Very forward particle measurement at RHIC

Minho Kim (RIKEN) on behalf of the RHICf Collaboration

13 March 2023

2nd International Workshop on Forward Physics and Forward Calorimeter Upgrade in ALICE

RHIC forward (RHICf) experiment

RIKEN (Y. Goto, I. Nakagawa, R. Seidl, M. H. Kim), Nagoya Univ. (Y. Itow, H. Menjo, K. Sato, K. Ohashi), Univ. of Tokyo (T. Sako), JAEA (K. Tanida), Waseda Univ. (S. Torii), Shibaura Inst. of Tech. (K. Kasahara), Tokushima Univ. (N. Sakurai)

Korea Univ. (B. Hong), Sejong Univ. (Y. Kim, S. Oh, S. H. Lee)

INFN (O. Adriani, E. Berti, L. Bonechi, R. D'Alessandro, A. Tricomi)

- Cross section measurement to understand the origin of the ultra-high energy cosmic ray.
- Transverse single spin asymmetry measurement to study the spin-involved diffractive particle production mechanism.

Transverse single-spin asymmetry (A_N)

- In polarized p+p collision, A_N is defined by a left-right cross section asymmetry of a specific particle.
- In the p+p inelastic scattering, we can study two processes, the diffractive and non-diffractive processes.

Non-diffractive Vs. Diffractive process

Non-diffractive Vs. Diffractive process

Transverse single-spin asymmetry (A_N)

- In polarized p+p collision, A_N is defined as a left-right cross section asymmetry of a specific particle.
- In the p+p inelastic scattering, we can study two processes, the diffractive and non-diffractive processes.
- A_N for very forward ($\eta > 6$) particle production allows us to study the spininvolved diffractive particle production mechanism.

RHIC forward (RHICf) experiment

STAR experiment

- Operated at STAR in polarized p+p collisions at $\sqrt{s} = 510$ GeV in June 2017.
- RHICf detector was installed in front of the ZDC.
- Single photon and neutron, and π^0 produced at $\eta > 6$.

A_N for forward π^0 production

- Before the RHICf experiment, A_N for π^0 production has been measured only in the forward ($2 < \eta < 4$) region.
- Non-zero A_N has been explained by assuming an intrinsic transverse momentum of the initial state parton or final state hadron.

A_N for isolated π^0 production

• A_N of isolated π^0 is larger than that of non-isolated π^0 .

- The isolated π^0 is connected to the diffractive process.
- Diffractive process may have a finite contribution to the $\pi^0 A_N$ as well as the non-diffractive one.

A_N for very forward π^0 production

A_N for very forward π^0 production seems to be comparable with that of forward π^0 even at low $p_T < 1$ GeV/c.

They may share a common underlying production mechanism or have their own ones.

RHICf-STAR combined analysis

- Using STAR ToF, BBC, and VPD, we can study the detector correlation or event type dependence for the very forward $\pi^0 A_N$.
- For example, there should be no signal in the detectors that cover a specific η region if the RHICf π⁰ comes the diffractive process.

Neutron A_N measurements

J. Phys. Conf. Ser. 295, 012097.

- Non-zero A_N for neutron production was first observed at the IP12 experiment at RHIC.
- Afterwards the neutron A_N has been measured by the PHENIX experiment with three different collision energies.
 - However, the data points were largely smeared by worse position resolution of the neutron detector.

Theoretical prediction

- Neuron A_N has been explained by an interference between the spin flip (π exchange) and spin non-flip (a_1 exchange) amplitudes.
- The π and a_1 exchange model predicts that the A_N increases in magnitude with p_T without the collision energy dependence.

Unfolded neutron A_N

- Recently, PHENIX unfolded the neutron A_N at 200 GeV to precisely compare the data with the theoretical calculation.
 - The unfolded A_N at PHENIX showed the same tendency with the model prediction.

Neutron A_N measurement at RHICf

- RHICf experiment measured the neutron A_N up to the highest p_T region ever measured to test the π and a_1 exchange model in a wide p_T coverage.
- Comparison between RHICf and PHENIX data also can be done to make sure if there is collision energy dependence.

Neutron A_N as a function of p_T

In the higher x_F region, the A_N increases in magnitude with p_T .

- In the low p_T region, RHICf and PHENIX data are consistent with each other.
- In the higher p_T region, there seems a x_F dependence.

Neutron A_N as a function of x_F

In the lower p_T region, the A_N s are flat showing no x_F dependence.

- In the higher p_T region, a clear x_F dependence is observed.
- The analysis will be complete soon with more precise background estimation.

Photon cross section result

- DPMJet-III 2019.1 and EPOS-LHC well reproduce the data in the lower x_F region, but predict larger flux in the higher x_F.
- QGSJET-II 04 and Sibyll 2.3d show good agreement with data in the higher η, but show softer and harder slope in the lower η.

Photon cross section result

arXiv:2203.15416 (2022).

RHICf result is consistent with the LHCf result within the uncertainty.

■ However, if the x_F scaling raw works or there is still a weak x_F dependence is not clear due to the uncertainty. → Will be more clear in the future publications.

Summary

- In June 2017, the RHICf experiment measured the cross sections and A_Ns for very forward particle production.
- Non-zero A_N was observed even in the very forward π^0 production.
 - Will be studied in more detail by the RHICf-STAR combined analysis.
- A x_F dependence was observed in the neutron A_N .
 - Analysis will be complete with more precise background estimation.
- Photon cross section at RHICf energy is consistent with that of LHCf.
 - Cross sections of other particles will also be compared.