# **SPS Experimental Areas and CNGS**

E. Gschwendtner EN/MEF

Many thanks to

O. Aberle, H. Breuker, JP Burnet, M. Dumas, I. Efthymiopoulos, L. Gatignon, A. Masi, D. Vaxelaire, H. Vincke

# Outline

- North Area User Requests
- Consolidation Status
  - Access system
  - Beam Obstacles and control
  - Power supplies and magnets
- Fixed target experiments at SPS
  - COMPASS (QCD, hadron structure)
  - NA62 (rare Kaon decays, successor of NA48)
  - Ion Experiments: NA61, NA63, UA9
  - CALICE
- CNGS
  - Water issue
  - Outlook for next years

### **CERN Accelerator Complex**

Lake Geneva

**IGS** 

shop

North Area

SPS

CERN

PS

LHC

Gschwendtper I

### **The North Experimental Areas at the SPS**

- The SPS proton beam (400/450 GeV/c) is slowly extracted to North Area
- Directed towards the three North Area primary targets **T2**, **T4** and **T6**



### **SPS User Requests**



E. Gschwendtner, EN/MEF

### 2011 SPS Fixed Target Programme

Version 1.0

Colour code: green = SPS-exp ; purple = LHC-exp ; dark blue = Outside exp ; yellow = not allocatable or Machine Development

|                    |                                     | 1                                                            |                                                |                                                                                             |                                                              | 1                                               |  |
|--------------------|-------------------------------------|--------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|--|
|                    | P1                                  | P2                                                           | P3                                             | P4                                                                                          | P5                                                           | P6                                              |  |
|                    | 35<br>26 Apr                        | 35<br>31 May                                                 | 35<br>5 Jul                                    | 35<br>9 Aug                                                                                 | 35<br>13 Sep                                                 | 34<br>18 Oct                                    |  |
|                    | 31 May                              | 5 Jul                                                        | -                                              |                                                                                             | 18 Oct                                                       | 21 Nov                                          |  |
| T2 -H2             | NA<br>4 22                          | NA61 CALICE<br>TR SDHCAL<br>10 <sup>0</sup> 25               | VS CMS NA61                                    | 13 Sep<br>NA61-Protons<br>35                                                                |                                                              | CMS NUCLEON NA61<br>CALO krs=3weets<br>10 10 14 |  |
| T2 -H4             | A H4IRRAD                           | CMS H4IRPAD<br>ECAL 0 12 5 8                                 | » LLY                                          | NA61-Protons<br>35<br>NA63 CALET<br>Tore 10<br>14<br>AMDTARPCARPC T-<br>ATIOC APPS ASDS UA9 | PANDA <mark>SCIPIX</mark> PEBS FAIR<br>7 <mark>9</mark> 12 7 | RD01 CMS LHCT<br>ECAL<br>7 7 7 14               |  |
| T4 -H6             | NA SILC - NA62<br>STRAW<br>4 7 3 12 | MONOPIX ALICE CERF RD42<br>SPD RD42<br>9 0 <sub>11</sub> 9 6 | RD42 AMMEGAS AMAYA RD42<br>8 12 7 7            | OK                                                                                          | B ATLAS BELLE MONOPAX<br>II IISVD MANUCAS<br>7 8             | NA62 weblex<br>                                 |  |
| T4 -H8             | NA ATLAS<br>HIBL<br>4 22            | LHCb CALICE)<br>6 70 16 6                                    | TOTEM RD50<br>UA9 ARPC ASDSI ASTGC<br>6 7 14 8 | AMDTARPCARPCT                                                                               | LHCb Sect<br>To 16 6                                         | CALICE DREAM UA9<br>IONS<br>13 7 14             |  |
| T4 -P0             | NA<br>***<br>4 22                   | 0 35                                                         | 35                                             | 35                                                                                          | 35                                                           | NA6 <mark>2</mark><br>6 14 14                   |  |
| T6 <b>-M</b> 2     | A COMPASS                           | COMPASS<br>0 35                                              | COMPASS<br>35                                  | COMPASS<br>35                                                                               | COMPASS<br>35                                                | COMPASS<br>20 14                                |  |
| CNGS<br>CNGS<br>27 | CNGS<br>35                          | CNG <mark>S</mark><br>0 35                                   | CNGS<br>35                                     | CNGS<br>35                                                                                  | CNGS<br>35                                                   | CNGS<br>34                                      |  |

19-Mar-2011

# **North Area Consolidation**

### **SPS NORTH AREA POWER CONVERTERS**

JP Burnet

- Power converters in operation since 1976
- Original analog & digital electronics
- Wire wrap technology
- Old control system (Databus)
- ◆ Power converter MTBF very low: ≈7000H
- 180 interventions by the first line team in 2010
- 100 electronic cards repaired each year





Damaged gilded contacts

#### E. Gschwendtner, EN/MEF

#### IEFC workshop, 22 March 2011

### **SPS NORTH AREA POWER CONVERTERS**

JP Burnet

# EA physicists want a better control of the current Solution → Suppression of

Converter crate New DCCT + FGC3



#### Short-term consolidation (Approved)

Replace Converter crate by FGC3 and install new DCCT, only for the bending magnets

- 70 power converters (type R21, R22)
  - Schedule (already, 1 year of delay)
    - 2011 Prototype + purchasing
    - 2012 Electronic production + software development
    - 2013 installation during LS1
    - 2014 Start NA with 70 FGC3 for bending magnets
- Spending profile: 50kCHF (2011), 300kCHF (2012), 200kCHF (2013)
- Manpower: 6-10 FTE
- Fault reduction: 60% on bending magnets (30% in total)

### **SPS NORTH AREA POWER CONVERTERS**

JP Burnet

#### Long-term consolidation plan

### TECHNICAL SOLUTIONS

- Replace 180 power converters ( $\leq$ 500A) by new switch-mode power converters.
  - C11 250A / 100V
  - R11 500A / 150V
  - R12 500A / 300V
- Renovate 150 thyristor converters.
  - R21 1000A / 300V
  - R22 1500A / 250V
  - R31 2500A / 255V
  - R41 6000A / 600V
  - D21 1500A / 200V
  - D31 2500A / 285V
- New electronic control (FGC3)

#### LONG-TERM CONSOLIDATION PLAN NEVER APPROVED

• Provisional schedule: 6 years

Budget : ~20 MCHF Manpower: 30 FTE

- 1-2 years studies and contracts
- Shutdown 2015-2016 and LS2 (Long Shutdown 2017)

#### M. Dumas

### Magnets

- Interlock systems need consolidation.
  - -no resources yet
- •Zero field detector: spare sensors are needed
  - not yet started
- Improve connections between power cables.
  - ongoing, K12 already done.



<u>Cracked insulation on cables</u> -> Risk of short circuit on the interlock electronic rack. -> Risk of "shunting" magnet securities.



Strategy: Careful monitoring of the magnet, notably during each technical stop, during the run. Magnet piquet is available in any case 24/24 h.

# **Obstacles Control**

### Scope:

Renovation of motorizations used in objects in North experimental area on the equipment inherited by BI (Collimators, Converter, Target Absorber, In/Out Dumps)

→ 76 AC Motors, 213 DC Motors

#### **Objectives:**

Replace old controls with a new solution based on PLC and FESA gateway fully supported by CO, solves severe operational problems experienced due to the limited bandwith of the equipment bus.

- $\rightarrow$  2009/10 shutdown (TAX)
- → 2010/2011 collimators ( 69 devices with 157 axes)

→ 2011/2012 scraper motors, dump motors and maintenance of local cabling and sensors for T6

# **T6 Target Motorization Cabling Renovation**





Cables between panel and equipments to replace (26 cables)



# **Obstacles**

- Movable obstacles mechanics in good shape
  - Yearly maintenance and covered by operational budget
- Target stations (T2, T4, T6, T10) in bad shape:
  - Rust, loss of oil, cable breaking, failure of switches
  - → Difficult to intervene, regular maintenance limited
  - →operation of targets for more than 5 years would need complete renovation
    - →Renewal of the monitor drivers, target boxes and collimators plus two new spare chassis
  - →Consolidation budget for mechanics renewal of 750 kCHF over 5 years needed.

#### D. Vaxelaire

### **Access System**



Installation of a new access system as the one installed in the PS experimental areas (i.e. PS AD and East Hall)

#### $\rightarrow$ Ready for 2011 run

- In case of mode changes: need badge
- EDH authorisation
- New further zones will be created
  - H4IRRAD
  - GIF++
  - New Interlock mode 'ION' for 2012
- For CNGS: renovation/replacement of ventilation doors

### **North Area**

### $\rightarrow$ Prepare an upgrade plan for the infrastructure

- started with BI, STI, access, power converters, magnets
- next is CV → see Mauro Nonis' Talk
  - study of system upgrade in BA80/BA81 already launched
  - then Experimental Areas

### $\rightarrow$ Put North Area to the consolidation plans

• so far was left out due to the risk analysis.

# **Current and Future Approved Experiments**

### **COMPASS-II**

Study the **hadron structure** and **hadron spectroscopy** with high intensity **muon** and **hadron beams**.

#### **COMPASS:**

- 2011 Muon beam for transversity
- 2012 Proposal to SPSC in June

#### **COMPASS-II**: approved

2014-20162 years muon beam for GPD physics1 year Drell-Yan with hadron beams



→ Intention to continue for another decade at least (not yet approved).
 → A consolidation program of the facilities is being defined.

### **COMPASS-II**

| Item                                 | Specific Cost<br>[kCHF] | Cost covered<br>otherwise [kCHF] |
|--------------------------------------|-------------------------|----------------------------------|
| Civil engineering                    | 340-540                 |                                  |
| Rectifiers SM1,SM2                   | 650                     |                                  |
| Rectifiers beam line                 |                         | < 4000                           |
| Studies CV                           | 15                      |                                  |
| CV consolidation                     | ≈ 250                   |                                  |
| Recommended air-conditioning upgrade | ≈ <b>1200</b>           |                                  |
| Smoke detection                      | 80                      |                                  |
| Working at height                    | 160                     |                                  |
| RP migration to ARCON                | 280                     |                                  |
| Total<br>(incl improved ventilation) | 1775-1975<br>(~3075)    | < 4000                           |

### **NA62**

#### Measure very rare kaon decay $K^+ \rightarrow pi^+ \nu \nu'$

- Branching ratio of ~10<sup>-10</sup>, Sensitivity of ~55 events/year with 13-17% background
- → Sensitivity to new physics



 $\rightarrow$  New beam-line,  $\rightarrow$  Dismantling NA60, NA48

### **NA62**

#### **Time line:**

2011: Beam line 2011-2012: Detectors End 2012: First beam From 2014: Physics







#### IEFC workshop, 22 March 2011

### **NA61**

→ Search for critical point of strongly interacting matter 2010: Light ion fragmented beam in H2 for NA61



#### **Full spectrum:**

#### ... and with optimized beam setting and identification



#### IEFC workshop, 22 March 2011

transition

# NA61, NA63, UA9 Ion Program

2011: Weeks 47-50: physics with fragmented ion beam

 $\rightarrow$ NA61: 2 weeks of testing and commissioning in week 45, 46

 $\rightarrow$ Improve H2 beam instrumentation

 $\rightarrow$  Prepare tunes for all requested energies (13-80 GeV)

 $\rightarrow$  UA9: Test in North Area and in SPS

 $\rightarrow$ NA63: need debunched beam $\rightarrow$ no ion beam request in 2011

#### 2012:

→NA61: physics with fragmented Pb ion beam at different energies (20, 40, 158 GeV)

→NA63: physics with primary ion beam (need debunching)

 $\rightarrow$  UA9: Tests in North Area and in SPS

#### More details see Stephan Maury's Talk

### **CALICE (Calorimeter for ILC)**

330 physicists/engineers from 57 institutes and 17 countries. Linear Collider Calorimeter: compact-hermetic-high granularity (i.e. excellent jet energy resolution)

- $\rightarrow$  Requested 20 weeks of test beam in 2011 in North Area
- ILC: TDR in 2012
- CLIC: CDR in 2011
  - ightarrow Time constraints for CALICE requests
- Approval of CALICE request allows linear collider detector R&D to be in phase with time scale of European strategy for particle physics
  - To be defined until the end of 2012

 $\rightarrow$  4 different calorimeter types to test different properties

 $\rightarrow$  Scheduled for several periods in H2 and H8



### CNGS

### CNGS Physics Run started on 18 March 2011





E. Gschwendtner, EN/MEF

#### IEFC workshop, 22 March 2011



# Today: 324 Containers → Bat 954, BA4, EHN1



### → Ventilation modifications:

→Keep under-pressure in target chamber

→Water from TAG41 might possibly be disposed again via TI8

→All containers will be transferred and stored in **ISR** 

# **CNGS - Outlook**

### Approved for 22.5 '10<sup>19</sup> protons on target

i.e. 5 years with 4.5.10<sup>19</sup> pot/ year

 $\rightarrow$  Expect ~10  $\nu_{\tau}$  events in OPERA



### **CNGS: Future Proposal**

MODULAr:

- → Off-axis CNGS neutrino beam; 400 GeV/c, 1.2E20 pot/yr
- → Improve  $\nu_{\mu}$ →  $\nu_{e} \theta_{13}$  mixing angle by ~factor 10 wrt to T2K.
- → 20kT liquid Argon TPC installed at shallow-depth at Gran Sasso with modular approach.





#### IEFC workshop, 22 March 2011

### **CNGS Facility: Intensity Limitations**

→ Design of secondary beam line elements, RP calculations
 → (Horn designed for 2E7 pulses, today we have 1.4E7 pulses → spare horn)
 → Intensity upgrade from the injectors are being now evaluated within the LIU

| Intensity per PS batch             | # PS<br>batches                                            | Int. per SPS<br>cycle  |                                         | ef | 200 days, 100%<br>efficiency, no<br>sharing |                                           | efficiency, no           |             | 200 days, 55%<br>efficiency, 60%<br>CNGS sharing |  |
|------------------------------------|------------------------------------------------------------|------------------------|-----------------------------------------|----|---------------------------------------------|-------------------------------------------|--------------------------|-------------|--------------------------------------------------|--|
|                                    |                                                            | [prot./6s              | cycle]                                  |    | [pot/year]                                  |                                           | [pot/year]               |             | [pot/year]                                       |  |
| $2.4 \times 10^{13}$ - Nominal CNC | GS 2                                                       | 4.8 × 10 <sup>13</sup> |                                         |    | 1.38 × 10 <sup>20</sup>                     |                                           | 7.6 × 10 <sup>19</sup>   |             | 4.56 × 10 <sup>19</sup>                          |  |
| $3.5 \times 10^{13}$ - Ultimate CN | GS 2                                                       | 7.0 × 1                | 10 <sup>13</sup>                        | 4  | (2.02 × 10 <sup>20</sup> )                  |                                           | (1.11×10 <sup>20</sup> ) |             | (6.65 × 10 <sup>19</sup> )                       |  |
| [                                  | Design limit for targe<br>horn, kicker,<br>instrumentation |                        | -                                       |    |                                             | Working hypothesis<br>for RP calculations |                          | CNGS workin |                                                  |  |
|                                    |                                                            |                        | Design limit<br>shielding, de<br>hadron |    | cay tube,                                   |                                           |                          | hypothesis  |                                                  |  |

### **Summary**

- CERN has a worldwide unique opportunity for versatile physics programs and detector tests
  - PS and SPS beam-lines
  - Technical support and infrastructure provided by CERN
- Facilities are heavily used, very popular
  - Always fully (over!) booked
- Very broad Fixed Target program
  - Lifetime >10 years
- Many more proposals in pipeline
- Add North Area to the consolidation plans