

R&D on Truly High-Granularity Calorimetry with EPICAL-2

2nd International Workshop on Forward Physics and Forward Calorimeter Upgrade in ALICE

Nik hef

T. Peitzmann (Utrecht University/Nikhef)

Tsukuba, Japan, 13-15 March 2023

Introduction

- Digital calorimetry: count number of charged shower particles in sampling layers
 - Ideally: potential to reduce fluctuations from individual sampling layers
 - High granularity required due to high particle density
- State-of-the-art all-pixel calorimeter prototype
 - Follow up on proof of principle EPICAL-1 (JINST 13 (2018) P01014)
 - EPICAL-2: Si/W stack using ALPIDE sensors, detailed simulation in Allpix²
- Two-fold purpose:
 - Generic R&D for future calorimeters
 - "Test bench" for the FoCal-E pixel planes
- Calorimetric performance from test-beam measurements
 - Detailed study at low energy (DESY)
 - Preliminary results from high energy (SPS)

Digital Calorimeter Prototype – EPICAL-2

layer cables

interface boards

ALPIDE output via 1.2 Gb/s serial line readout via 2 levels of FPGA

- 24 layers with each
- 3 mm W absorber
- 2 ALPIDE CMOS sensors
 - NIM A, 845:583–587, 2017
- ultra-thin flex cables (LTU Kharkiv)

C/

29.24 x 26.88 μ m² pixel size active cross section 3 x 3 cm²

compact design: expect $R_M \approx 11 \text{ mm}$

readout schematics

detector setup

EPICAL-2 Measurements

- Cosmic muons (Utrecht University, 2020)
- Test beam DESY (Feb. 2020)
 - Electron/positron, E = 1.0 5.8 GeV
- H6 test beam SPS (Sept./Oct. 2021)
 - Mixed beam, E = 20 80 GeV

Allpix² Simulations

EPICAL-2 Event Displays

-400 -200 0 200 400 rOW

side view

EPICAL-2 Event Displays

High potential of pixel technology for more sophisticated shower reconstruction e.g. advancement of PFA?

Detector Response at DESY

- Data cleaned up with pile-up rejection
 - Significant at DESY
- Number of hits (N_{hits}) or number of clusters (N_{clus}) usable as response observable
 - Well defined peaks scaling with beam energy
- Allpix² simulation
 - Tuned to number of hits at 5 GeV
 - Very good description for hits at all energies
 - Small deviations related to beam energy uncertainty
 - Good description for clusters
 - Sensitive to details of cluster algorithm

Detector Response at SPS

- SPS measurements with mixed beam
 - Relatively small electron component
- Model beam composition with simulation
 - Use simulation as tuned for DESY
 - Fit templates for different species
 - Good description for N_{hits} and clusters N_{clus}
- Obtain beam composition
- Electrons well separated

EPICAL-2 – Energy Linearity

Tim Rogoschinski

- Energy response extracted from N_{hits} and N_{clus} for electrons at different beam energies
 - Test beams at DESY and SPS
- Very good linearity for number of hits
- Significantly stronger non-linearity for number of clusters
 - Related to cluster overlap/saturation
- Good agreement with simulation
 - Contribution to apparent additional nonlinearity in data at low energy from systematic uncertainty of test beam momentum at DESY

EPICAL-2 – Energy Resolution

Tim Rogoschinski

- Good energy resolution from N_{hits}
 - Significantly better compared to first prototype (EPICAL-1 using MIMOSA)
- Very good energy resolution from N_{clus}
 - Comparable to CALICE SiW physics prototype (NIM A 608 (2009) 372-383)
 - EPICAL-2 data not corrected for beam energy spread
 - Simulation yields still significantly better resolution

Tim Rogoschinski

EPICAL-2 – Energy Resolution

Longitudinal Shower Profiles

- Longitudinal and lateral shower distributions show expected behaviour
 - Similar for N_{clus} and N_{hits}
- Good qualitative agreement with simulation
- Interesting quantitative differences in shower maximum t_{max}
 - Larger for hits vs clusters at low energy - reverses at high energy
 - Larger for simulation vs data

Tim Rogoschinski

Lateral Shower Width

- FWHM of lateral hit densities per layer
 - Extracted with spline approximation
- Study as a function of shower depth and energy

• Shower width

- Increases with depth
- Decreases with energy
- Should allow twoshower separation on (sub-)mm scale

More on Response Variables

total number of hits/clusters

$$N_{\text{hits}}(R) = \sum_{R_i=0;l=0}^{R_i=R;l=23} N_{\text{hits}}^{(l)}(R_i, \Delta R_i) \qquad \qquad N_{\text{clus}}(R) = \sum_{R_i=0;l=0}^{R_i=R;l=23} N_{\text{clus}}^{(l)}(R_i, \Delta R_i)$$

integrated density of hits/clusters (can correct for limited accepta

$$\rho_{\text{hits}}^{(l)}(R_i, \Delta R_i) = \frac{N_{\text{hits}}^{(l)}(R_i, \Delta R_i)}{S_{\text{pixel}} \cdot N_{\text{pixel}}^{(l)}(R_i, \Delta R_i)}$$
$$\rho_{\text{clus}}^{(l)}(R_i, \Delta R_i) = \frac{N_{\text{clus}}^{(l)}(R_i, \Delta R_i)}{S_{\text{pixel}} \cdot N_{\text{pixel}}^{(l)}(R_i, \Delta R_i)}$$

integrated hybrid density (combine strengths of hits and clusters, transition where cluster saturation is significant)

$$J_{x}(R) = \frac{1}{A_{\text{clus}}^{(l)}} \sum_{R_{i}=0}^{R_{i}=R_{x}} 2\pi R_{i} \Delta R_{i} \sum_{l=0}^{l=23} \rho_{\text{hits}}^{(l)}(R_{i}, \Delta R_{i}) + \sum_{R_{i}=R_{x}}^{R_{i}=R} 2\pi R_{i} \Delta R_{i} \sum_{l=0}^{l=23} \rho_{\text{clus}}^{(l)}(R_{i}, \Delta R_{i})$$

Cumulative Distributions

- Optimisation of response observables studied as a function of integration radius
 - N_{clus} and N_{hits} numerical sum
 - *I*_{clus} and *I*_{hits} integral of densities, acceptance corrected
 - J_x hybrid variable (combining) N_{clus} and N_{hits})
- Extraction of Moliere radius can use I_{clus} , I_{hits} and J_x
 - Asymptotic value reached?

- Obtain asymptotic value of response A_{\max} at $R_{\rm max} = 29 \,\,\rm mm$
- Find minimum *R*, where $A(R) \ge 0.9A_{\max}$
 - N_{clus} and N_{hits} don't get asymptotic value right.
 - I_{clus} , I_{hits} and J_x possible
 - Have to converge on best estimate and systematic errors
- Work in progress

Event-by-Event Moliere Radius

observable	<i>R</i> м (mm)	$\sigma_{ m F}$
I _{hits}	10.24	
Iclus	9.64	
J _{0.01}	9.02	
J 0.1	9.09	
J _{0.2}	9.20	

• Finite back bias results in smaller cluster size

- Small effects for N_{hits} : better resolution

19

Caveat: measurements performed towards end of beam time, not all settings properly documented

Johannes Keul

Ideal Monte-Carlo Response

- Shows potential improvement of resolution

Jan Schöngarth

Ideal Monte-Carlo Response

- Shows potential improvement of resolution

Jan Schöngarth

Response Fluctuations and Saturation

- Studies of event-by-event density fluctuations
- Effects of Saturation?
- **Event-by-event correction** possible?

Jan Schöngarth

- Study ratio of hit to particle density
 - Ratio varies strongly with density
- Dominant effect: varying cluster size
 - Shower particle angle is correlated with density
 - Larger clusters for large angles
- Need to disentangle from possible saturation effects

Summary

- Digital calorimetry works
 - New prototype confirms findings with EPICAL-1
 - Much better performance of EPICAL-2
 - Technology suitable for ALICE FoCal pixel layers
- Good energy linearity and resolution
 - First results published (JINST 18 (2023) P01038, NIM A1045 (2023) 167539)
- Unique shower shape studies
- Working on improved reconstruction algorithms
- Very strong potential so far "scratching the surface"
 - Use full 3D shower information for single- and multi-particle reconstruction
 - Improved jet measurements?
 - Study performance for particle flow algorithms

• ALPIDE sensor: very low noise, readout speed compatible with modern experiments

EPICAL-2 Team

Nik|hef

a Department of Physics and Technology, University of Bergen, Bergen, Norway c Research and Production Enterprise "LTU" (RPE LTU), Kharkiv, Ukraine d School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom e Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany f Yonsei University, Seoul, Republic of Korea g Nikhef, National Institute for Subatomic Physics, Amsterdam, Netherlands h European Organization for Nuclear Research (CERN), Geneva, Switzerland i Department of Physics, University of Oslo, Oslo, Norway

- J. Alme,^a R. Barthel,^b A. van Bochove,^b V. Borshchov,^c R. Bosley,^d A. van den Brink,^b E. Broeils,^b H. Büsching,^e V.N. Eikeland,^a O.S. Groettvik,^a Y.H. Han,^f N. van der Kolk,^{b,g} J.H. Kim,^f T.J. Kim,^f Y. Kwon,^f M. Mager,^h Q. W. Malik,ⁱ E. Okkinga,^b T.Y. Park,^f T. Peitzmann,^b1 F. Pliquett,^e M. Protsenko,^c F. Reidt,^h S. van Rijk,^b K. Røed,ⁱ T.S. Rogoschinski,^e D. Röhrich,^a M. Rossewij,^b G.B. Ruis,^b E. H. Solheim,^{a,i} I. Tymchuk,^c K. Ullaland,^a N. Watson,^d H. Yokoyama^{b,g}
 - b Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University/Nikhef, Utrecht, Netherlands

Event Displays

colour \rightarrow layer number

Sensor Calibration

- Use muons (from cosmics or in-beam) for relative calibration of sensors with different sensitivities
 - Expect identical response to muons in all layers in terms of hits and clusters
 - Ignore in-sensor variation of sensitivity
- Significant sensitivity variation observable in number of hits
- Minor variation in number of clusters
 - Number of clusters less susceptible to threshold variations

Energy Linearity

- Average response as a function of beam energy
 - Described by linear fit ullet
 - Constrained to (0,0) by pedestal measurements
 - Behaviour reproduced by simulation lacksquare
- Small apparent deviations from linearity in ratio
 - Perfect linearity in hits from simulation
 - Hits in data agree with EPICAL-1 ullet
 - Non-linearity in hits strongly influenced by \bullet uncertainty in DESY beam energy
 - NIM A, 922:265–286, 2019
 - Stronger non-linearity from N_{clus} lacksquare
 - Reproduced in simulation
- Response consistent with full linearity at low lacksquareenergy

- Resolution shows the expected behaviour for calorimeters
- Experimental data likely contain a significant contribution from beam energy spread at DESY
- "Particle counting" (N_{clus}) shows superior performance here
 - Confirmed by simulations

Energy Resolution

- Resolution from hits better than EPICAL-1 results
- Resolution from N_{clus} close to analog SiW ECAL (CALICE) physics prototype NIM A 608:372-383, 2009
- Cluster algorithm not yet optimised lacksquare

Shower Profiles

- Longitudinal and lateral shower distributions show expected behaviour
 - Similar for N_{clus} and N_{hits} lacksquare
- Wealth of information to extract details of shower development: work in progress
- Hit density well below saturation limit at low energy
 - Maximum at 5 GeV: lacksquare \approx 300 hits/mm²
 - Saturation at 1272 hits/mm²
 - Limit will be reached at high energy: \bullet correction required

