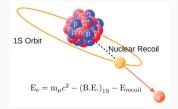
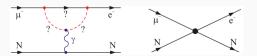

Mu2e Target in 10 min

Michael Hedges Purdue University 01/31/2023 Charged leptons are only fermions without observation of flavor violation

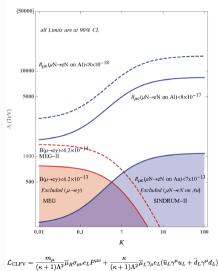
- Quarks mix (CKM)
- Neutrinos oscillate


 $\label{eq:clfv} \mbox{CLFV is allowed in νSM, but} \\ \mbox{Iudicrously suppressed}$

•
$$Br(\mu
ightarrow e \gamma) \propto (rac{\Delta m_{
u}^2}{M_W^2})^2 < 10^{-52}$$



Any experimental observation would unambiguously indicate New Physics

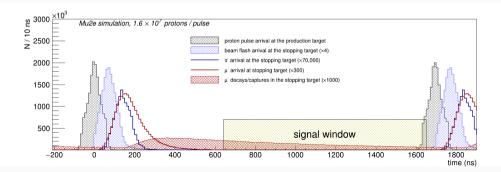

$\mathsf{CLFV}:\ \mu \to e \ \text{conversion}$

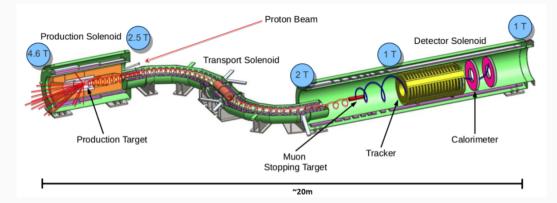
- Monoenergetic ~105 MeV/c conversion-electron (CE)
- Sensitive to energy scales $\mathcal{O}(1000)$ TeV

Adapted from A. de Gouvea and P. Vogel, Progress in Particle and Nuclear Physics 71, 75–92 (2013)

Challenge 1: μ^- beam from FNAL protons

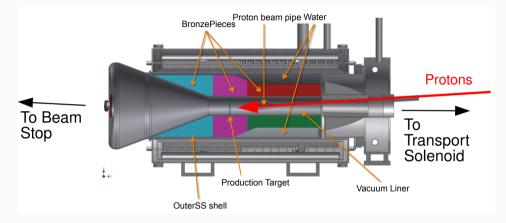
Resonant extraction @ FNAL:


- $\bullet~\sim 3\times 10^7$ protons @ 8 GeV
- ullet \sim 1 mm gaussian beam radius
- 250 ns pulses
- 1.7 µs pulse period
- At 2.5 MHz


Challenge 2: Ideal Mu2e conditions

Mu2e needs:

- High yield of stoppable muons \Rightarrow low momentum μ^- beam
- Minimal beam-induced backgrounds (i.e. radiative pion capture)
- Low radiation environment


Mu2e

Discovery potential of $R_{\mu e} = \frac{\Gamma(\mu^- + N(Z,A) \rightarrow e^- + N(Z,A))}{\Gamma(\mu^- + N(Z,A) \rightarrow \nu_{\mu} + N(Z-1,A))} > 2 \times 10^{-16} (5\sigma)$

- $R_{\mu e} < 8 imes 10^{-17}$ (90% CL)
- $\mathcal{O}(10^4)$ improvement of previous result (SINDRUM-II)

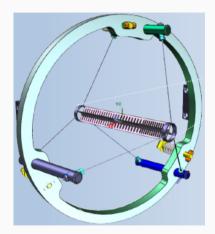
Production Solenoid (PS)

Compact, high-Z pion-production target in high B-field with backwards extraction

Production Target

 LaO_2 -doped Tungsten, core EDMed from single rod

Longitudinally segmented cylinder


 \Rightarrow stress management

Longitudinal fins \Rightarrow thermal and structural management

1mm tungsten spokes

 ${\sim}700$ W power absorbtion $\Rightarrow {\sim}1500$ K

• Radiatively cooled

Expect target lifetime of ${\sim}1$ year: \Rightarrow replace during summer shutdowns

Production Target

First target is in-hand

• Mu2e Run 1 scheduled for \sim 2026 (\leq 1 year long, \sim 0.5x beam intensity)

First-of-its-kind target: fully simulation-driven optimization and stress analysis

- $\bullet\,$ Designed with nominal beam intensity @ 1 year: \Rightarrow Run 1 should not be a concern
- Target failure and replacement outside of shutdown window slows experiment

What can we test and how?

• Are expected performance degradations (e.g. thermal stresses, oxidation, creep) within tolerances?

Can we setup Mu2e target testing at FNAL?