

Muon Collider (solenoid) Magnets Studies

Luca Bottura, F. Boattini, B. Caiffi, S. Mariotto, L. Quettier, M. Statera on behalf of the Muons Magnets Working Group KIT 25/1/2023

Scope of the talk

- The solenoid challenges for a muon collider
- Technical advances
- Work organization
- Summary and plans

This is work in progress

General guidelines

- Magnets are <u>relatively</u> **power hungry**
 - The main power consumption for superconducting magnets is for the cryogenic system
 - The main power consumption for resistive magnets is to overcome resistive losses (active power, needs to be cooled away) and inductive voltages (reactive power, can be partly retrieved)
- Magnets are <u>relatively</u> expensive infrastructure
 - Unit cost is large due to the combination of costly materials, complex technology, large mass
 - Magnets tend to *pave* extensively the whole accelerator complex
- Seek for practical solutions to minimize capital investment (CAPEX) and operation costs (OPEX). It is unlikely that simple extrapolation of known technology will work, so we still require a large dose of innovation
- Produce a credible and affordable accelerator complex design: technology is a mean, not the end of this work

Magnet specifications

- Large stored energy o(1) GJ, mass o(300) tons, cost o(100) M
- Considerable RT and cryogenic heat load: RT power o(1) MW
- Radiation dose o(80) MGy and radiation damage o(10⁻²) DPA

The solenoid challenges – 2/2

- Total 1 km, o(1600) units of solenoid magnets up to o(20) T requires compact windings and careful cost optimization
- UHF solenoids, with field beyond state-of-the-art o(40...60) T, calls for novel HTS technology

Target and capture – 1/4

 Attempt to reduce the mass (CAPEX) of the system, and increase operating temperature to improve cryogenic CoP (OPEX)

US-MAP **2010** design LTS (14 T) + NC (6 T)

US-MAP **2011** design LTS (14 T) + NC (6 T) 2011 target system concept Ungsten-carbide beads + water tungsten-carbide beads + water proton beam and mercury jet mercury pool proton dump beam window

H.G. Kirk, PAC 2011

ger					
	(cm)	(cm)	(cm)	(cm)	(A/mm ²)
RC1	-131.3	47.3	17.8	30.24	16.56
RC2	-84	86.2	17.8	30.88	16.56
RC3	2.1	56.2	17.8	30.25	16.56
RC4	58.3	57	17.8	16.6	16.56
RC5	115.3	43.5	21.88	7.96	16.56
SC1	-222.6	169.4	120	75.85	23.22
SC2	-53.1	26.1	120	54	0
SC3	-27.1	327.1	120	54.07	23.1
SC4	310	65	110	1.16	29.96
SC5	385	65	100	20.76	33.31
SC6	460	65	90	6.4	35.85
SC7	535	65	80	8.71	38.21
SC8	610	65	70	5.61	40
SC9	685	65	60	6.06	40
SC10	760	65	50	4.72	40
SC11	835	65	45	4.6	40
SC12	910	65	45	4.42	40
SC13	985	65	45	4.31	40
SC14	1060	65	45	3.85	40
SC15	1135	65	45	3.83	40
SC16	1210	65	45	3.51	40
SC17	1285	65	45	3.53	40
SC18	1360	65	45	3.44	40
SC19	1435	140	45	3.24	40

MuCol **2022** design HTS (20 T, 20 K)

A. Portone, P. Testoni (F4E) L. Bottura, A. Kohleimainen (CERN)

Target and capture – 3/4

MIT "VIPER" conductor

50 tons

- Under study (among others)
 - Magnetic configuration
 - Mechanical support of coils and W-shield (195 tons)
 - Integration in a cryostat
 - Cooling and cryogenics
 -

Integration work – 1/2

A. Kohleimainen (CERN)

Limit operations to:

- intercoil support installation,
- hydraulic connection, and
- thermal shield closure

Integration work – 2/2

Many questions still

Pre-compression

structure

MInternational UON Collider Collaboration

On-going discussions, feel free to participate ! e.g. 2/2/2023 https://indico.cern.ch/event/1239921/

A. Kohleimainen (CERN)

Final cooling – 1/3

- Probe the limits of UHF solenoid magnets for the final cooling (performance)
- Make windings compact to reduce mass (CAPEX) LTS/HTS hybrids

Cross section of 32 T, 32 mm user facility solenoid at NHMFL

Cartoon design of 40 T, 32 mm user facility solenoid (developmental)

R&D test achieved 25.4 T At NHMFL Images of 32.35 T, 21 mm user facility solenoid at CAS-IEE

Final cooling – 2/3

- Probe the limits of UHF solenoid magnets for the final cooling (performance)
- Make windings compact to reduce mass (CAPEX)

All-HTS

REBCO insulated coil achieved 24.1 T at CAS-IPP R&D NI *coil* achieved 18 T at PSI R&D NI *insert coil* achieved 32.5 T at LNCMI

J. Kosse, PSI

J.-B. Song, LNCMI

6D cooling

- On-axis field and field profile B(s)
- Aperture and clearances
- Energy deposition, radiation dose, DPA's

Stage	Beam pipe radius [mm]	Solenoid peak on-axis field [T]	Dipole peak field [T]	Cell Length [m]	Total Length [m]
HfoFo	400	4	0.02		
A1	300	2.2	0.12	2	132
A2	250	3.4	0.11	1.32	171.6
A3	190	4.8	0.13	1	107
A4	132	6	0.07	0.8	70.4
B1	280	2.2	0.03	2.75	55
B2	240	3.4	0.08	2	64
B3	180	4.8	0.09	1.5	81
B4	140	6	0.12	1.27	63.5
B5	90	9.8	0.12	0.806	73.35
B6	72	10.5	0.13	0.806	62.06
B7	49	12.5	0.17	0.806	40.3
B8	45	13.6	0.14	0.806	49.16

Good starting point, magnet work is starting

https://indico.cern.ch/event/1147941/contributions/4851978

Scope of the talk

• The four main magnet challenges for a muon collider

A 114 1 4 ------

- Technical advances
- A digression on HTS
- Work organization
- Summary and plans

Tasks

Task 1

Magnet Systems

Technical Coordination and Integration

Task 2 Target, Capture and Cooling Magnets

Task 3 Fast Cycled Accelerator Magnets

Task 4 Collider Ring Magnets

- The organization of the tasks overlaps with the EU MuCol study
- The scope of the work in most tasks, however, extends beyond the EU proposal (e.g. target solenoid study, HTS tape procurement and measurements, test of HTS pancakes, ...)
- Most tasks activities also rely on advances and synergy with other projects and programs (e.g. HFM, UHF solenoid R&D, HTS fusion magnets R&D, HTS generators R&D, ...)

The Team and the work – 1/2

Task 1

Technical Coordination and Integration

Task 2 Target, Capture and Cooling Magnets

Task 3 Fast Cycled Accelerator

Magnets

Task 4 Collider Ring Magnets

- Participants
 - **CERN** (LB, SF)
 - CEA (LQ)
- Activities
 - Periodic meeting of the "muons magnets Working Group"
 - Machine configuration ("magnet catalogue")
 - Interface to physics, radiation, vacuum, cryogenics, safety and RP
 - Review of radiation hardness of superconductors and insulation systems (joint activity with radiation studies)
 - Documentation and reporting

Magnet Systems

The Team and the work -2/2

٠

Task 1

Technical Coordination and Integration

Magnet Systems

Task 2 Target, Capture and Cooling Magnets

Task 3 Fast Cycled Accelerator Magnets

Task 4 Collider Ring Magnets

- Participants
 - INFN (MS)
 - CEA (LQ, PhD)
 - CERN (AD, BB, TM, LB, AK, CA, AB)
 - CNRS (XC)
 - F4E (AP, PT)
 - КІТ (ТА)
 - PSI (JK)
 - SOTON (YY, post-doc)
 - UNIGE (CS)
 - TWENTE (HTK, AK, post-doc)
- Activities (≈ 12 months)
 - Conductor review and specification
 - Design of target and capture channel solenoids
 - Design of final cooling solenoid
 - Procurement and electro-mechanical characterization (UHF) of test HTS material
 - Pancake model coils, engineering design, manufacturing solutions, mechanical and powering tests

Muons Magnets WG

- Twenty-one meetings to date, with participants from m ost collaborating institutes and universities
- Since April we meet:
 - to "learn" about the previous work (MAP) and advances in relevant fields,
 - to discuss in an informal setting initial ideas and options, and
 - in preparation of upcoming activities, in particular the EU MuCol

Site: <u>https://indico.cern.ch/category/13958/</u> Mailing list: <u>muoncollider-magnets@cern.ch</u>

	Jun 23	Muons Magnets Working Group
	Jun 09	Muons Magnets Working Group
	Jun 02	Muons Magnets Working Group
May 20	22	
	May 12	Muons Magnets Working Group
April 20	22	
	Apr 21	Muons Magnets Working Group
March 2	2022	
	Max Of	Maria Maria ta Maria a Orang
	Mar 31	Muons Magnets Working Group
	Mar 31 Mar 10	Muons Magnets Working Group Muons Magnets Working Group
	Mar 31 Mar 10 Mar 03	Muons Magnets Working Group Muons Magnets Working Group Muons Magnets Working Group

Summary and Plans

- The grand challenges have been identified, they represent well the envelope of design and performance issues. Work has started to see what are the limits, propose technical solutions and associated R&D
- The challenges are aligned with the structure of MuCol (Tasks 7.2, 7.3 and 7.4). This simplifies the forming and coordination work with the team. We plan to continue along these lines
- The interaction with the other "specialties" has started, to discuss specifications, give and receive feedback on feasibility:
 - Beam optics
 - Impedance limitations
 - Radiation heat loads, dose and damage
 - Vacuum and cryogenics
- It looks like HTS can make a huge difference towards a compact, energy efficient and sustainable collider. Priority will be devoted to this R&D