# Safety Consolidation in and around the Injector chain\*

#### S Baird

On behalf of

R Brown, V Chohan, J-L Duran-Lopez, B Linseisen, R Steerenberg, F Szonsco (for PS Safety review) T Otto & the PS Radiation Working Group (PSRWG) P Bonnal (Risk analysis procedures)

\* Safety Consolidation at the PS

### Safety Consolidation at the PS



## Safety Consolidation at the PS

- In view of the decision to keep the PS as LHC Injector for 25 years\*
- PS Safety review (F Szoncso)
  - Snapshot of the situation today
  - Aiming to identify Hazards
- Risk analysis (P Bonnal)
  - Establish a prioritized action list for risks identified by the PS Safety Review
- Input from the PS Radiation Working Group (T Otto)
  - Evaluation of beam intensities and loss rates
  - Identification of main radiation hazards
  - Impact on operations & tunnel interventions
  - Recommendations

#### \* Decided after Chamonix 2010

## **PS Safety review**

• Mandated by S Myers & R Trant to:

- 'establish the facts related to the safety of the CERN PS and assess the safety compliance of the PS in view of it's long-term operation as LHC injector'
- Members: EN/MEF, HSE, BE/OP, TSO
- Aim to identify hazards whilst avoiding any prejudgment
  - Groups involved in the operation, maintenance, modification and emergency handling at the PS were contacted individually
  - Standard questionnaire plus specialized questions
  - Report the situation as it is today (as seen by those intervening in the tunnel)
- The results can be found in the CERN Proton Synchrotron Safety Review
  - https://edms.cern.ch/document/1119511/1

### **PS Safety Review: Teams contacted**

- Civil Engineering, buildings, tunnel structures
- Services: Tunnel cooling and ventilation, Electricity, Cabling, Transport
- Beam related equipment: Vacuum, RF, Beam instrumentation, Kickers & Septa, Magnets
- Safety systems: Interlocks, Access and Safety systems, Fire Brigade, Environment
- Shutdown Coordination

#### PS Safety Review: Hazards indentified 1/2

- 41 potential hazards identified including...
  - Asbestos pipe insulation
  - Safety communication for personnel intervening in the tunnel (CERN and external contractors)
  - Leakage of air from the tunnel, smoke extraction system has no filter, problems to maintain constant pressure differentials in the tunnels
  - Possibility of corrosive smoke in case of fire (cables, batteries...)
  - No flooding warning interlock in presence of pressurized water systems
  - HV is present on ion pumps permanently (during access)
  - Many of the procedures for testing magnets and other elements rely on expert knowledge and not written instructions

#### PS Safety Review: Hazards indentified 2/2

- Cable deterioration due to radiation, overfilled cable trays & unidentified cables
- Lack of building/tunnel maintenance (leaks, water infiltrations)
- Some walkways and stairs are unsuitable and difficult to use
- Tunnel concrete floor slabs damaged
- The AUG layouts and the action of individual buttons are not clear
- Few systems have individual emergency stop buttons (not coherent approach)
- Lack of safety exercises and evacuation drills
- Radiation issues are covered by the PSRWG

#### Prioritizing risk mitigation measures



Possible measures that will most improve outstanding safety issues → Top of the list Actions that are to be taken within budgetary limits

### **Evaluation and analysis phase**

- Identify all safety risks from the hazards listed in the PS Safety Review Report
- **Evaluate** those risks from to 2 perspectives:
  - Probability of occurrence
  - Impact on health, safety and environment
- $Risk = P \times I$

- Analyze those risks:
  - List the existing mitigation measures (already in place):
    - Preventive measures ( probability)
    - Protective measures ( impact)
  - List possible additional mitigation measures
  - Estimate their feasibility (cost, manpower, schedule...).

### Evaluation and analysis phase

Review existing mitigation measures, i.e. those already in place

(risks are weighed taking these measures into account) 1<sup>st</sup> ranking (before new measures are implemented) sorting = from highest risk to lowest risk

Identify additional mitigation measures

 (incl. their cost estimate, the manpower required, their feasibility from a schedule point of view...)
 Risks are then re-weighed considering the implementation of these additional mitigation measures
 2<sup>nd</sup> ranking (after new measures are implemented) sorting = from highest risk improvement to lowest.

#### **PSRWG: PS Beam Intensities and Loss**

The PSRWG evaluated beam intensities and loss rates for 2010 operation of the PS. This allowed a correlation between beam loss and the observed radiation hazards

Calculated from intensity & loss

#### Average/supercycle

|                                 | Intensity                            | Relative Loss | Loss rate                                  |  |
|---------------------------------|--------------------------------------|---------------|--------------------------------------------|--|
| Injection                       | 8.2 10 <sup>12</sup> s <sup>-1</sup> | 6 %           | 5 10 <sup>11</sup> s <sup>-1</sup>         |  |
| Extraction<br>(high.int. beams) | 6.4 10 <sup>12</sup> s <sup>-1</sup> |               |                                            |  |
| СТ                              |                                      | 10 %          | 6.4 10 <sup>11</sup> s <sup>-1</sup>       |  |
| MTE                             |                                      | 1 – 2 %       | Up to 1.3 10 <sup>11</sup> s <sup>-1</sup> |  |

Not including nTOF, LHC, EAST HALL

### Main Radiation Hazards in PS

Not measured today

| Hazard                                     | Main Locations                              | Concern                                                               | Mitigation*                                   |
|--------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------|
| Air activation                             | Whole PS,<br>numerous pathways              | Release to<br>environment,<br>radiation dose to<br>workers and public | Assessment to<br>demonstrate<br>negligibility |
| Stray radiation                            | Route Goward<br>Downstream of<br>South-hall | External irradiation<br>of personnel on-<br>site and of public        | Shielding                                     |
| Activation of<br>material in the<br>tunnel | SMH16 (MTE)<br>Downstream SEH31 (CT)        | External irradiation<br>of workers during<br>access                   | Allow decay time                              |

\* other than reduction of beam loss

# Activation: Ambient dose rates **limit** the possibility for urgent interventions

#### E.g. Replacement of SMH16



14 days after accelerator stop:  $H^*(10) \approx 20 \text{ mSv h}^{-1}$   $\downarrow$ Septum exchange possible without breaking internal RP rules

#### Solutions:

- Hardware upgrade to allow remote handling
- Wait longer (unrealistic due to logarithmic decay characteristics)
- Reduce and/or constrain beam loss

### **PSRWG Recommendations (1)**

#### Air activation

- Cost an upgrade of ventilation allowing proper assessment of releases, in terms of CHF and of person-mSv
- Take an informed decision

#### Stray Radiation

- Homogenise radiation shielding on top of PS, allowing for probable intensity upgrades: Linac 4 and 2 GeV PS Booster at full capacity
- + 180 cm earth downstream of South-Hall
- +180 cm concrete on Route Goward

### **PSWRG Recommendations (2)**

- Accelerator Activation
  - Reduce loss focalized on SMH16 by various means (dummy septum, barrier buckets, ...)

Introduce a beam loss constraint for routine operation:

- < 10<sup>10</sup> s<sup>-1</sup> at any location (without septa)
- < 10<sup>11</sup> s<sup>-1</sup> at septa
- $< 10^{12} \text{ s}^{-1} \text{ overall}$
- These constraints allow major interventions after a breakdown (magnet or septum exchange) with 14 days decay time

## Actions for the future

- Hazards identified in the PS Safety review
  - Risk analysis to assess the hazards identified and produce a set of prioritized actions
  - Implement inside an Injector Consolidation program?
- PSRWG
  - Modify ventilation system to allow measurement of air activation
  - Additional shielding requirements identified
  - Remote handling for certain elements?
  - Reduce localized losses with "technical or beam" solutions
  - Use a beam loss constraint rather than an extracted intensity limit



# Questions asked 1/3

- Do you believe that your equipment is operationally safe today?
- What risk does your equipment pose for the safe operation of the PS?
- Does your equipment pose any safety issue to other personnel?
- Do you believe your equipment will degrade in terms of safety and will require replacing or even redesigning?
- How could your equipment be improved to make it safer than it is today?
- When making interventions on your equipment, do you consider the procedures you follow today are safe?
- To make your interventions safer, what procedures should be improved?

# Questions asked 2/3

- Do you consider the PS tunnel to be a safe working environment?
- What elements of the tunnel do you consider to be either unsafe or a potential risk to your health and safety?
- Do you consider any other PS hardware to be unsafe?
- Are you aware of any environmental issue in the PS that should be addressed?
- Are you and your team fully aware of the emergency equipment and procedures while working in the tunnel?
  - Emergency exits?
  - Emergency lighting?
  - Emergency phones and numbers?
  - Emergency stop buttons (AUG)?
  - Fire fighting equipment? Extinguishers, what type and how to use them?

## Questions asked 3/3

#### • Specific questions....

- Can beam losses affect your equipment?
- Does induced radio-activity affect interventions on your equipment?
- Is your equipment protected by specific interlocks?
- Do you use/store dangerous chemicals/materials
- Do you have dangerous systems which must remain on during a shutdown period?
- Is the tunnel equipped with smoke extractions systems?
- Do your equipment present a particular fire risk?
- How is the AUG system laid out?

•••••