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Talk based on:

@ A. Sedrakian and A. Harutyunyan,
Delta-resonances and hyperons in proto-neutron stars and merger remnants.
Eur. Phys. J. A 58 (2022) 137; Universe 7 (2021) 382

@ M. Alford, A. Harutyunyan and A. Sedrakian,
Bulk Viscosity of Relativistic npep. Matter in Neutron-Star Mergers.
Phys. Rev. D 104, (2021) 103027; arXiv:2306.13591; Particles 5 (2022) 361

y
For a review:

A. Sedrakian, J.-J. Li and F. Weber

Heavy Baryons in Compact Stars.

Prog. Part. Nucl. Phys. 131 (2023) 104041 [arXiv:2212.01086] )
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Introduction and motivation

Exploration of the strong sector of the Standard Model

Temperature T [MeV]

%

No=0.16 tm-3

The big picture of QCD phase diagram:
@ High-temperature and low-density HIC and lattice QCD simulations
@ High-temperature and high-density - CCSN and BNS mergers
@ Low-temperature and high-density - compact stars

e Low-temperature and low density - HIC, nuclear structure, compact stars
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Numerical simulations of binary neutron star mergers (from L. Rezzolla’s group at
Goethe-U, Frankfurt-Main). From left to right: density, temperature, angular frequency.
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Hyperons and
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Hyperons and delta-resonances in cold nuclear matter
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CDF based equations of states

o

Equation of state of dense matter

Using EoS in the form of density functional: the pressure of dense zero-temperature
matter is a functional of energy-density: P(e(r)).

The parameters of the functional are adjusted to the available data (astrophysics,
laboratory, and ab initio calculations)

DFT extended to baryon octet and includes hyperons and Delta-resonances

Fast in implementation to generate quickly families of EoS

Relativistic models of nuclear matter as DFT:
(a) relativistic covariance, causality is fulfilled (+)

(b) The Lorentz structure of interactions is maintained explicitly (+)
(c) straightforward extension to the strange sector and resonances (+)
(d) fast implementation (+)

(e) not a QFT in the QED/QCD sense (-)

Extended to finite-temperature and iso-entropic case
The models are studied at S =Const. and Y, =Const. (early stages of evolution, no
significant entropy gradients in the core)

Mapping of CDF onto the Taylor expansion of energy of nuclear matter
A family of models is generated with varying symmetry energy, its slope, etc.
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Equation of state of dense matter

Covariant Goals:
lensit . . .
|~“n:;:,:l|'\\ T @ Construct an EoS in the form of density functional: the pressure of dense
compact star zero-temperature matter is a functional of energy-density: P(e(r))
studies
A Sedrakian @ The parameters of the functional are adjusted to the available data; in our case

astrophysics and laboratory data.
@ Ab initio calculations are data — check compatibility and adjust if required.

@ DFT must be versatile enough to accommodate the baryon spin-1/2 octet and
spin-3/2 decouplet.

@ Fast in implementation to generate quickly families of EoS

Equation of
state of dense

matter DFT’s :
@ Relativistic mean-field models of nuclear matter reinterpreted as DFT:
(a) relativistic covariance, causality is fulfilled automatically (+)
(b) The Lorentz structure of interactions is maintained explicitly (+)
(c) straightforward extension to the strange sector and resonances (+)
(d) fast implementation (+)

(e) the microscopic counterpart is unknown [not a QFT in the QED/QCD sense] (-)

(f) uncertainties can be quantified in terms of Taylor expansion coefficients

@ Non-relativistic DFTs (e.g. Skyrme or Gogny classes):
(a) high accuracy at low-densities (+)
(b) extensive tests on laboratory nuclei (+)
(c) relativistic covariance is lost and high-density extrapolation is not obvious (-)
(d) extensions to heavy baryons not straightforward (-)

V.
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Equation of state of dense matter

Nuclear matter Lagrangian:

L =
NM )

_ 1
ng {’Y“ (iau — SwBBWy — —8pBBT * PH) — (mp — gaBBU):| VB
B

baryons

1 1 1 1
+ 58”(7(%0 = Emg,az = Zw””wuy + Emiw”wu

mesons

1 1 o
= PPt ey, + ) Ay 0 —ma
A

1
)'w)\ - ZF'uVF,uV )
———

mesons
leptons

@ B-sum is over the baryonic octet
@ Meson fields include o meson, p,,-meson and w;,-meson

@ Leptons include electrons, muons and neutrinos for 7' # 0

electromagnetism

z
Two types of relativistic density functionals based on relativistic Lagrangians
@ linear mesonic fields, density-dependent couplings (DDME?2, DD2, etc.)
@ non-linear mesonic fields; coupling constants are just numbers (NL3, GM1-3, etc.)
v
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Equation of state of dense matter

Covariant
_ density Fixing the couplings: nucleonic sector
functionals for
COIH])‘LIC[ star
studies 2
. L+ bi(x+di)> .
A Sedrak . = . . . — a; —
edrakian g:N(pB) = g,N(pO)h,(x), h,(x) = a; g c,-(x T d,~)2 1=o0,w,
gon(p) = gon(po)exp[—ap(x —1)], i=p, (7w — HF) )
Meson (l) m; (MCV) a; b,‘ Ci d,' 8iN
Equation of o 550.1238  1.3881 1.0943  1.7057 0.4421  10.5396
S GIFCtRe w 783 13892  0.9240 14620 04775 13.0189
mater p 763 0.5647 7.3672

hi(1) =1, k' (0) = 0 and A}/ (1) = h{}(1), which reduce the number of free parameters to

three in this sector. )

— DD-ME2 parametrization, G. Lalazissis, et al., Phys. Rev. C71, 024312 (2005)
— DD2 parametrizations, S. Typel, Eur. Phys. J. A52, 16 (2016)
— DD-ME2+LQ parametrizations, J. J. Li, Sedrakian, Phys. Rev. C100, 015809 (2019)
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Equation of state of dense matter
Clovariet Taylor expansion of nuclear energy
density
functionals for
compact star

1 1
studies E(x,68) ~ Eo + 51<0X2 + igsym)ﬁ + Egmd® 4+ L6%x + O(x*, x*82), I6))
A Sedrakian ’ :

where 6 = (n, — np)/(nn + np) and x = (p — po)/3po-

Consistency between the density functional andlg;“xperiment
< T T

@ saturation density

po = 0.152 fm—3 " Excluded
st el @ binding energy per nucleon
state of dens
:{:Eet o E/A = —16.14 MeV,

@ incompressibility »
Kot = 251.15 MeV,

@ skweness Qsat = 479

@ symmetry energy
Egym = 32.30 MeV,

@ symmetry energy slope
Lyym = 51.27 MeV,

[+ symmetry incompressibility 24 26 28 30 32 34 36 38 40
So [MeV
Keym = —87.19 MeV o MeV]

L[MeV]

Credit: Tews, et al ApJ, 2017
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Equation of state of dense matter

Covariant Consistency between the density functional with experiment and ab initio theory

density
functionals for

compact star b U [ 50 T T T
studies Excluded (@)
. < —L_=40
A Sedrakian 3 om
2 5l T heT
< _Lsym =80
o
Z
Z
=
3
Equation of 2
state of dense 5
matter
32 W0
Sa[MeV]
o 4

— Uncertainties will be quantified in terms of variation of higher-order characteristics
around the central fit values.

— Low density physics depends strongly on the value of Lgym with a strong correlation to
the radius of the star and tidal deformability

— High-density physics strongly depends on the value of Qsym with strong correlations to
the mass of the star.
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Equation of state of dense matter

Beyond nucleons: Baryon octet J? = 1/2F and baryon decuplet J# = 3/2F

Strangeness carrying baryons + resonances (nucleon excitations)

A

'ff—‘*.r—'— )
N\ D/
w L)

Ray = gav/8an and Kay = fay/gay for hyperons in SU(6) spin-flavor model

R\Y A % =

Roy 2/3 2/3 1/3

Ryxy  -V2/3 V2/3 -2v/2/3

Ruy 2/3 2/3 1/3

Rwy -1 1+ 2KkuN —2 — KwN
Ryy V2/3 V2/3 2v/2/3

Kgy 2+ 3KwN —2 — KwN 14 2KuN
Ryy 0 2 1

Kpy 0 =3/54+(2/5)kon  —6/5— (1/5)kpN
Sfry 0 zaps —(I/Z)Ozps

aps = 0.40. k is the ratio of the tensor to vector couplings of the vector mesons.
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Equation of state of dense matter

The depth of hyperonic potentials in the symmetric nuclear matter are used as a guide the
range of hyperonic couplings:

@ A paricle: V(™ (pg) ~ —30 MeV

@ E particle: ng) (po) ~ —14 MeV

@ 3 particle: V&Y (pg) ~ +30 MeV

These ranges capture the most interesting regions of the parameter space of masses and

radii.

The depth of A-potentials in the symmetric nuclear matter is used as a guide for the range
of the couplings:

@ Electron and pion scattering: —30 MeV +VXV)(p0) < Va(po) < Vn(po)
@ Use instead RyA = gma /gmn for which the the typical range used is

Ron =1, 08 <Ryn <16, Ron =Ryn £0.2.
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Equation of
state of dense

muziter Hyperons and delta-resonances and in proto-neutron
stars and merger remnants
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Equation of state of dense matter

The equation of state (EoS) and composition of dense and hot A-resonance admixed

hypernuclear matter is studied under conditions that are characteristic of neutron
star binary merger remnants and supernovas. )
@ Baryon and lepton charges:
Yo =ng/ng, Yeu = (neu — ot ,+)/nB
ng =np+nst + a1+ +nat — (ng- +ng- +np-).
@ Trapped regime - fixed lepton numbers
YL,e:Ye‘l'Yue YL,M:Y#+YVM7
BNS:Y,,=Yy, =0.1 Supernova:Y,,=04 Y., =0.
@ Transparent regime (neutrino chemical potentials vanish) - equilibrium with respect
to the weak processes imply
KA = Hy0 = Hg0 = HA0 = Hn = HB, Hy— = Hz— = UAa- = HB — HQ,
P+ = Ha+ = pB+ 1,  Hat++ = B + 240,
where the baryon up and charge pg = p1, — pn chemical potentials are associated
with conservations of these quantities.
y
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Equation of state of dense matter

Covariant
density @ Thus the conditions are
functionals for
compact star .
studies He = Uy = —HQ = Hn — Hp, (free streaming)
A Sedrakian He = MLe — HQ, Hu = ML, — po- (trapped)

@ BNS mergers, the initial conditions correspond to two cold neutron stars,
Yie =Y, =0.1,

Equation of @ For supernova matter the predicted electron and p-on lepton numbers are typically

state of dense

matter YL,e = 04, YL,[,L =0.
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Results

Dependence of composition on baryon density for fixed 7.

T T T
K, =0,T=0.1 MeV

n/ng
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Results

C‘{“*’”f:“" Dependence of temperature on density for fixed S/A = 1.
density

functionals for 45
compact star T T T T T

studies N —— —
studies 40 B S/A_l

A Sedrakian
35+

30 |
25 |

T [MeV]

20

st 7 i

) J

Results

5 I I I I I
1 2 3 4 5 6

nB/ Dgat

No significant changes in the composition compared to fixed 7'
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Results

C‘{‘““_i“"‘ Dependence of pressure on baryon density for S/A = 1.
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Results

25 L N — .
NYA /\
20 L Ym0 PSR J0740+6620
Y, =04
o &
=
S5t /- PSR J0030+0451 |
GW170817 /
/
10 - i
05 1 1 : 1 1
10 11 12 13 14 15
R [km]

Gravitational mass versus radius for non-rotating spherically-symmetric stars. Three sequences are shown for
[3-equilibrated, neutrino-transparent stars with nucleonic (N), hypernuclear (NY) and A-admixed hypernuclear (NY A)
composition for T = 0.1 MeV. In addition, we show sequences of fixed /A = 1 neutrino-trapped, isentropic stars
composed of NY A matter in two cases of constant lepton fractions Y, = Yy, =0.land Yy, = 0.4, Y, = 0. The
ellipses show 90% CI regions for PSR J0030+0451, PSR J0740+6620 and gravitational wave event GW170817.
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C‘{‘““_i“"‘ Dependence of pressure on baryon density for S/A = 1.
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Results

Results

Generated a large number of EoS based on DDME2, DD2 and MPE functionals
(9 x 9 = 81 for each)

@ skweness —600 < Q < 1000 MeV
@ symmetry energy slope 30 < Lgym < 110 MeV

Cold nuclear matter equation of state

1 1
E(x,6) ~ Ey + EK(JX2 + ;stmX3 + Esym52 +L52X + 0(X47X262)7

where & = (ny — np)/(nn + np) and x. = (p — po)/3p0.

(@)
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Results

Covariant
. 600 ———— —
density
functionals for r(a
compact star r
studies L 100
A Sedrakian & 400 + r
E F 50 -
> t L
() Z
= oo g
& 200 - ol
L \ Lgym =[30, ..., 110]
t Qqa = [-600, ..., 1000] |
0 . . .
0 200 400 600 800 1000 1200
&[MeV fm?]
Results 500 R
r (b
- MPE
& 400 --|--- DD2
I3 | | — DDME2
> L
()
= L
& 200 -
0
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Results

2.6

2.4

Mmax [MO]
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Results
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8 - DD2 |+
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Physics output:
@ Large number of stellar models for injection studies of the Einstein Telescope
(mass, radius, tidal deformabilities, variation of characteristics L and Q of the EoS).

@ 3D tables for numerical simulations (in progress)

More on properties of hot compact stars: rotation, universal relation,
arXiv:2306.14190, arXiv:2102.00988, arXiv:2008.00213
Conclusions-I @ At a more fundamental level - improved DFs and, in particular, CDFs...

@ 2D EoS tables can be downloaded from
https://github.com/asedrakian/DD_CDFs/ repository.

26/35



Conclusions-I

Covariant
density
functionals for
compact star
studies

A Sedrakian

Dissipation and bulk viscosity

Conclusions-I
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Conclusions-I

Conclusions-I

Sketch of gravitational wave amplitude of BNS merger

g 10
E 0oy \/\A/ \A /\\/A A ﬂ\/vﬂ‘v/\‘vw ‘\"“A‘h\ﬂ‘*“‘j”“%‘m“f JU‘.N A
s 10 =20 o 0 — 10 20

Inspiral Merger Remnant

@ the gravitational wave signal carries information about the equation of state and
eventually composition of hot and dense matter

@ current modeling of the emitted gravitational wave is based on numerical relativity
which uses ideal (non-dissipative) hydrodynamics

@ Our motivation is assessment of the effects of dissipation and effects of the equation
of state and composition on these processes
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Bulk viscosity

Couarant Urca rates including muons and leptonic processes
functionals for
compact star Urca reactions included (p-ons as a new factor)
studies
A Sedrakian n=p+e + 7 (neutrone — decay),
p+e” 2n+v, (electron capture),
n=p+pu- + 7, (neutronp — decay),
p+u~ 2n+v, (muoncapture).
Leptonic reactions:
H=e + U+ v, (muondecay),
H~+ve = e~ + v, (neutrino scattering),
— uw+ v, = e + 7, (antineutrino scattering).

w+ . ‘ wt
p EEL

124 —
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Bulk viscosity
Density oscillations in neutron-star matter
Consider now small-amplitude density oscillations in baryonic matter with frequency w
ni(t) = njo + on;(1),  dmi(1) = 6n (1) + 6mj(r), j={n,p,e,v},

The oscillations cause perturbations in particle densities due to which the chemical
equilibrium of matter is disturbed leading to a small shift which can be written as

Opi
A () = Audnu () + Audny (1) — Apdn, (1) — Acdne(r), Ay = aﬁ- )
J

Out of equilibrium the chemical equilibration rate to linear order in pa (7) is given by

FPA=Tp—Th=Aua, A>0,
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Bulk viscosity
Definition of bulk viscosity

The rate equations which take into account the loss and gain of particles read as

%571,,([) = —Ony — Apa(t), etc.

The non-equilibrium density perturbations can be found according

C

5’:5/:75/:—6/ :797
mn, n, n, n, Ao £ )

[2JTIN
C = nyoAn + nyoAy — npoAp — nepAe = nB( K )
Ong Y

The non-equilibrium part of the pressure:

op oy
II= ——onl = npA;dn, = —C0 =
Zj: o 21,: 104501 0 |C=— v
c? c? c?
Cmax = < Cslow = *l Cfasl = -
2A A w? Ay
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Bulk viscosity
Damping time-scale
The energy dissipation rate by the bulk viscosity per unit volume is
Z_ o i
dt 2 \ng /)~

The characteristic timescale required for damping of oscillations

(de)fl 1 Kng
T =€l — =———.
¢ d 9 ¢

The minimal/maximal value of the damping timescale is

min __ 2 Knp slow __ 1 Knp Tfasl: v Knp

¢ T ow (/A ¢ 9y C2/A’ ¢ T o2 C2/A

In the limits of slow and fast equilibration the damping timescale is given by
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Conclusions-IT

Covariant . . .
density Combined neutrino transparent and trapped regimes:
functionals for
L‘Ol‘ﬂ])%l(fl star 106 106
studies
A Sedrakian v-transparent V-transparent
104 regime 104 regime
z 10 = 10°
[t o
10” 10°
10° 10°
v
Physics output:
Conclusions.II @ Combined EoS and viscosity tables for input in numerical simulations (in progress)
@ Including other compositions — heavy baryons and quark matter
@ More fundamental level — many-body effects on neutrinos and in nucleonic matter....
y
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