

The FoCal detector

at the ALICE collaboration

Tommaso Isidori

Office of Science

March 13th 2023 2nd International Workshop on Forward Physics and Forward Calorimeter Upgrade in ALICE

The FoCal detector at the ALICE experiment

The FoCal physics program

Measure the gluon density in protons and lead nuclei at small x and Q

DIS, DY and electroweak boson production constrain the PDFs.

 \rightarrow Direct probe of quark density in nuclei BUT gluon structure determined indirectly from fits to Q² evolution

At low x and Q² uncertainties are larger than 20% nuclear modification effects

D-Meson production (p-Pb) at high rapidity (dominated by gg->cc) is the most precise evidence of strong gluon shadowing at low-x

However, affected by hadronic final state effects (rescattering)

nNNPDF1.0

 $Q^2 = 10 \text{ GeV}^2$

0.1

0.01

x

• EPPS16 • nCTEO15

²⁰⁸Pb

 10^{-3}

 ${{g^{(N/A)}}/{g^{N/2}}}$

| FoCal explores $x \sim 10^{-6}$ and low transferred momenta $Q^2 \sim 4 \text{ GeV/c}$ |

Observables: Study of isolated photon spectra at forward rapidity in pp and p–Pb

The FoCal physics program

Investigate non-linear QCD evolution at small x and Q^2

The momentum scale of nuclei the parton structure is described by linear QCD evolution equations (DGLAP,BFKL)

At low-x the evolution is non-linear due to the high gluon densities (CQC, where single partons scatter off gluons)

Observable effects in coincidence measurements

Azimuthal correlation of π_0 - π_0 vs γ - π_0 (also γ - jets and π_0 - jets)

- 1. Test of the x and Q2 dependence of QCD evolution
- 2. Validate consistency of the theory, with saturation studies

FoCal extends the experimentally accessible Q-x-domain, complementing present and future experiment (EIC) in studying evolution of saturation effects with high precision

The FoCal detector design

FoCal-E

20 Layers (LG + HG Si detectors + W absorbers). Tot (\sim 20 X₀)

Dimensions ~ 90cm x 98cm x 20cm

Designed for:

measurement of direct photons

Measurement of high p, neutral pions (Pb-Pb vs p-p)

| Granularity optimized to enable photons separation (~ 5mm distance)

FoCal-H

| Transversally segmented calorimeter Tot thickness ~ 6 λhad
| located behind FoCal-E (reduce shower blow-up)
| Designed for:

Studying the dynamics of hadronic matter with photons and jets (isolation capabilities (single hadron res \sim 20-25%))

FoCal-E pads design concept

Beam direction Aggregator board

18 layers of Si Pad sensors interleaved with Tungsten absorbers

samples the longitudinal development of EM showers

- > Si pads size ~1 x 1 cm²
- > Absorber: **3.5 mm Tungsten** (= 1 X_0), $R_M \sim 1$ cm
- > Each sensor: 8_{rows} x 9_{columns} pads
- > 5 aggregator (+interface) boards per stack.

8

Read-out :: HGCROCV2 chip

provides ADC, ToT (12bit, lsb:50ps), ToA (10bit, lsb:25ps)

40MHz trigger pulse

dynamic range MIP ~ 10 pC

l data transfer ~ 960 KHz with internal circular buffer

The FoCal-E Pad prototype

Tower with 18 layers of individual Si Pad sensors + 1 aggregator board

HGCROCV2

Energy measurement performed using the ADC and TOT values

| TOT used to linearize the charge response| Data buffer binned in time interval relative to the received trigger

FoCal-E pixels design concept

2 High granularity layers (L5, L10) of Si pixels

| two-photon separations (~5mm): isolated photons from π_0 decay photons |

ALICE PIxel DEtector (ALPIDE) Monolithic Active Pixel Sensor (MAPS)

| Chip size ~30mm x 15mm

>1024 x 512 pixels per chip

> pixel pitch ~ 30µm x 30µm

ITS ALPIDE modes:

Inner Barrel (IB) and Outer Barrel (OB)

- > Design inherited from proton CT project
- > 3 strings of 15 ALPIDEs per aluminum carrier
- > 2 carries folded together so that ALPIDEs cover the pad area

The FoCal-E pixel prototype

The 2 HG layers are inserted in nominal position (L5 and L10)

pCT - IB Layers

Aluminum

spacer

Two folded half layers (back and front)

Total of 6x3 ALPIDEs in the beam region

Full layer connected to a Transition Card

BACKUP SOLUTION

OB Hybrid Integrated Circuit (HICs) Layers

| Three HICs perLayer (Top-Mid-Bottom)

| Wire bonded to FPC

| Overlap between adjacent HICs

Flex PCB

Cu capillary-tubes enclosing BCF scintillating fibers

Collect energy of the hadronic shower deposits

> final dimensions 90 cm x 90 cm x 110 cm

Advantages:

Modularity: different tower sizes at different rapidities Simplicity: easy assembly, Cu tubes commercially available Possibility of upgrade with quartz fibers (dual readout) Gaps can be filled with copper powder and epoxy

Prototype 1 (used during 2021 tests)

| 10cm x 10cm x 5cm

| 1480 fibers per module

1 mm BCF10 scintillating fiber

| Single module

| 48 ONsemi: MicroFC-SMA-60035-GEVB

CAEN A1702 readout boards

Prototype 2 (used during 2022 tests)

| 6.5 cm x 6.5 cm x 110 cm

| 1 mm BCF12 scintillating fiber

49 (central), 25 (sides) Hamamatsu: S13360-6025PE

2/3 CAEN DT5202 boards (2xCitiroc-1A chips)

alternative custom VMM-based readout (with SRS system)

Test beam requirements

Hadron and electron beams needed to explore every expected topology (PS ad SPS)

Test Beam campaign 2022

Proton Synchrotron (PS)					
Energy [GeV]					
1 - 15					
1 - 5					
nchrotron (SPS)					
20 - 350					
20 - 300					

General

Focus on FoCal-E and FoCal-H combined acquisition

Data needed for Technical Design Report (TDR) of FoCal

FoCal-E

| Commissioning of OB HICs Layers

Characterization of HGCROC ADC at different electron energies

Energy and position scans (hadrons and electrons)

FoCal-H

Characterization of energy collection

Energy scans (Hadrons) with 9 stacked modules prototype

| Position dependence and resolution

The test beam setup 2022

Gain calibrations

Characterization of the MIP/noise separation

Validate simulation results

March 13th 2023

Position scan, 2022 PS testbeam, FoCal-E pad layers ch 58 ASIC 7 ch 68 ASIC 12 ch 69 ASIC 8 ch 43 ASIC 13 ch 41 ASIC ch 53 ASIC 3 ch 49 ASIC 15 ch 54 ASIC 2 ch 66 ASIC 4 ch 39 ch 37 ch 47 ch 51 ch 56 ch 62 ch 60 ch 64 ch 70 ASIC 1 ASIC 2 ASIC 13 ASIC 13 ASIC 6 ASIC 10 ASIC 5 ASIC 11 ASIC 3 ch 42 ch 45 ch 46 ASIC 4 ch 50 ASIC 14 ch 38 ch 59 ch 55 ch 65 ch 71 ASIC 7 ASIC 13 ASIC 11 ASIC 6 ASIC 16 ASIC 16 ASIC 1 ch 44 ASIC 7 ch 36 ASIC 0 ch 48 ASIC 2 ch 52 ASIC 0 ch 57 ASIC 12 ch 67 ASIC 17 ch 40 ch 61 ASIC 9 ch 63 ASIC 12 ASIC 7 ch 8 ch 0 ASIC 11 ch 14 ASIC 13 ch 16 ASIC 16 ch 19 ASIC 14 ch 23 ASIC 15 ch 31 ch 4 ch 27 ASIC 8 ASIC 6 ASIC 11 ASIC 0 ch 25 ch 33 ch 2 ch 6 ch 11 ch 10 ch 17 ch 21 ch 35 ASIC 6 ASIC 7 ASIC 5 ASIC 2 ASIC 7 ASIC 11 ASIC 8 ASIC 4 ASIC 13 ch 1 ch 3 ASIC ch 9 ASIC 0 ch 15 ASIC 1 ch 22 ch 24 ch 26 ch 28 ch 34 ASIC 6 ASIC 0 ASIC 7 ASIC 8 ASIC 5 ASIC 1 ch 12 ASIC 11 ch 29 ASIC 1 ch 7 ch 5 ch 13 ch 18 ASIC 1 ch 20 ch 30 ch 32 ASIC 2 ASIC 4 ASIC 10 ASIC 1 ASIC 1 ASIC 1

Position scan 15 GeV hadron beams

| most of the cells displays clear MIP peak |

Study of pads edge-effect

| Compare two p-type Si pads productions

Compare Pads within the same sensor

Position scan performed

with 100 GeV hadrons

43	41	53	49	58	54	66	68	69
39	37	47	51	56	62	60	64	70
38	42	45	46	50	59	55	65	71
44	40	36	48	52	61	57	67	63
8	4	0	14	16	19	23	31	27
2	6	11	10	17	21	25	33	35
1	3	9	15	22	24	26	28	34
7	5	12	13	18	20	29	30	32

Test Beam results - FoCal-E pixels

Successful commissioning of the HICs

recover complete nominal acceptance (faulty line in L5) |

Global hitmaps monitored using O2 QC

Double and triple electron signature identified in preliminary analysis

Test Beam results - FoCal-E pixels

2021 Results [IB pCT layers] - Layer 10

| clusters distributions fitted with Gaussians | Deviation between data and simulation within 10%

2022 preliminary results [HICs layers] - Layer 10

FoCal-H (9 modules) 2D hitmaps with hadron beam @ different energies

creasing Energy

Energy deposited increasing with the beam energy

Grey bands \rightarrow Non instrumented SiPMs (3 CAEN DT5202 boards used)

49 (central) + 25x8 (sides) SIPMs, photosensitive area: 6x6 mm, pixel size: 25 μ m

Reconstructed charge in the FoCal-H prototype [ADC counts/energy]

SPS positive hadron beam | Energies (60 GeV - 350 GeV)

| Distributions qualitatively follow the expected trends

| MIP peak (centered around 0) is at the same position for each beam energy

| The position of the second peak move according to the beam energy.

Reconstructed charge in the FoCal-H prototype [ADC counts/energy]

SPS positive hadron beam | Energies (60 GeV - 350 GeV)

w/o FoCal-E infront

| The tails at lower En deposit disappear (conversion in Focal - E)

| The plot display good energy resolution in data

|Under investigation check potential effect from saturation (electronic or SiPM)

| FoCal is part of the upgrade project of ALICE during Run 4 (starting from 2029) for investigating unexplored regions of small-x and low Q²

Successful Test Beam campaigns during 2021 and 2022. Now preparing for june 2023

Successful integration of the subsystems in combined acquisitions

| The collected data (2021, 2022) currently being analyzed and compared to simulations

| Focus on design readout and trigger design

The FoCal collaboration is preparing the TDR

Thank you for your attention

March 13th 2023

Test beam September 2022 (SPS H6, PS T10)

Test beam November 2022 (SPS H2)

HIC-based module

S	PS H2
Beam Type	Energy [GeV]
positive hadrons	60
	80
	100
	150
	200
	250
	300
	350
electrons	20
	40
	60
	80
	100
	150
	200
	250
	300

General

| Focus on FoCal-E and FoCal-H combined acquisition

| Data needed for Technical Design Report (TDR) of FoCal

FoCal-E

| Commissioning of OB HICs Layers

| Integration of O2 Quality Control (QC)

| Characterization of HGCROC ADC at different electron energies

| position scan of the Pads

FoCal-H

| Characterization of energy collection > CAEN readout > VMM readout

| Energy scans (Hadrons) with new prototype

| Position dependence and resolution

