \delta n_j'(t), \quad j = \{n, p, e, \nu\},
$$

The oscillations cause perturbations in particle densities due to which the chemical equilibrium of matter is disturbed leading to a small shift which can be written as

$$
\mu_{\Delta}(t) = A_n \delta n_n(t) + A_\nu \delta n_\nu(t) - A_p \delta n_p(t) - A_e \delta n_e(t), \qquad A_{ij} = \frac{\partial \mu_i}{\partial n_j}
$$

Out of equilibrium the chemical equilibration rate to linear order in $\mu_{\Delta}(t)$ is given by

$$
\Gamma_{\Delta} \equiv \Gamma_p - \Gamma_n = \lambda \mu_{\Delta}, \quad \lambda > 0,
$$

.

Covariant density [functionals for](#page-0-0) compact star studies

A Sedrakian

[Results](#page-16-0)

[Bulk viscosity](#page-28-0)

[Results](#page-32-0)

Definition of bulk viscosity

The rate equations which take into account the loss and gain of particles read as

$$
\frac{\partial}{\partial t}\delta n_n(t) = -\theta n_{n0} - \lambda \mu_\Delta(t), \quad etc.
$$

The non-equilibrium density perturbations can be found according

$$
\delta n'_p = \delta n'_e = -\delta n'_n = -\delta n'_\nu = \frac{C}{A(i\omega + \gamma)}\theta,
$$

$$
C = n_{n0}A_n + n_{\nu 0}A_\nu - n_{p0}A_p - n_{e0}A_e = n_B \left(\frac{\partial \mu_\Delta}{\partial n_B}\right)_{Y_n}
$$

The non-equilibrium part of the pressure:

$$
\Pi = \sum_{j} \frac{\partial p}{\partial n_j} \delta n'_j = \sum_{lj} n_{l0} A_{lj} \delta n'_j = -\zeta \theta \left[\zeta = \frac{C^2}{A} \frac{\gamma}{\omega^2 + \gamma^2} \right]
$$

$$
\zeta_{\text{max}} = \frac{C^2}{2A} \qquad \zeta_{\text{slow}} = \frac{C^2}{A} \frac{\gamma}{\omega^2} \qquad \zeta_{\text{fast}} = \frac{C^2}{A\gamma}
$$

Covariant density [functionals for](#page-0-0) compact star studies

A Sedrakian

[Results](#page-16-0)

[Bulk viscosity](#page-28-0)

[Results](#page-32-0)

Damping time-scale

The energy dissipation rate by the bulk viscosity per unit volume is

$$
\frac{d\epsilon}{dt} = \frac{\omega^2 \zeta}{2} \left(\frac{\delta n_B}{n_B} \right)^2.
$$

The characteristic timescale required for damping of oscillations

$$
\tau_{\zeta} = \epsilon \left(\frac{d\epsilon}{dt} \right)^{-1} = \frac{1}{9} \frac{Kn_B}{\omega^2 \zeta}.
$$

The minimal/maximal value of the damping timescale is

$$
\tau_{\zeta}^{\text{min}} = \frac{2}{9\omega} \frac{Kn_B}{C^2/A}, \qquad \tau_{\zeta}^{\text{slow}} = \frac{1}{9\gamma} \frac{Kn_B}{C^2/A}, \qquad \tau_{\zeta}^{\text{fast}} = \frac{\gamma}{9\omega^2} \frac{Kn_B}{C^2/A}.
$$

In the limits of slow and fast equilibration the damping timescale is given by

Covariant density [functionals for](#page-0-0) compact star studies

A Sedrakian

[Results](#page-16-0)

[Bulk viscosity](#page-28-0)

[Results](#page-32-0)

A Sedrakian

ζ [g cm- s-1]

[Results](#page-16-0)

[Bulk viscosity](#page-28-0)

[Results](#page-32-0)

[Conclusions-II](#page-34-0)

34 / 35

[Conclusions-II](#page-34-0)

Physics output:

[Results](#page-32-0) [Conclusions-II](#page-34-0)

- \bullet Combined EoS and viscosity tables for input in numerical simulations (in progress)
- \bullet Including other compositions – heavy baryons and quark matter
- More fundamental level many-body effects on neutrinos and in nucleonic matter....