LHCf: Very forward measurement at LHC

2nd International workshop on Forward Physics and Forward Calorimeter Upgrade in ALICE, Tukuba Univ., 13-15 Mar 2023

Hiroaki MENJO ISEE, Nagoya University, Japan on behalf of LHCf collaboration

Institute for Space–Earth Environmental Research

Contents

LHCf: Very Forward experiment at LHC \rightarrow production of most energetic particles \rightarrow Motivated for high-energy cosmic ray physics

- Introduction : Ultra-high energy cosmic rays (UHECRs)
- LHCf experiments
- Recent results
 - η meson measurement by LHCf
 - Status of LHCf-ATLAS joint analysis
- LHC-Run3 operations
 - pp √s=13.6 TeV in 2022
 - pO collision in 2024

Ultra-High Energy Cosmic-rays (UHECRs)

Arrival direction fo UHECRs

Combined result of Auger and TA with 20 degree smearing

13-15 Mar 2023

✓ A few hotspots ✓ Not point like

Why?

Bend by Magnetic field proton \rightarrow only a few degrees

- Source distribution ?
- Magnetic field uncertainty ?
- Composition (p, Fe)

Estimators of Compo

CR primary energy: 10⁹-10²⁰ eV Shower Maximum (Хмах)

High energy interaction

secondaries'

interactions

- A-dependency is mainly from difference of σ_{inela}
 - High energy interactions are more important.

Low energy Muon (X^µMax, N_µ) interactions

Surface detector (SD)

Fluorescence detector (FD)

Air fluorescence light

• X^μMax: σinela

+ particle production • Nµ : particle production contribution of wide energy ranges

Estimators of Mass Composition

Contribution of strange particles in air shower

Cosmic-ray

LHCf experiment

-140 m

Location

proton

- ATLAS interaction point
- +/- 140m from the IP
- Cover Zero degree of collisions pseudo rapidity $\eta > 8.4$

LHCf detectors

- Sampling and positioning calorimeters
- Two towers, 20x20, 40x40mm² (Arm1), 25x25, 32x32mm²(Arm2)
- Tungsten layers, 16 GSO scintillators, 4 position sensitive layers (Arm1: GSO bar hodoscopes, Arm2: Silicon strip detectors)
- Thickness: 44 r.l. and 1.7 λ

LHCf/RHICf Operations and Analyses

Run	Elab (eV)	Photon	Neutron	ΠO		LHCf-ATLAS joint analysis
p-p √s=0.9TeV (2009/2010)	4.3x10 ¹⁴	PLB 715, 298 (2012)		_		
p-p √s=2.76TeV (2013)	4.1x10 ¹⁵			PRC 86, 065209 (2014)	PRD 94 032007 (2016)	
p-p √s=7TeV (2010)	2.6x10 ¹⁶	PLB 703, 128 (2011)	PLB 750 360 (2015)	PRD 86, 092001 (2012)		
p-p √s=13TeV (2015)	9.0x10 ¹⁶	PLB 780, 233 (2018)	JHEP 2018, 73 (2018) JHEP 2020, 016 (2020)	preliminary		Photon in diffractive coll. Preliminary: ATLAS-CONF-2017-0 Final: under internal review
p-Pb √snn=5TeV (2013,2016)	1.4x10 ¹⁶			PRC 86, 065209 (2014)		
p-Pb √snn=8TeV (2016)	3.6x10 ¹⁶	prelimiary				
RHICf p-p √s=510GeV (2017)	1.4x10 ¹⁴	Submitted ArXiv:2203.15416		Spin Asymmetry PRL 124 252501 (2021)		with STAR

13-15 Mar 2023

地 せるはをかたき Swepkoutby テスト統括:伊藤) て取得したデータ解析を行ってη、K^os、Λ微 イベント再構成後で約1千事象の 万事象、 Reconstruction method is well established (= method for π^0) $(u\overline{u}+d\overline{d}+s\overline{s})$

> FIG. 4.3. Contribution from decays of various particles to the atmospheric $\mu^+ + \mu^-$ (top left), $\nu_{\mu} + \bar{\nu}_{\mu}$ ((bottom left) and $\nu_{\tau} + \bar{\nu}_{\tau}$ (bottom right) flux in SIBYLL-2.3C and H3a primary model at $\theta = 60^{\circ}$.

n meson measurement

IP

- Motivation
 - 2nd dominant source of photons (EM) in air showers.
 - Contribution of strange quark
 - Large discrepancy of pre Event type Energy threshold
- Data and analysis
 - pp, √s=13 TeV
 - Arm2 detector
 - Similar as Type1 π⁰ analy

13-15 Mar 2023

er

η spectrum at pp, $\sqrt{s=13TeV}$

Piparo, LHCP 2022

- No model can reproduce the data perfectly QGSJET II-04 shows a best agreement
- among the models.

 \rightarrow Poor statistics of eta events (~ 100) affect on the systematic uncertainties; background subtraction etc. It will be improved with analysis of Run3 data.

On-going Joint analyses with ATLAS

13-15 Mar 2023

LHCf Run3 operations pp,√s=13.6TeV in Sept. 2022 p-Oxygen collisions in 2024

proton proton collisions in 2022

Motivations

- Increase statistics of π^0 and η
- Measurement of strange hadrons (K_{s}^{0} , Λ)

Requirement

Integral Luminosity = 40 nb⁻¹ (~ x10 larger than last operation) @ Luminosity ~ 10^{30} cm⁻²s⁻¹ (~ x10 higher)

Hardware upgrade d^{2} g $\sqrt{1}$ Improve readout speed of silicon DAQ σ_{inel} $\sqrt[3]{N}$ we trigger for high energy π^0 , η , K_s^0

Joint operation with ATL

- Increase the statistics of common events \rightarrow Improve the results of current joint analyses Operation with RPs (ALFA and AFP)
- Study of hadronization at single diffractive events
- Measurement of Δ resonance (\rightarrow p + π^0)
- Joint operation with ATLAS ZDC
- Improvement of energy resolution for hadronic showers with thicker detectors: LHCf (1.7 λ) + ZDC (4.5 λ) → from 40% to 20 %
- $p-\pi$ cross section measurement via one-pion exchange p (OPE) process

р

Beam test in 2021

Beam test @ CERN-SPS H4 line

- Test of the upgraded DAQ system \rightarrow Confirmed the improvement of readout speed. Arm2 Max DAQ: 0.8 kHz \Rightarrow 2 kHz
- Joint beam test with ATLAS ZDC
 - → Confirmed energy resolution for hadronic showers 40% (LHCf alone) $\rightarrow 21\%$ (LHCf+ZDC)

LHCf-Arm1

ATLAS ZDC

Preparation / installation

20-21 Feb 2023

Photo at the control room

Comments (25-Sep-2022 14:12:06) 146b fill - stable beam plan to keep this fill as long possible *** RECORD LONGEST LHC FILL ***

NEXT morning meeting monday 9am

AFS: 525ns_146b_144_35_22_8bpi_20inj_nocloseLR

13-15 Mar 2023

recoded all events in their disk,

Obtained Data

pO(+OO) collisions in 2024

- Ideal for studying the cosmic-ray interactions of CR-Air
 - Long story for requesting this p-light ion collisions at LHC.
 - Run3 is a last opportunity of LHCf operations
 - Change of the beam line configuration after Run3 to improve radiation protection Therefore no possibility of installation of LHCf detectors in Run 4 and later
- LHC schedule pO, OO collision in 2024 LHCf and other experiments requested it continuously since LHC start. Dense discussions and reviews about pO+OO in 2021 OO + pO Workshop in February <u>https://indico.cern.ch/event/975877/overview</u>

- Details of operation condition are under discussions Requesting pO with the highest beam energy ($E_{proton}=7TeV$, $\sqrt{s_{NN}}=10TeV$) About 7 days for pO + OO including the beam setup

Summary

- LHCf measured forward neutral particles at LHC to study hadronic interaction for cosmic-ray air showers.
- Analyses are on-going
 - Eta measurement
 - Joint analyses with ATLAS are on-going
- LHC Run3 operations
- LHCf pp in 2022 Obtained total 300 M events, enough to measure η , K⁰s Joint operation with ATLAS including ZDC and RPs LHCf pO + OO in 2024

Successfully completed in September during a low-luminosity run

Backup

RHICf experiment

- $pp\sqrt{s} = 510 \text{ GeV}$ (polarized beam)
 - **Equivalent to E_{lab} = 1.4 \times 10^{14} \text{eV}**
 - Test of energy scaling with the wide p_⊤range
 - Single spin asymmetry measurement
 - The operation was successfully completed in 2017
 - Common operation with STAR

Collision energy scaling

D'Enterria et al., 2011

13-15 Mar 2023

- Wide energy range of CRs
- Continuous collision in Air shower

Important to test collision energy scaling known as Feynman scaling LHCf ⇔ RHICf provide the test from 0.5 to 13 TeV (x 20)

13-15 Mar 2023

Inclusive production cross-section

13-15 Mar 2023

Ratio (MC/Data)

13-15 Mar 2023

Test of collision energy scaling

- Comparison with LHCf ($\sqrt{s} = 7$ and 13 TeV) photon results.
- Selected same X_F -p_T phase space coverage as those results
- Normalized by $\sigma_{inela.}$ (σ_{inela} = 48.3, 72.9, 79.5 mb for 0.5, 7, 13 TeV)

Ratio (7TeV or 13TeV/ 510GeV)

First confirmation of collision-energy scaling at zero degree photons.

- Consistent with the scaling within the errors with LHCf 7TeV paper.
- •No sensitivity to test weak X_F dependency predicted by some models. \rightarrow Need an effort to reduce the errors in both LHCf and RHICf

Lower ratio at $X_F < 0.4$ of the middle plot can be explained by the difference of method

6 Trigger modes

LHCf Operation in 2022

Upgrade of Silicon readout system

Run3 LHCf+ATLAS joint operation

- Many physics cases
 - Detailed study of diffractive interaction using RPs
 - MPI modeling study using very forward neutron
 - \Box One-pion-exchange measurement for p- π^+ collision study

DAQ scheme

n using RPs rd neutron r p-π+ collision study

Improvement from 2015 run

- Presence of ZDC, RPs
- 3 ZDC-HAD modules were installed for LHCf runs
- AFP worked in the full period partially with ALFA
- No pre-scaling of LHCf triggers in ATLAS

→ All 300M events recorded (⇔ 6 M events in 2015)

Inelasticity measurement at pp

Average Inelasiticity: QGSJET II-4 Energy spectrum: EPOS, SIBYLL Energy flow: EPOS

LHCf-ATLAS joint analysis is on-going with LHCf-neutron samples.

13-15 Mar 2023

• Inelasiticity ($k = 1 - E_{\text{leading}}/E_{CR}$), energy fraction used for particle productions, is one of the most important parameters for understanding CR-air shower development. LHCf measures high energy neutrons, which can be leading baryons.

• 40% energy resolution for neutrons. ~ 10% contamination of K_0 , Λ

 $\mathsf{R}_{\mathsf{had}}$

