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Relativistic reconnection
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* The plasma flows into the reconnection region with — = i
VA 0

— Rel. reconnection can efficiently dissipate the field energy (at rate ~ 0.1 c).

— Rel. reconnection may accelerate particles, via Frec ~ 0.15,.



PIC simulation of =10 (relativistic) reconnection
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(Zhang, LS, Giannios 21)

The reconnection layer breaks into a chain of flux ropes / plasmoids



Particle acceleration in relativistic
reconnection
Zhang, LS & Giannios 2023, arXiv:2302.12269

LS 2022, PRL, 128, 145102
Zhang, LS & Giannios 2021, ApJ, 922, 261

Hao Zhang M. Petroulou D. Giannios




Reconnectbon makes broken power laws
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Injection brings electrons up to

_~30,~6x10%c
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At v < 3o “injection” in reconnection leads to o-dependent slopes, with p=1. i;

At v = 30 3D reconnection leads to a universal (~ o-independent) slope of p~2.



Particle injection, from y~1 10 y~30

(LS & Spitkovsky 14;
also Melzani+14,
Guo+14,15, Werner+16)

t v 30 “injebtion” in reconnection leads to Vo—dep*ed'eht”slope-s,/with pz 1.

This holds in electron-positron (e.g., LS & Spitkovsky 14), electron-proton (e.g., Ball, LS &
Ozel 18) and electron-positron-proton plasmas (Petropoulou, LS et al 19).




Reconnection makes broken power laws
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At v < 3o “injection” in reconnection leads to o-dependent slopes, with p=1. i;

At v = 30 3D reconnection leads to a universal (~ o-independent) slope of p~2.



Particle acceleration to y»3o (in 3D)

* In 3D, lucky particles escape from plasmoids
(Dahlin+15) and wiggle “free” around the layer
(via grad-B drift).

(Lazarian +12)



Density

* In 3D, lucky particles escape from plasmoids
(Dahlin+15) and wiggle “free” around the layer
(via grad-B drift).

e They get accelerated linearly in time, y « t, by the
large-scale ideal electric field in the upstream.

* The energy gain rate approaches ~ €ErecC

~ O.leBoc

* Reconnection in AGN jets can accelerate UHECRSs.

Particle acceleration to y»3o (in 3D)

(Zhang, LS, Giannios 21)



What does it take to be a lucky particle?

 Most of the high-energy particles experience a “free” phase in the upstream.

 Most of their energy is acquired while upstream.



A 3D model of power-law formation

* |In steady state,

assuming injection at

o If tacc and tesc depend linearly on vy, the solution is

tacc/tesc

f ooy

 What is the acceleration time tacc = 7/ ?

 What is the escape time tesc ?




A 3D model of power-law formation

t=1.76 [L/c| L=box length 10°

(Zhang, LS,
Giannios 21)
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* Active acceleration only in the “free” stage while particles are in the upstream.
* Acceleration ceases when particles are captured by plasmoids (escape term).



Acceleration and escape times

Acceleration time tace = /5 ~ YW,/ (Nrec/32) Escape/trapping time tesc

dN. free
dry

' —tace/t
The two timescales are comparable, so ffree — acc/ lesc
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Free vs trapped vs all
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Free vs trapped vs all

o=10 red:free

blue:trapped
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In steady state:

rate of free particles getting trapped = rate of trapped particles being advected out

tadv 1 2
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tesc

At v = 30 3D reconnection leads to a universal (~ o-independent) slope of p=2.




Two-stage acceleration in reconnection

'+ Particle injection in the range 7 < 30 leads to o-dependent power laws, |

i with slope p=1. .

'+ Further acceleration beyond injection (Y 2 30) leads (in 3D)) to a nearly

‘universal (~ o-independent) slope of p~2.

Vo ~ 30
: For electrons,
Yo ~ 30 ~ 6 X 10°0




Reconnection near BHs

Equatorial current sheet in

the magnetically-arrested
(MAD) state

Jet boundary

“Corona”
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Reconnection at jet boundaries

Chow, Davelaar, Rowan, LS 2022, arXiv:2209.13699
LS, Rowan & Narayan 2021, ApJL, 907, L44

M. Rowan J. Davelaar R. Narayan




Dec Offset (mas)

The boundary of M87 jet

l I N

M87 VLBA 43 GHz

Average of 23 Images

Beam 0.43 x 0.21 mas ~ 60 x 29 R 4
} | 5mas~0.4pc~700R,

@ 17°viewing angle, 5 mas ~ 1.35 pc ~ 2400 R_along jet. —
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t =7620c3/GM

Kelvin-Helmholtz
the jet boundary

t =7625¢"/GM t =7630c’/GM

(Wong+21; see also Chatterjee+19)

What is the nonlinear outcome of KH at the jet boundary?




The jet / ambient system

2D PIC with TRISTAN-MP (Spitkovsky 2005)
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Kelvin-Helmholtz (KH) instability

Density

(Davelaar+23, in prep)

* For realistic jet and ambient plasma conditions, the interface is KH unstable.

 The KH growth rate matches well with linear MHD expectations (Chow+ 22).



Kelvin-Helmholtz (KH) instability
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* The linear and non-linear evolution is the same in PIC and resistive MHD.



KH — reconnection

Magnetic reconnection (with Bg ~ Bo)
Is a natural by-product of nonlinear
KH evolution.

0 200 400
s [e/w,) (Sironi+2021)




KH — reconnection — particle acceleration
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| increases at each
- nonlinear stage of KH.
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Two-stage acceleration

(1) The early acceleration
stages (injection) are
powered by E/; at
reconnection layers.
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Two-stage acceleration

(1) The early acceleration
stages (injection) are
powered by E, at
reconnection layers.

4000 5000 60N gmmed (2) Reconnection-accelerated
“\ particles then experience

1./, ’ <t g shear-driven acceleration.
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Astrophysical implications

Walker+2018

KH instability:

— relativistic reconnection
— particle injection

— shear-driven acceleration
— limb-brightened jets 0

Dec Offset (mas)
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M87 VLBA 43 GHz

Average of 23 Images

Beam 0.43x0.21 mas~60x29R_, —
f { 5mas~0.4pc~700R,
@ 17°viewing angle, 5 mas ~ 1.35 pc ~ 2400 R_along jet. —
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The final stage presents:

- a fast core/spine
- a slower sheath with plasma beta~1

as assumed by spine-sheath models of
blazar emission (e.g., Sikora 16).

Sikora+2016

RA Offset (mas)




Reconnection in BH X-ray coronae

Groselj, Hakobyan + 2023, arXiv:2301.11327
Sridhar, LS et al. 2022, MNRAS, 518, 1301
Sridhar, LS et al. 2021, MNRAS, 507, 5625
LS & Beloborodov 2020, ApJ, 899, 52

N. Sridhar D. Grosel; H. Hakobyan A. Philippov  A. Beloborodov




The hard state of X-ray binaries
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Cygnus X-1

Hard state: interpreted as thermal
Comptonization by “coronal” plasma with 1000 104
electron temperature ~100 keV and (McConnell+2002)
moderate optical depth.

Can the emitting electrons in BH coronae stay hot?




Internal vs bulk motions

Can the emitting electrons in BH coronae stay hot?

In BH coronae, tcool « tayn — internal motions (temperature) are suppressed

®© @

Internal motions (random) Bulk motions (ordered)

What provides ordered/bulk motions for Comptonization?







Option 1: reconnection
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Option 1: reconnection
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(Beloborodov 17; LS & Beloborodov 20; Sridhar, LS & (Sridhar, LS & Beloborodov 21, 22)
Beloborodov 21, 22)

* The particle bulk energy spectrum e For optical depth ~ 1 and o ~ few, our
resembles a Maxwellian with T~100 keV photon spectrum matches the observations.




Option 2: turbulence

First simulations of kinetic turbulence with self-consistent radiative transfer:

® |njection of soft seed photons from a thermal bath at ~ 1 keV

® Photon escape

® Spatially-resolved Compton scattering with full Klein-Nishina cross-section
(Monte-Carlo method)

Electric current Photon energy density

(Groselj+ 23; using TRISTAN-MP v2.0, Hakobyan+)



Option 2: turbulence

® Most of the turbulent energy converts to
photon energy via bulk Comptonization,
before the cascade reaches the plasma
microscales.

(Groselj+ 23; using TRISTAN-MP v2.0, Hakobyan+)



Option 2: turbulence

Particles Photons
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* The particle energy spectrum resembles e For optical depth ~ 1 and o ~ few, our
a Maxwellian with T~100 keV photon spectrum matches the observations.

* The MeV tail may require including self-
consistent pair production.



'M87 VLBA '43 GHz

Average of 23 Images
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KH instability at jet boundaries
— relativistic reconnection

— particle injection

— shear-driven acceleration

trans-relativistic
/‘ outflow (£2)

IC-cooled e*
in plasmoids

» 0 ~ few reconnection (cold trans-rel

plasmoids) or turbulence.

* bulk Comptonization with effective
temperature ~ 100 keV.

* hard state spectra of X-ray binaries.
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We are the Theoretical High Energy Astrophysics (THEA) group at
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