

MuC Target Design Overview

Discussion of shared targetry needs between MuCol and

MInternational UON Collider Collaboration

> by <u>Rui Franqueira Ximenes (CERN-SY-STI-TCD)</u> Marco Calviani, Francisco Javier Saura Anton Lechner, Daniele Calzolari, CERN – Systems Department Sources Targets Interaction (STI) Targets Collimators Dumps (TCD)

FRN

2023/01/31

- Carbon target & target systems considerations
- Design overview
- Carbon Target & shielding feasibility studies
- HLM Target a possibility
- Final remarks

Carbon target & target systems considerations

- > Energy deposition/dpa studies on the Target, windows, shielding, magnets, chicane
- Parameterization study / optimization of beam parameters
- (Conceptual) Engineering study of Target & Target Systems, shielding, p+ dump -> feasibility
- ++ iteration loops with p+ driver, magnets, cooling

Carbon target concept Water connections MInternational UON Collider Helium filling Inner vessel (finned) Outer vessel Beam window Beam Serpentine cooling version Target Target support tube Axial block Tube support

Vessel support

Carbon target concept

- C-Target in static helium
- Water cooled Ti vessel
- Helium (gas) cooled W shielding
- Moderator & neutron absorber at outer radius with water & Boron carbide

Conceptual shielding design

Target & shielding

Carbon Target

Study considerations

- Simple C-rod (L800 mm, 1.79 nuclear inelastic scattering lengths)
- ✤ Beam energy (5 GeV), bunch length (2ns) and average beam power (1.5 3 MW)
- Sensitivity study: thermal behavior as a function of beam sigma and frequency
- Studied cooling concepts:
 - Only radiation cooling
 - Natural convection + radiation cooling
 - Forced convection cooling
- Structural calculation

How much do we gain by playing with these beam parameters?

How can we cool it?

Does it 'survive'?

Note: Not coupled with any pion-muon physics optimization \rightarrow purely thermo-mechanical feasibility assessment.

Maximum temperature and power deposition for **1.5 MW** as function of the beam sigma.

Considering only radiative

Carbon Target

Tpeak (°C)	Transient				Steady state	Power deposited	
σ _{beam} (mm)	5 Hz	10 Hz	20 Hz	50 Hz	Average	(W)	
1	4301	3908	3735	3641	3583	44832	
2	3318	3221	3177	3152	3135	59000	
5	2740	2721	2713	2708	2704	90632	
10	2305	2297	2293	2290	2288	129207	
15	1947	1943	1940	1938	1938	163214	

Beam size is driving parameter of target temperature (for a given average power)

- However, larger target D increases cooling requirements (for a given Radius beam σ ratio)
- Pulse frequency (thus pulse intensity) driving parameter for thermal gradient and consequently dynamic stress of the target.
- Beam sizes of >5mm (1σ) recommended (on a thermal perspective. +info later)

Target Cooling

- Due to high T and sublimation of graphite, an enclosed 'pressurized' atmosphere is required.
- ✤ However, active cooling can be made indirectly. Heat dissipation mostly via radiation and natural convection. → target confinement / separation of cooling system is advantageous (maintenance, RP, disposal, cooling services requirements).

Quadrilateral mesh, 2 mm 160.000 elements Avg. skewness 0.08

Target structural considerations

- 1 single shot @(5GeV,1 σ =5mm,5Hz,1.5MW)
 - Max energy density = 95 J/g/pulse
- No showstopper in the structural point of view.
- ♦ Considered parameters results in a similar dynamic load as the CNGS target → Future dismantling/PIE to provide important data.

LS Dyna explicit structural simulation with time step resolution of stress waves speed propagation in graphite

Carbon Target

For these beam parameters, C-Target seems feasible. However:

- Fatigue: extensive load cycles to be experienced by the target (10⁸ /y) at very high temperature.
- DPA: >1 dpa levels on the beam windows. Strategy to be defined. E.g. windowless, blown-up beam somewhere upstream, rotating window "dilution", frequent window exchange.
- Beam power > 2 MW or more
 stringent beam parameters

DPA on windows for 1 MW

Target shielding

Energy deposition

- The energy deposited on the target is only 5.5
 % (D30xL800 mm) of the total beam power
- Most of the thermal energy is deposited on the shielding (35.3 %).

Parameter	Thermal power	% of Beam Power
Shielding	530 kW	35.3 %
Target	84 kW	5.5 %
Al Vessel	11 kW	0.7 %
Water	8 kW	0.5 %
Helium	~0 kW	~0 %
TOTAL	~634 kW	~42 %

Power deposition provided by Daniele Calzolari SY-STI-BMI

https://indico.cern.ch/event/1176034/contributions/4939053

Target shielding: no cooling

Shielding not cooled

- Despite thermally possible, it would be far from conceivable with a SC Solenoid in the surroundings
- Shared shielding-target water cooling circuit would be very challenging
- Large target vessel is mostly to reduce temperature in the vessel – to be fined tune.

Target shielding: water cooled

Shielding water cooled

 Cooling of the shielding is required but not a showstopper

Example of reasonable parameters: Shielding

- Cooling: 26 pipes w/ RT water @ 3m/s
- max T = 350 °C
- External max T = 80 °C

Target

- Cooling: Annular RT water @ 3m/s
- Max T = 2530 °C
- Al vessel max T: of = 40 °C
- He pressure ~1.5 bar

Target shielding: He cooled

Shielding He cooled

Looks feasible (for 2 MW facility):

- He (gas cooled, 5kg/s at 1 bar)
- Conceptual frame with 40 mm square SS profiles
- Temperatures below 100 °C
- First structural analysis suggest tensions around 150 Mpa (actually due to constrains from the supporting assembly). This value falls under the yield strength and fatigue limit of W

Target shielding: dpa optimization

Possible optimization to reduce radiation damage in HTS coils:

- With neutron absorber, DPA reaches values of 8×10⁻⁴ DPA after 1 year
- However, due to less W the Ionizing dose increases: >70 MGy after 10 years (3 cm H2O)

Carbon Target: pion/muon yield parameterization & energy deposition studies

- Energy deposition/ dpa studies until the chicane
- > Pion/Muon yield parameterization study as a function of:
 - Proton energy (3 10 GeV)
 - ✤ Proton beam size (0.5 1.4 cm)
 - ✤ Target diameter (1 9 beam sizes)
 - ✤ Target length (50 150cm)
 - ✤ Target angle with the solenoid axis (0 6deg)
 - ✤ Shielding aperture (r 7 19 cm)

by Daniele Calzolari and Anton Lechner <u>https://indico.cern.ch/event/1237101/contributions/5204412/attachments/2</u> <u>575066/4440149/angle_dpa_updateJan23.pdf</u>

Carbon Target: pion/muon yield parameterization & energy deposition studies

Energy deposition/ dpa studies

HLM Target - a possibility

Heavy liquid metal target (e.g. Liquid Pb or PbBi):

- Likely allows higher beam power (> 2-3 MW)
- Eventually advantageous in terms of waste disposal (e.g. can be poured into container)
- Low radiation damage
- No need for target cooling services
- Challenging integration & remote handling
- Risk of lead vaporization and/or pressure wave
- Influence in the magnetic field
- Beam windows design challenging (depending on concept (Pb curtain, jet, tubular flow).
- Ongoing collaboration and assessments between CERN and ENEA (see <u>Carlo Carrelli talk</u>)

HLM Target - a possibility

Heavy liquid metal target (e.g. Liquid Pb or PbBi):

- 2ns every 0.2s, 2 MW beam power
- Target volume: D30 x L509 mm (identical interaction length as C-Target

First assessment:

- Around 2000K reached in pulse (near boiling T).
- Vessel subjected to intense temperature gradient and values
- Worrying pressure waves and vibrations due to quick lead thermal expansion.
- Beam window gets too hot for common vessel materials
- Different design concept under discussion

Conclusions

- Interaction between different groups (proton driver, magnets, target, muon cooling, service groups) is key for efficient feasibility studies and optimization.
- Possible to select range of beam parameters compatible with C-Target (both thermally and structurally) but coupling with physics performance is required.
- Fatigue and radiation damage will be a major challenge of a solid target and of the beam windows. Topic to be discussed in the framework of the RaDIATE Collaboration
- Operational experience and lessons learnt from CNGS PIE should strongly support the Muon Collider studies.
- Shielding design highly coupled with Target/solenoid design and with (O)600kW cooling needs. P+ dump to be foreseen and integrated.
- Feasibility of liquid lead target to be further studied (ongoing collaboration between CERN-STI & ENEA) but likely to by an alternative for > 2MW range operation

MInternational UON Collider Collaboration

Thank you very much for your attention

Tpeak (°C)	Transient				Steady state	Power deposited
σ _{beam} (mm)	5 Hz	10 Hz	20 Hz	50 Hz	Average	(W)
1	4301	3908	3735	3641	3583	44832
2	3318	3221	3177	3152	3135	59000
5	2740	2721	2713	2708	2704	90632
10	2305	2297	2293	2290	2288	129207
15	1947	1943	1940	1938	1938	163214

	Max. E. Density					
	Tra	ansient (J	Steady state (J/cm ³ ·s)			
σ_{beam} (mm)	5 Hz	10 Hz	20 Hz	50 Hz	Average	
1	3464.36	1732.18	866	346.44	17288	
2	933.44	466.72	233.36	3.36 93.34 4668		
5	173.18	86.59	43.3	17.32	864	
10	72.15	36.08	18.04	7.22	361	
15	38.19	19.1	9.55	3.82	191	
and the second sec						

Change of thermal conductivity with DPA and Temperature

Figure 71 – Uniaxial fatigue strength limits for 2020 graphite, at R = 0, in air and at room temperature.

at in the

Muon Collider vs CNGS

Muon Collider vs CNGS

Parameter	CNGS Target	MuC Target
Beam energy	400 GeV/c	5 GeV/c
Beam cycle	6 s	0.2 s (5Hz)
Bunch length	2 ns (4σ)	2 ns
Batch length	10.5 us (2100, 5ns spaced bunches)	2 ns
P+/extraction	2.0, 2.4, 3.5 x10 ¹³ (2 extr/cycle 50 msec apart)	3.77 x 10 ¹⁴
Beam size on target (1σ)	0.53 mm	5 mm
Average Power	520 kW (designed for 750 kW)	1.5 MW

-1- 10

25

Muon Collider vs CNGS

Dynamic response

- Dynamic structural calculations show that the MuC target "instantaneous survivability" seems possible.
- MuC target is likely to stay in an identical dynamic response regime as the CNGS target
- How about long-term effects?

MuC Target @ 5mm (1 σ), 5 Hz, 1.5MW

Dynamic regime comparison. Adapted from A. Bertarelli

Carbon Target feasibility

Fatigue

- *Literature indicates possible increase in fatigue strength under neutron irradiation (1.9-3.2E20 n/cm2) at 575-650 °C (IG110).
- Manufacturing: considerations may play a role. E.g. Higher strength if machined along longitudinal axis.
- Different C-based materials? 3D CC composite are good to prevent crack propagation but inferior in terms of T and radiation damage

<u>MuC Target, amplitude of stress waves is small (2 MPa)</u>

Goodman criteria (Goodman criteria is not suitable, only indicative)

 $S_{Ut} = 57 MPa$ $S_{Uc} = 127 MPa$ $S_{f}(10^{8} cycles) = 0.5 * 57 MPa = 28.5 MPa (99\% Survival)$ $\frac{\sigma_{alt}}{S_{f}} + \frac{\sigma_{avg}}{S_{u}} = \frac{1}{\eta} \longrightarrow \eta = 3.85$

A multiaxial & non-proportional loading suited criteria would be best. → Sines or Dan Van criteria w/ data of torsional resistance of graphite for 1.0E08 cycles, high T (2500 °C) and irradiated can improve estimation.

*Fatigue Failure and Fracture Mechanics of Graphites for Hight Temperature Engineering Testing Reactor

		C	arbo	n T	ar	get feasibility
Mi	nternational JON Collider Laboration					1.4 - 1.2 -
	Radiation damage	e				ال ق 0.8 ال 0.6
	 Example comparin 	g with CNG	S			MuC Target DPA
	Parameter	CNGS	Muon Colider 1.5MW			*Literature indicates a lifeti
	Proton fluence [p+/cm ²]	5.77E+22	1.70E+21		•	Radiation induced creep
	PoT	1.27E+20	1.32E+21		ŀ .	Radiation swelling
	Beam size [mm]	0.53	5		•	Thermal conductivity loss (
	Extractions	5.29E+06	5.51E+07			with increased T)
	Integrated Op time [days]	183	128		•	Thermal diffusivity loss
	DPA	1.5	5		Ι.	Increase of stiffness and m

Radiation damage may drive target life * (target replacement)

Displacement damage in target

- ates a lifetime for graphite of 1E21-1E22 p+/cm2
- ed creep
- Ŋ
- tivity loss (from 0.01 DPA, but loss is reduced
- ity loss
- ness and mechanical strength
- High temperature may help recovering damage
- Increase of fatigue resistance

*Radiation damage study of graphite and carbon-carbon composite target materials

Beam windows

Beam windows

- Activities discussed in the framework of RaDIATE Collaboration
- Preliminary energy deposition studies show very high DPA/y in the Muon Collider p+ beam windows.
 - + info in Daniele Calzolari's talk <u>https://indico.cern.ch/event/1175126/contributions/5055295/</u>
- Will be a critical point in the design of the target.
- Engineering studies will follow