LHC Injectors and Experimental Facilities Committee Workshop Linac4 Source

The numerous contributions of the Linac4 ion source and sLHC teams and international colleagues is gratefully acknowledged

Abstact

- According to the Linac 4 design parameters, the H⁻ source is expected to deliver 400 us pulses with an average current of 80mA at 45 KeV, at a frequency of 1 Hz.
- The RF driven volume source presently installed at the 3 MeV test stand has been conceived as an upgrade of the 35 KeV, 50mA source used at DESY. The commissioning at 35 KeV has been completed and the problems encountered for the 45 KeV H⁻ upgrade will be discussed.
- The source has been now converted to a 45 KeV proton source and will be used for the RFQ and chopper commissioning.
- In the frame of the plasma generator work package within the SLHCPP EU-project, a 50Hz, 1.2 ms, 100kW, 2MHz RF test stand was developed and a multi kW plasma generator derived form the DESY volume source was designed, produced and tested.
- A crash program has been initiated to provide a new Linac4 source design. The new source development compatibility with the different Linac4 installation scenarios, the needed resources and main road map will be described in detail.

Linac4 Source

- DESY vs Linac4 and SPL ion source parameters
- Copy of the Desy ion source at the 3 MeV test stand: Commissioning findings
- WPIS amendment proposal August 2010
- A brief review of H⁻ accelerators ion sources
- sLHCPP 7.1 Plasma Generator commissioning
- WPIS February 2011 vs. LS1 schedule

DESY, Linac4 and SPL ion source parameters

H ⁻ ion source stages		DESY	Linac4 Oct-2010	Linac4 Dec-2012	Nominal June- 2015	SPL-PG	L4 / DESY
Repetition rate	Hz				2	50	
HT	kV	35	35	45	45		128%
RF-power	kW	30	30	80	100	100	333%
RF-pulse	J	4.5	15	40	70	120	15.56
H- current	mA	30	20	30	60-80		267%
Pulse duration	ms	0.15	0.5	0.5	0.7	1.2	467%
Co-extracted electrons *	А		2	3	5		
e-dump power *	J		35	68	158		

(*) Assuming dump at ground, the volume source's e/H^- of 50, Cs sources have e/H^- ratio of typically 2-10.

Copy of the DESY ion source at the 3 MeV test stand: Commissioning findings

E-dump energy: 2 orders of magnitude reduction mandatory

- High voltage
 - Sparks (2 μ F > 2 kJ)
 - Antenna air ionization
 - Internal capacities (sparks to H2-line)
- Thermal load
- Alignment, tuning flexibility
- Spare parts policy (*fast IS-exchange*)
- Emittance is nominal at low current and is expected to increase
- HT power supply requires upgrade for 2 Hz operations

L4-IS achievement: *RF frequency switch*

O. Midttun, R. Scrivens, D. Kuchler, M. Paoluzzi, M. O'Neil, C. Mastrostefano

Action plan August 2010, draft Schedule & Resources: *34 FTE, 4.5 MCHF*

Date	L4-IS 3 Me test sta	S V and	L4-IS · Bldg	-tunnel g. 400		L4	-IS	upgrades	sLHC P Generat star	lasma :or test nd	H- IS t	est stan	nd	C	s Labora	atory
2010						Mir pro	nim ton	al dump, s	RF and pl diagnosti	asma cs				De	sign	
2011	11 Operation, p, mini H- pulse				Rev. world's IS Rev. WPIS june		Gas Dyna Upgrade	imics, to HT	Design, production							
2012	.2		Multistage and e- dump				Test and commissioning		5							
2013	Move to La building	4-	Commis in L4 bu	Commissioning in L4 building		New HT-supply & extraction				Operat	Operation		Surface source Proto.			
2014			Operation, Upgrade, control		Spare parts				Operat	ion		Tes pro	st of ototype			
2015											Move to 152	test star	nd			
		mΥ	fraction	kCHF	ho	ours		Reso	urces' profile	e	2011	2012	201	13	2014	2015
total Mang staff	ower	33.9	60%				Hardware		2.1 MCHF	⊳сн е	1062	1627	05	:0	101	226
Fellows		13.6	40%. 36%	1632				Design office	e 0.8 MCHF	KCIII	1002	1037	95	00	494	330
FSU+MME			18%	791	15	500		fellows	1.6 MCHF		24%	36%	21	.%	11%	7%
hardware	9		46%	2064				Staff 20.	3 FTE	FTE	7.9	11.1	7.	4	4.7	2.8
total cost				4487				tellows 13.	6 FTE		23%	33%	22	%	14%	8%

3/23/2011

IS-Linac4 J.L.

Cesiated H⁻ ion sources,

Data extracted for specific operation conditions on: Cs-injection rate, H⁻ current, emittance, HV, repetition rate and life time

	Cs consumption	mg/day	H ⁻ mA, μs, mmmRad	Rate, Life time
LANL	20 g/ 30 days	600	40 mA, 1000 <i>μs, 0.13 π</i> , 80 keV	120Hz,
DESY	1 mg/day	1	25 mA, 150 <i>μs, 0.25 π</i> , 35 keV	6 Hz, 6 month
J-parc	LaB6, W	No ALARA	36 mA, 500 <i>μs, 0.25 π</i> , 50 keV 60 mA	25 Hz, 500 h
SNS SNS goal	30 mg / 40 days 3 mg	0.75 <0.1	56 mA/85%, 1000 <i>μs, 0.2 π</i> , 50 keV	60 Hz, 5 weeks
RAL	3 g/month	100	35-80 mA, 800 <i>μs, 0.3 π</i> , 65 keV	50 Hz, 1 month
BNL	< 0.5 mg/h	< 12	90-100 mA, 700 <i>μs, 0.4 π</i> , 35 keV	6 Hz, 3-9 month

RAL Penning H⁻ ion source

Courtesy form: D. Faircloth, Presented at NIBS 2010 Takayama

BNL's Magnetron surface plasma H⁻ ion source

- Pulsed H₂ injection
- IS-exchange : 8h
- Life time: 6 month
- Slow buildup of CsOH will gradually block the hydrogen inlet

TABLE 1. Typical running parameters				
H- current	90-100 mA			
J (H-)	1.5 A/cm^2			
Extraction voltage	35 kV			
Electron/H-	0.5-1.0			
Arc voltage	140 - 160 V			
Arc current	8 - 18 A (see note)			
Rep rate	7.5 Hz			
Pulse width	700 µs			
Duty factor	0.5 %			
rms emittance	$\sim 0.4 \pi$ mm mrad			
Cs consumption	< 0.5 mg / hr			
Gas flow	~ 2 sccm			

Ref: Performance of the Magnetron H- Source on the BNL 200 MeV Linac , James G. Alessi,
20th ICFA Advanced Beam Dynamics Workshop on High Intensity and High Brightness Hadron Beams, edited by W. Chou, Y. Mori, D. Neuffer, and I.-F. Ostiguy, 2002

23 March 2011

J-Parc double helix cathode, ion sources

In the Cs-free condition, the maximum H⁻ ion currents were around 18 mA for the cases with the LaB₆ and the W filament.

In the Cs-seeded condition, the H⁻ ion current increased by about 4 times for the case with the tungsten filament, however, by less than 45 % for the case with the LaB₆ filament.

SNS H⁻ ion source, RF internal antenna

Courtesy form: M. P. Stockli, Presented at NIBS 2010 Takayama

Cs-chromate + Al-Zr getter

The SNS Baseline H⁻ Source

•After significant modifications, the SNS H⁻ source now routinely produces the 38 mA LINAC beam current required for 1-1.4 MW beams! •The source service cycle has been increased from 2 weeks in 2008, to 3, and to 4 and 5 weeks without seeing old-age signs or failures. •We have demonstrated 56 mA MEBT pulse current and 59 mA MEBT peak current, which is sufficient for 2-3 MW beam power.

An initial injection of ~3 mg Cs is sufficient for Managed by UT >5 weeks of persistent, ~50 mA H- beams.

The SNS Beam Power Ramp-up

Starting up the Ion Source in 2010

•Reducing the initially released Cs to ≤5 mg has reduced the time of severe arcing to <1 hour. Occasionally, the severe arcing causes extensive damage that requires replacing the source and/or other components.

BCC, J. Lettry The goal of this work is to minimize Cs-related arcing to improve source availability and shorting source start-ups!

SNS-simulation of tilt angle and new LEBT

Toward the MW – optimizing ion source tilt and offset

Courtesy form: B. Han Presented at NIBS 2010 Takayama THE NEW LEBT FOR THE SPALLATION NEUTRON SOURCE POWER UPGRADE PROJECT B. X. Han and M. P. Stockli, SNS,

ORNL, Oak Ridge, PAC07, Albuquerque, New Mexico, USA

Beam simulation with and without 3 degree tilt

According to this simulation, the beam should be better aligned and transported through the LEBT when the source is at 3 degree tilt. Further work is needed to understand the discrepancy between the simulation and the reality.

18 Managed by UT-Battelle for the U.S. Department of Energy

NIBS2010

CAR.

April May, 3D simulation T. Kalvas's simulation code including effect of the e-beam

Outcome of H⁻ accelerators ion sources review

- Review of world's accelerators H⁻ ion sources completed (Feb)
 - RAL-ISIS
 - BNL Magnetron + Cs metal
 - JPARC
 - SNS inductive RF internal or external antenna + Cs Chromate
 - DESY inductive RF external antenna
- No H⁻ ion sources within specified emittance @ nominal beam intensity !
- Options for Linac4:
 - 1) L4-inductive external antenna + Cs
 - > 1 MCHF already invested
 - Existing know how, intrinsic flexibility
 - 2) Upgrade of BNL's magnetron to 45 kV as Risk mitigation
 - Simple and reliable for BNL operations @ 6Hz

Summary:

- August 2010 ISWP resource envelope accepted as 0-baseline.
- ISWP Review confirmed for June 2011
- Pulsed extraction & BNL-IS Mittigation added to the 0-baseline

Mandatory R&D for best Linac4 IS-candidates

function	RF-source	BNL Magnetron
Pulsed gas injection	R&D	R&D
Pulsed HT power supplies	R&D	R&D
Pulsed discharge	Ignition, 20A, 1 kV + R&D on uncorrelated ignitions	Discharge, 400-150 V, 15A, R&D
Cesium injection	Cs-Chromate Single injection	Cs-metal cw flow
H-plasma	Inductive coupling, ignition	Cs-Mo-H plasma & metallurgy
Life time extrapolated to L4	5 weeks, 60 Hz > 3 years	6 month, 6 Hz > 1.5 years
Risks, mitigation	60 to 1-2 Hz, thermal control	6 to 1-2 Hz, heating
Tuning	RF pulse and frequency Gas pressure	Arc power, Gas pressure
Extraction	Multistage 65 kV to 45 kV	Single 35 kV to multi 45 kV

Both system require very similar development at CERN, namely:

	Pulsed power supplies		
	Thermal control		Test stand design:
	Cs-ovens		compatible to RF & Magnetron sources
3/23/2011	3D Simulation of extraction	IS-Linac4 J.L.	and also to the sLHC PG or DESY-IS

First investigations on arc discharge driven metallic Cs H⁻ ion sources

IS-Linac4 J.L.

3/23/2011

Sputtering and Mo-deposition under H2-vapours

EN Engineering Department

SEM observations:

Cathode tip: sample 2 section analysis

MME Mechanical & Materials Engineering Cs Sputtering of Mo epitaxial Mo-growth under H2 atm. Generation of brittle Mo-flakes

sLHC Plasma Generator's 1st Spark gap Ignition & 1st RF-H-plasma

1st November 2010

3/23/2011

IS-Linac4 J.L.

CERN LINAC4 H- Source and SPL plasma generator RF systems, RF power coupling and impedance measurements

M. M. Paoluzzi, M. Haase, J. Marques Balula, D. Nisbet, NIBS-2010 Takayama

3

sLHC 7.1 Plasma diagnostics: via RF matching network

15

-0	/	
R_S	0.5Ω	$0.16 \ \Omega$
C_S	1.61 nF	1.505 nF
C_P	6.5 nF	6.3 nF
\mathcal{Q}	~70 no plasma	${\sim}170$ no plasma
	~ 30 with plasma	~ 150 with plasma
Cable Z ₀	$50 \ \Omega$	$50 \ \Omega$
Cable length	32.2 ns	30.0 ns

Plasma light capture

sLHC plasma generator prototype

P. Moyret & G. Favre EN-MMe

Tight fit is good for team spirit

sLHCPP 7.1 Optical emission spectroscopy

Hydrogen Balmer lines

— Plasma Generator (*)

For the sLHC PG &Linac4 IS Optical Emission Spectroscopy is the best and only direct characterization method

Linac4 ion source

	Ratio to previous line	Delay µs	10-90 rise time μs
Ηα	1		< 3
Ηβ	8-15*	80*	< 5, <40*
Ηγ	15	40	< 10
Нδ	8-15	40	< 50

3/23/2011

IS Hydrogen plasma characterization: The ratio H β /H α

- At IPP Garching, CR-models are applied to ITER ion sources to characterize the plasma, We extract H⁻ ions before equilibrium is reached.
- Are the basic assumptions of these models valid 200 µs after the start of an RF pulse ?

Linac4 ion source

The ratio H β /H α increases with RF power from 6-12% The lines intensity increases with RF-power

sLHC-Plasma Generator

The ratio H β /H α (18%) is almost stable after 150 μ s (slope ~ 1%/ms)

Electron – multicusp confinement

12-pole NS config. Simulation C. Schmitzer)

electron-loss lines

8-pole Halbach config. Proposed by D. Kuchler

Visible and Infra red views at high power, temperature measurement

sLHC's best today: 50 kW, 1.2 ms at 50 Hz (3 kW av.) 100 kW, 1.2 ms at 1 Hz

33.2 +

Mould, epoxy type reviewed

Th-simulation by M. Kronberger

3/23/2011

ISWP coordination, scheduling

ID	0	Task Name
1		3MeV test stand milestones relevant for ISWP
6		
7		Linac4 project milestones relevant for ISWP
10		357 Test stands
22		IS-WP review
23		
24		Safety
42		
43]	Power supplies
104		
105		RF-components
108	1	
109]	Mechanical design and production
247		
248		Simulation
257		
258		Beam Diagnostics 357
265		Ū į
266	1	Trigger timing controls
276		
277		Vacuum systems and vacuum control
311	1	
312		H2, Ar and N2 distribution
337		
338	1	Magnets
363		
364		Electronics
367		
368		Measurements
376		
377		Travel, collaboations
385		
386		L4IS-WP-start
583		
584		Linac4 ISWP completed

ID	0	Task Name
109		Mechanical design and production
110	1	Linac4- 3MeV test stand
111		Pre-LEBT and HT insulator Lina4
120		Linac4-tunnel
121		Design
122		drawings, Procurement
123		Production faraday cage
127		IS Test stand 357
128		Pre-LEBT and HT insulator IS-TS 357
136		LEBT support
140		Plasma test stand 357 available
141		False floor
142		Move of plasma test stand to new location
143		Cs-Oven test stand 357
144		integration, Design
145		Test vacuum Chamber
149		RF driven Plasma Generators
150		Plasma Generator sLHC + Cesiation 2Hz
163		Plasma Generator proto 01
175		Plasma Generator proto 02 i.e. SNS unit
187		Plasma Generator proto 03, L4
199		Plasma Generator proto 03, L4 spare unit
211		RF-Matching network for each PG
223		Magnetron source BNL
224		Drawing 3D model
225		Metallurgy, Cs-Mo,H2 (samples form old ISI and BN
226		Arc, arc-plasma simulation, characterization
227		Metallic Cs-Oven
230		Plasma Generator BNL 01
238		Plasma Generator BNL 02

3/23/2011

Diff. Pumping, Insulator, Tilt and Alignment

Multistage extraction

WPIS Vacuum

- 1) 3MeV test stand upgrades:
 - a) LEBT Density regulation (2-5%), 10⁻⁸-10⁻⁴ mbar at 25 deg.C, measurement integration time > 1s, regulation loop time constant > 1 min). time resolved pressure (5ms) temperature (1 min) monitoring for failure analysis.
 - b) Based on pulsed IS flow 1-5 10⁻³ mbar l/s per pulse and apertures size (5-20 mm), pre study of the differential pumping effectiveness.
 - c) Beam extraction chamber's Differential pumping system (2+1 TMP).
- 2) 357-Plasma Generator test stand: Modification.
- 3) 357-Cs-Oven test stand: design, produce and commissioning of pumping system (1 TMP compatible with Cs vapours)
- 4) 357-Ion-source test stand: identical to linac4's source +LEBT
 - a) LEBT: produce and commissioning of pumping system (1 TMP+ diaphragm + H2 injection)
 - LEBT Density regulation, 10⁻⁸-10⁻⁴ mbar at 25 deg.C, measurement integration time > 1s, regulation loop time constant > 1 min)
 - c) Beam extraction chamber's Differential pumping system (2+1 TMP).
- 5) Control's rack, cabling, Operation and maintenance of the 357 test stands and Linac4 components
- 6) Spare parts: 10% + at least 1 unit of each item
- The gauges shall be calibrated for H2, the pressure and density measurements shall be monitored in a database and accessible.

ISWP-Vacuum cost and duration (schedule integration pending)

Task Name	Total Cost	Apr'11 May '11 Jun'11 Jul'11
Vacuum systems and vacuum control	280 kCHF	
Vacuum system study and specification (June 2011)	10 kCHF	↓ ↓ ↓
LEBT density regulation: pre-study and specification (cat2/cat3 FTE)	10 kCHF	
Diff-pumping study (cat2 FTE)	0 kCHF	
Specification of TMP compatible with Cs vapours (cat2/3)	0 kCHF	
Pumping & diagnostics equipment definition (cat3 FTE)	0 kCHF	
Vacuum equipment Procurement	225 kCHF	
Cabling and controls cat3	25 kCHF	
conventional pumping & diagnostics equipment, 1st lot, cat3	95 kCHF	
conventional pumping & diagnostics equipment, 2nd lot, cat3	95 kCHF	5/19
gas injection regulation, temperature measurement, cat2/3	10 kCHF	
Plasma test stand 357 new vacuum cabling July August 2011	2 kCHF	
DIC for vacuum (cat3)	0 kCHF	
cabling and tests for vacuum (FSU)	2 kCHF	
Vacuum for the Cs-Oven test stand 357 July August 2011	4 kCHF	
installation, incl controls	2 kCHF	
tests and commissioning	2 kCHF	
Vacuum for the Ion source test stand 357 (Sept-Nov 2011)	17 kCHF	
Ion source pumping 357	8 kCHF	
installation, incl controls and PVSS	6 kCHF	
tests and commissioning	2 kCHF	
LEBT pumping 357	9 kCHF	
controls for the gas regulation loop	5 kCHF	
installation, incl controls and PVSS	2 kCHF	
tests and commissioning	2 kCHF	
Vacuum for the Ion source test stand 3MeV (Mars 2012)	12 kCHF	
Ion source pumping 3 MeV	8 kCHF	
installation, incl controls and PVSS	6 kCHF	
tests and commissioning	2 kCHF	
LEBT pumping 3MeV	4 kCHF	
installation, incl controls and PVSS	2 kCHF] [m]
tests and commissioning	2 kCHF	
Vacuum operation at b.357 cost per year	10 kCHF	

U. Raich

WPIS Beam diagnostics

(schedule integration pending)

- Emittance meter
- Faraday cups
- x-y Beam profile monitor
- Beam energy (and plasma potential via Retardation method)

ID	Task Name	Total Cost
258	Beam Diagnostics 357	480 kCHF
259	Emittance meter (tuned for frequent use)	330 kCHF
260	Mechanics	250 kCHF
261	Electronics	80 kCHF
262	Faraday cups 357 (2 units floating up to 5 kV)	20 kCHF
263	Beam profile measurement (10x10 x-y meas grid)	80 kCHF
264	Retardation Beam energy	50 kCHF

H- test stand at building 357 proposition:

The amount of explosive gas is minimized in the HT ion source set up as follow:

- 2 flow meters, 2 interlocked pneumatic valves
- OLC50 flammable gas detectors with hood on the low pressure gas distribution
- OLC50 flammable gas detectors with hood on the experimental area
- Seamless tubing up to the faraday cage
- Insulating tubing from the farday cage to the HT racks-platform

Interlock system : Presence of 10-20% LEL or H2 flow > nominal.

This shall also be considered for the Linac4 ion source, and merged with the Linac4 LEBT

3/23/2011

357-R-005 Test stand

Quite Crowded, Missing space for Cs-lab Challenging handling of equipment Integration study required

Demineralized Water cooling and SPL RF-generator

Modification of Faraday cage

Gain in accessibility mandatory for "fast" ion source exchange and space for pulsed HT-transformers

H2 gas system out of HT cage and common to LEBT and IS

RF-generator power supplies: L4L.RFANODE 22KV L4L.RFGRID 550V

WPIS Power supplies

D. Nisbet D. Aguglia

WPIS Power supplies

Name, location		Responsible Group	type	Voltage, polarity	Load	load duration	Pulse duration	Rep. rate	3 faci	57 test ility's test		3 MeV	C	Status			
					[A]	[ms]	[ms]	[Hz]	PG	Cs	IS	Linac4	Spares	total	avail.	need	
Acceleration, HT racks	Gnd + transfo	TE/EPC	R&D	-45 kV	0.2	0.7	2-5	2			1	1	1	3		3	
Extraction	Gnd + transfo	TE/EPC	R&D	20 kV	0.2	0.7	2-5	2			1	1	1	3		3	
Electron dump	Gnd + transfo	TE/EPC	R&D	4 kV	2	0.7	2-5	2			1	1	1	3		3	
Insulation transformer	Gnd	*	commercial								1	1	1	3	1	2	
Einzel lens	Gnd	TE/EPC	commercial	-40 kV	0.2	0.7	CW				1	1	1	3		3	
Collar	HT-racks	BE/ABP	CERN	+/- 30 V			CW		1			1	1	3	2	1	
Plasma electrode	HT-racks	BE/ABP	CERN	+/- 30 V			CW		1			1	1	3	2	1	
Ignition	HT-racks	BE/ABP	R&D	+1 kV	20	0.1	0.1	2	1			1	1	3	2	1	
Arc discharge	Gnd + transfo		R&D	400/150 V	20	1					1			1		1	
Cs-Cromate Oven	HT-racks		R&D							1		1		2		2	
Cs-metal Oven	HT-racks		R&D							1				1		1	
LEBT solenoid	Gnd	TE/EPC	commercial		350		cw				2	2	1	5		5	
LEBT steerers	Gnd	TE/EPC	commercial		10		cw				4	4	1	9		9	
LEBT pre chopper	Gnd		R&D			0.1					1	1	1	3		3	
HT- for RF amplifier	Gnd	TE/EPC	CERN	20 kV	2		cw				1	1	1	3	2	1	
HT- for commissionning	Gnd		CERN	-50 kV	0.05		cw				1	1		2	1	1	

3/23/2011

IS-Linac4 J.L.

WPIS – power Draft schedule and cost

(schedule integration pending)

ID	Task Name	Total Cost	11		Half 2, 20	11		Half 1, 2012		Half	2, 2012		Half 1, 20	13	
43	Power supplies	1.070 kCHF	M	AIMIJ	JA	SO	NU	JFM	A	MJJJ	AS	JINID		MA	M
44	Pulsed power supplies and transformer simulation	0 kCHF		_									•		
45	Cabling 3MeV test stand	0 kCHF		1											
46	Cabling Linac4	0 kCHF		1											
47	Pulsed power supplies Linac4	350 kCHF					_								
48	Specification	0 kCHF		ň											
49	procurement set 1 + spares	0 kCHF					h								
50	procurement set 2 remaining items +Spares	100 kCHF													
51	fabrication et commissioning	250 kCHF					Ų		_						
56	Test and decision on extraction system	0 kCHF							Ī						
57	HT-prototypes tests successful	0 kCHF								6/2	1				
58	Pulsed power supplies 357	250 kCHF								1					
59	e-dump pulsed power supply	50 kCHF													
60	Extraction pulsed power supply	50 kCHF													
61	HT 45 kV pulsed power supply	50 kCHF													
62	HV-pulsed power supply Oil-transformer	100 kCHF													
63	Cabling 357	0 kCHF													
64	Pulsed power supplies spares	250 kCHF													
65	e-dump pulsed power supply	50 kCHF													
66	Extraction pulsed power supply	50 kCHF													
67	HT 45 kV pulsed power supply	50 kCHF													
68	HV-pulsed power supply Oil-transformer	100 kCHF													
69	Arc discharge pulsed power supply (magnetron	110 kCHF			-										
73	cw-power supplies	40 kCHF					_								
74	Einzel lens cw power supply reutilieser 50 kV existante +1 +1 spare	20 kCHF													
78	Cs-Chromate oven power supply	0 kCHF													
82	Cs-Metal oven power supplies	0 kCHF													
86	Collar power supply	10 kCHF													
87	Plasma electrode power supply	10 kCHF							_						
88	HT-power supply for RF-amplifier (spare)	0 kCHF													
90	Magnets and stirrers	70 kCHF					_								
91	Solenoids 4 u + 1 spare (350 A cw)	60 kCHF													
97	Stirrers 10 u + 1 spare (10 A)	0 kCHF					-•								
103	Backs 6x	10 kCHF													

I. Kozsar BE-OP

WPIS Controls, Monitoring

Controls: Settings and readout of effective value

- Power supplies: All currents and voltages (time)
- RF Amplifier:
 - Power setting (time), frequency shift
 - Injected, reflected power
 - Current and voltage phase, Power deposited into the plasma
- Plasma generator: OES-intensities: H α , H β , H γ (time)
- Gas injection, settings pulse (time), H2-Pressure
- Vacuum: Pressure of differential pumping tanks (time)
 H2 Density of LEBT
- Timing signals

Controls panel software by OP team not yet discussed but necessary

Collaborations, sLHC & linac4 IS

Creative manpower was required to address missing staff and expertise; Students, PhDs & Project associates and collaboration to external institutes the list below is our way to address it.

- SNS: Visit J. Lettry to SNS (April), ion source exchange, operation of external antenna SNS ion source on test stand
 - Visit R. Welton to CERN April-May tbc.
- IPP Garching (*sLHC*): Seminar U. Fantz at CERN,
 - Visit J. Lettry, M. Kronberger (February):
 - Visit Cs-laboratory and ITER ion source
 - Emission spectroscopy and Cs-density diagnostics
 - Interpretation of emission spectroscopy via CR models
- Rutherford Appleton Laboratory, ISIS ion source
 - Visit D. Faircloth December (eddy current shielding), february-March high power operation of SPL plasma Generator
 - Visit J. Lettry to RAL (January), ion source operation and exchange, new test stand.
 - Arc discharge plasma simulation
- Prof. Akiyoshi Hatayama, (KEIO university, Japan)
 - Simulation of e-heating in Hydrogen plasma, undefined schedule, upgrade from arc discharge to external antenna.
- S. Mochalskyy (Orsay & Cadarache), 3D-simulation of the plasma in the CERN linac4 ion source (Plasma parameter measurement pending).
- O. Tarvainen &T. Kalvas(University of Jyvaskyla) *sLHC & Linac4*
 - UV-VUV Lyman lines emission spectroscopy on sLHC plasma. 2 weeks plasma (April tbc.).
 - T. Kalvas code for simulation of multistage extraction with co-extracted electrons (1 month)
- BNL, James Alessi, visit R. Scrivens and F. Wenander (Feb. 2011)

Conclusion and outlook

- WPIS review is scheduled *June 2011*
 - Resources presented by tasks representatives
 - Extraction simulation April May
 - Draft differential pumping design
 - Report on : Resources (cost and manpower), Feasibility, schedule, Optimization and Risk mitigation
- WPIS February 2011 vs. LS1 schedule: The likelihood of matching the LS1 schedule is part of the of the review's report. At this stage it is premature to conclude but the goal is quite challenging
- Installing a new extraction system, new power supplies and a new source mid 2012 is challenging but leaves 5 month for debugging and commissioning of the prototype *This is our baseline*.
- Developing prototype, producing a test stand and in parallel multi collaboration for simulation ... senior physicists welcome to share the honor
- L4 will only move after (successful) H⁻ tests

Acknowledgments, & thank you

Davide Aguglia, Sebastien Bertolo, Andre Castel, Elodie Chaudet, Jean-Francois Ecarnot, Hugo Estevao, Gilles Favre, Fabrice Fayet, Jean-Marie Geisser, Matthias Haase, Alexandre Habert, Jan Hansen, Stephane Joffe, Matthias Kronberger, Didier Lombard, Alain Marmillon, Jose Marques Balula, Serge Mathot, Oystein Midttun, Pierre Moyret, David Nisbet, Michael O'Neil, Mauro Paoluzzi, Laurent Prever-Loiri, Uli Raich, Jose Sanchez Arias, Claus Schmitzer, Richard Scrivens Didier Steyaert, Henrik Vestergard, Giovanna Vandoni, Mats Wilhelmsson, Laszlo Abel, Alessandro Bertarelli, Oliver Bruning, Maryse Da Costa, Alain Demougeot, Paolo Chiggiato, Dan Faircloth, Ramon Folch, Philippe Frichot, Roland Garoby, Jonathan Gulley, Alexandre Gerardin, Christophe Jarrige, Erk Jensen, Emmanuel Koutchouk, Detlef Kuchler, Robert Mabillard, Marina Malabaila, Cristiano Mastrostefano, Sophie Meunier, Catherine Montagnier, Jose Monteiro, Mauro Nonis, Julien Parra-Lopez, J. Peters, Stephen Rew, Miguel Riesgo Garcia, Ghislain Roy, Stefano Sgobba, Franck Schmitt, Alain Stalder, Laurent Tardi, Dominique Trolliet, Donatino Vernamonte and Fredrik John Carl Wenander.