

MTE roadmap – Beam physics aspects

S. Gilardoni, M. Giovannozzi

- Introduction
- Latest data analysis
- Mitigation measures
- Current activities
- Situation of resources
- Future plans

Acknowledgements: G. Arduini, H. Bartosik, A. Lachaize, M. Newman, Y. Papaphilippou and many colleagues in Bl, CO, OP, RF, DGS-RP, and TE-ABT

Introduction - I

- MTE beam @ 2.2-2.3 × 10¹³ (1 PS extraction) regularly delivered to the SPS for CNGS.
- Best trapping efficiencies up to 20% as required. PS Extraction efficiencies ~ 97-98% (typical CT extraction efficiencies ~ 93-94%)
- Beam for CNGS physics delivered exclusively with MTE up to about mid-May. Some mixed operation until beginning of June.

PMI residual dose monitors shows significant reduction of PS ring irradiation w.r.t. CT.

Introduction - II

- SPS Transmission efficiency of MTE beam up to 94%, practically as a CT beam in the SPS at the start of the run (CT has been optimised since years...).
- With 2009 injection optics not matched for islands.

CNGS/MTE in May (old inj. optics)

CNGS Larger Former teletext 111		User: CNGS2		May-2010 10:56:24 update: 1 secs ago	
TT2	TT10	%LOSS	INJ	%LOSS	
2248	2167	3.6	2035	6.1	
2160	2082	3.6	1997	4.1	
	I/E10	%LOSS	%TRNS	TIME/ms	
INJECT	3985	5.1	95	1210	
END_FB	3950	2.0	98	1260	
20 GeV/c	3834	2.9	95	1470	
27 GeV/c	3782	1.4	94	1530	
50 GeV/c	3752	0.8	93	1740	
400 GeV/c	3743	0.3	93	4200	
SC: 28750		LOSS @ FB: 2.3%			

CNGS/CT in September

CMCS Larger			22	Sam 2010 16:27:28	
CNGS Larger Former teletext 111		User: CNGS1	22-Sep-2010 16:27:38 Last update: 20 secs ago		
ronner teletext III			Last u	puate. 20 secs ago	
TT2	TT10	%LOSS	INJ	%LOSS	
2235	2223	0.5	2160	2.8	
2253	2240	0.6	2171	3.1	
	I/E10	%LOSS	%TRNS	TIME/ms	
INJECT	4311	2.9	97	1210	
END_FB	4302	0.7	99	1260	
20 GeV/c	4252	1.2	98	1470	
27 GeV/c	4209	1.0	97	1530	
50 GeV/c	4203	0.1	97	1740	
400 GeV/c	4193	0.2	97	4200	
SC: 18294		LOSS @ FB: 0.9%			

Introduction - III

- The effects that blocked MTE operation in 2010
 - Activation of septum 16
 - Generated by longitudinal bunch structure
 - Impact on cool down time for intervention in septum area
 - Fluctuation of trapping efficiency in the PS
 - Long campaign of beam measurements to find source (not yet identified)
 - Huge amount of beam data analysed (already) and to be analysed. Some new results reported in next slides.
 - Injection trajectories fluctuations in SPS

Latest analysis - I

- Aim: quantitative comparison of MTE vs. CT in PS and SPS and correlation studies.
- Approach:
 - PS
 - Evaluate extraction efficiency. This is obtained from the BCT for circulating and several BCTs in the TT2 transfer line.
 - Evaluate trapping efficiency, i.e., the amount of beam in each island normalised to the total intensity. This is obtained from a number of BCTs in TT2 capable of measuring intensity vs. time over the five extracted turns.
 - SPS
 - Evaluate transmission between different times in the cycle.

Latest analysis - II

- Some comments:
 - The duty factor was suggested as figure-ofmerit to understand the beam performance.
 - An analytical estimate for the duty factor for an MTE-generated spill with trapping efficiency x is given by:
 - $\frac{1}{5\left(1-8x+20x^2\right)}$

 $\frac{1}{T} \frac{\left(\int_{0}^{T} I(t)dt\right)^{2}}{\int_{0}^{T} I(t)^{2}dt}$

- Even if the CT beam is generated differently with respect to the MTE, a trapping efficiency was defined as well.
- Some plots will show the time evolution of key beam dynamics quantities, others the correlation between the beam dynamics quantities.

/IG - IEFC Works

Latest analysis - IV

- No correlation between extraction and trapping.
- Analytical formula describes well the duty factor.

Perfect correlation between two consecutive extractions: time-scale of fluctuations is longer than one cycle.

Latest analysis - VI

- Some correlation between transmission in SPS and trapping/duty factor from flat bottom up to front porch. Then rather uncorrelated for MTE.
- Global transmission in SPS rather correlated with trapping: mostly dominated by results at front porch.

Mitigation measures: activation of septum 16 - II

Dummy septum

- In principle, it provides a reduction acceptable for RP.
- Improvement of the radiation released outside the tunnel due to the corridor in front of the tunnel
- Linac3 radiation field to be revised
- Relocation of DHZ15 and gamma-jump quadrupole to be studied.
- It can be installed only during LS1.

New extraction scheme using SEH31

- Re-use the electrostatic septum and the BFAs.
- Principle: paper study in progress.
- Hardware: HV cable connection improved to allow quick polarity change (about 1 hour tunnel intervention, only).
- The CT elements remain untouched: always possible to use the CT during the new extraction tests.

Current status of new extraction tests

- First tests non-conclusive: losses indicates the beam jumps beyond the septum jumped.
- The kick of the septum is not visible on the trajectory downstream of the septum
- Kick imparted by KFA21+BFA21 is larger than 10 mm as required, but the beam is even larger
- Tests to be repeated soon with a smaller beam and after verification of trajectory measurements.
- Issues:
 - RF tree to be re-built after first week of test. Corrupted by a non-clear reason
 - Doubt about the measured orbit

Fluctuations - I

- Some key tests to perform
 - Correlation with B-field fluctuations. This tests was already performed in 2010 and gave no correlation. However, during winter technical stop it turned out that the ADC used for the measurement had a Firmware issue!
 - Perform trapping tests with POPS to compare performance with last year.
 cycle #45 no comment PR.8058 2011-03-17 20:25:10

Fluctuations - II

- Capture
 - Capture set-up on 2 BP cycle
 - Capture efficiency at 12-13 % without non-linear coupling correction

Issues:

- Setting-up delayed by difficulty in setting up a completely new cycle in INCA.
- Tune measurement not fully available due to noise (affects all the beams).
- Not clear if the noise seen on the tune affects the capture.

Trajectory fluctuations

- Analysis of data taken last year in progress.
- Study with beam the closure of the slow and fast bumps (for the islands) started.

 Study with beam the

Situation of resources

- Beam dynamics studies:
 - extremely small group of people (recently new people joined the team). Barely sufficient for this year, probably insufficient by the end of the year.
- PS activities:
 - we rely heavily on OP for setting up (this year for the new extraction studies) and systematic data taking.
 - Instrumentation and controls: we normally stress the systems and act as guinea pig. We need support beyond what is needed for standard operation.
- SPS activities:
 - we depend critically on OP for pushing the setting up and the studies at the SPS (main conclusions of the MTE Workshop in September 2010)

Schedule: studies in 2011

- Initially mainly focus on the PS to
 - Pursue studies for new extraction scheme
 - Tests closure of slow bump and stability of extraction conditions.
 - Additional tests on trapping (correlation with energy fluctuations, POPS, etc.)
 - We should aim at drawing conclusions on new extraction/dummy septum by June/July this year.
- Then resume SPS injection to study
 - Injection (trajectory, optics)
 - Overall performance

Future: some scenarios

- The new scheme with SEH31 works
 - We could aim at putting in operation MTE (after the list of additional studies to be performed).
 - Would the dummy septum still be needed?
 - Analysis of how to proceed with CT elements to be recuperated for MTE (SEH31, BFAs).
 - Answer to the previous two points would provide input for the activities for LS1.
- The new scheme with SEH31 does not work
 - We could aim at delivering at most a couple of cycles to SPS with MTE before LS1.
 - Activities during LS1 would be linked to installation of dummy septum, always keeping CT alive for the start-up after LS1.