PHENIX at RHIC

Ju Hwan Kang Department of Physics Yonsei University

Him Meeting ChunNam University, Korea December 4, 2004

The Relativistic Heavy Ion Collider at BNL

- Two independent rings 3.83 km in circumference
 - 120 bunches/ring
 - 106 ns crossing time
- Maximum Energy
 - s^{1/2} = 500 GeV p-p
 - s^{1/2} = 200 GeV/N-N Au-Au
- Design Luminosity
 - Au-Au 2x10²⁶ cm⁻²s⁻¹
 - **p p** $2x10^{32}$ cm⁻²s⁻¹ (polarized)
- Capable of colliding any nuclear species on any other nuclear species

The RHIC Experiments

The PHENIX Detector

Detector Redundancy Fine Granularity, Mass Resolution High Data Rate Good Particle ID Limited Acceptance

<u>Charged Particle Tracking:</u>

Drift Chamber Pad Chamber Time Expansion Chamber/TRD Cathode Strip Chambers

Particle ID:

Time of Flight Ring Imaging Cerenkov Counter TEC/TRD Muon ID (PDT's)

Calorimetry:

Pb Scintillator Pb Glass

Event Characterization:

Multiplicity Vertex Detector (Si Strip,Pad) Beam-Beam Counter Zero Degree Calorimeter/Shower Max Detector Forward Calorimeter

PHENIX Central Arm

- . 6 lead- scintillator (PbSc) sectors
- . 2 lead- glass (PbGI) sectors
- $|\eta| < 0.38$ at midrapidity, $\Delta \phi = \pi$

The PHENIX Muon Arms

Brazil <mark>China</mark>	University of São Paulo, São Paulo Academia Sinica, Taipei, Taiwan China Institute of Atomic Energy, Beijing	D
France	LPC, University de Clermont-Ferrand, Clermont-Ferrand Dapnia, CEA Saclay, Gif-sur-Yvette	
	IPN-Orsay, Universite Paris Sud, CNRS-IN2P3, Orsay LLR, Ecòle Polytechnique, CNRS-IN2P3, Palaiseau SUBATECH, Ecòle des Mines at Nantes, Nantes	
Germany	University of Münster, Münster	
Hungary	Central Research Institute for Physics (KFKI), Budapest Debrecen University, Debrecen	
	Eötvös Loránd University (ELTE), Budapest	
India	Banaras Hindu University, Banaras	
	Bhabha Atomic Research Centre, Bombay	
Israel	Weizmann Institute, Rehovot	
Japan	Center for Nuclear Study, University of Tokyo, Tokyo	
	Hiroshima University, Higashi-Hiroshima	
	KEK, Institute for High Energy Physics, Tsukuba	
	Kyoto University, Kyoto	1
	Nagasaki Institute of Applied Science, Nagasaki	
	RIKEN, Institute for Physical and Chemical Research, Wako	
	RIKEN-BNL Research Center, Upton, NY	US
	University of Tokyo, Bunkyo-ku, Tokyo	
	Tokyo Institute of Technology, Tokyo	
	University of Tsukuba, Tsukuba	
	Waseda University, Tokyo	
S. Korea	Cyclotron Application Laboratory, KAERI, Seoul	
	Kangnung National University, Kangnung	
	Korea University, Seoul	
	Myong Ji University, Yongin City	
	System Electronics Laboratory, Seoul Nat. University, Seou	
B	Yonsei University, Seoul	
Russia	Institute of High Energy Physics, Protovino	
	Joint Institute for Nuclear Research, Dubha	
	RUPCHATOV INSTITUTE, MOSCOW	
	PNPI, St. Petersburg Nuclear Physics Institute, St. Petersburg	ng
Swodon	St. Petersburg State recrimical University, St. Petersburg	
Sweuen	Lunu Oniversity, Lunu	

12 Countries; 57 Institutions; 460 Participants*

SA Abilene Christian University, Abilene, TX Brookhaven National Laboratory, Upton, NY University of California - Riverside, Riverside, CA University of Colorado, Boulder, CO Columbia University, Nevis Laboratories, Irvington, NY Florida State University, Tallahassee, FL Georgia State University, Atlanta, GA University of Illinois Urbana Champaign, Urbana-Champaign, IL Iowa State University and Ames Laboratory, Ames, IA Los Alamos National Laboratory, Los Alamos, NM Lawrence Livermore National Laboratory, Livermore, CA University of New Mexico, Albuquerque, NM New Mexico State University, Las Cruces, NM Dept. of Chemistry, Stony Brook Univ., Stony Brook, NY Dept. Phys. and Astronomy, Stony Brook Univ., Stony Brook, NY Oak Ridge National Laboratory, Oak Ridge, TN University of Tennessee, Knoxville, TN Vanderbilt University, Nashville, TN *as of July 2002

The RHIC Run History

The RHIC machine performance has been
very impressive:
>Machine is delivering design luminosity(+) for
AuAu

Collided 3 different species in 4 years
•AuAu, dAu, pp

≻4 energies run
•19 GeV, 64 GeV, 130 GeV, 200 GeV

$> 1^{st}$ operation of a polarized hadron collider

PHENIX	Year	Species	s ^{1/2} [GeV]	∫Ldt	N _{tot} (sampled)	Data Size
Run1	2000	Au-Au	130	1 μb ⁻¹	10M	3 TB
Run2	2001/02	Au-Au	200	24 μb ⁻¹	170M	10 TB
		Au-Au	19		<1M	
		p-p	200	0.15 pb ⁻¹		 20 TB
Run3	2002/03	d-Au	200	2.74 nb ⁻¹	5.5G	46 TB
		р-р	200	0.35 pb ⁻¹	6.6G	35 TB
Run4	2003/04	Au-Au	200(64)	241 μb ⁻¹ (9.	1) 1.5G(58M)	200 TB
		p-p	200	352 μb ⁻¹	360M	10 TB

Publication Summary

PHENIX White Paper (I)

PHENIX just released White Paper which is an extensive review of its results up to Run3 (http://arXiv.org/abs/nucl-ex/0410003).

 Energy density; ε_{Bj}=(1/τA)(dE_T/dy) For the created particles at proper time (τ_{Form}=0.35fm/c); 15 GeV/fm³. Hydrodynamical calculation using elliptic flow (τ_{Therm}=1fm/c); 5.4 GeV/fm³.
 Thermalization Measured yields/spectra are consistent with thermal emission (T_{Therm}=157MeV, μ_B=23MeV, β=0.5). Elliptic flow (v₂) is stronger at RHIC than at SPS, and v₂(p) < v₂(π). Currently do not have a consistent picture of the space-time dynamics of reactions at RHIC as revealed by p₁ spectra, v₂ vs p₁ for proton and pion; not yet possible to extract quantitative properties of QGP or mixed phase using those observables.

Fluctuations

- Net charge fluctuations has ruled out the most naïve model in a QGP by showing non-random fluctuations expected from high-p_t jets only.
- A severe constraint on the critical fluctuations expected for a sharp phase transition but is consistent with the expectation from lattice QCD having a smooth transition.

PHENIX White Paper (II)

Binary Scaling

To exclude final state medium effect, π from d+Au, γ /total charm yields from Au+Au collisions were used.

- Experimental evidence for the binary scaling of point-like pQCD process in AuAu collisions.
- Initial condition for hard-scattering at RHIC is an incoherent superposition of nucleon structure functions.

\Box High-P_t Suppression

- The observed suppression of high-pt particle production at RHIC is a unique phenomenon not having been produced previously.
- Medium induced energy lose is the only currently known physical mechanism that can fully explain the observed high-p_t suppression.

□ Hadron production

The large (anti) baryon to pion excess relative to expectations from parton fragmentation functions at p_t=2-5GeV/c remains one of the most striking unpredicted experimental observations at RHIC.

At present, no theoretical framework provides a complete understanding of hadron formation in the intermediate $P_{\rm t}$ region.

PHENIX White Paper (III) ; Future Measurements

- To further define and characterize the state of matter formed at RHIC, PHENIX is just starting the study of penetrating probes not experiencing strong interactions in the produced medium. By their very nature, penetrating probes are also rare probes and consequently require large value of the integrated luminosity.
- □ High-P_t Suppression and Jet Physics Trace the suppression to much higher P_t to determine whether it disappears. High momentum jet correlations using π , K, p to beyond 8GeV/c in P_t and γ .
- $\Box \quad J/\psi \text{ Production}$
 - $\mu^+\mu^-$ decay channel at forward and backward rapidities, and e^+e^- decay channel in mid-rapidity for p+p, d+A/p+A, and A+A systems.
- □ Charm Production
 - Produced in the initial hard collisions between the incoming partons. Measure indirectly using high-p_t single leptons and directly with upgraded detector.
- Low-Mass dileptons
 Sensitive prove of chiral symmetry restoration.
- Thermal Radiation
 - Through real photons or dileptons, a direct fingerprint of the matter formed.

Hard scattering in Heavy Ion collisions

Jets:

> primarily from gluons at RHIC

- > produced early (τ <1fm)
- > sensitive to the QCD medium (dE/dx)

Observed via:

- > fast leading (high pt) particles
 - or
- > azimuthal correlations between them

Mechanisms of energy loss in vacuum (pp) is understood in terms of formation time and static chromoelectric field regeneration^{*}. Any nuclear modification of this process could provide a hint of QGP formation.

* F.Niedermayer, Phys.Rev.D34:3494,1986.

RHIC Year-1 High-PT Hadrons

Closer look using the Nuclear Modification Factor RAA

RHIC Headline News... January 2002

First observation of *large* suppression of high p_T hadron yields "Jet Quenching"? == Quark Gluon Plasma?

R_{AA} : High P_T Suppression to at least 10 GeV/c

PRL 91 (2003) 072301

Jet-Quenching?

Initial State Effects

□ Initial State Effects: Effects which lead to R_{AA} ≠1 at high p_T but which are not related to properties of the hot and dense nuclear matter

Candidates:

 Initial state multiple soft scatterings (Cronin Effect): increases R_{AA}
 Modification of the nucleon structure functions in nuclei (Shadowing): decreases R_{AA}
 Gluon saturation (Color Glass Condensate): decreases R_{AA} (?)

p+A (or d+A): The control experiment

• Jet Quenching interpretation; interaction with medium produced in final state suppresses jet.

• Gluon Saturation interpretation, gluons are suppressed in initial state resulting in suppression of initial jet production rate.

• If these initial state effects are causing the suppression of high-P_T hadrons in Au+Au collisions, we should see suppression of high-P_T hadrons in d+Au collisions.

R_{AA} vs. R_{dA} for Identified π^0

The dAu results (initial state effects only) suggest that the <u>created</u> medium is responsible for high p_T suppression in Au+Au.

PHENIX, PRL91 (2003) 072303.

Centrality Dependence

- Opposite centrality evolution of Au+Au compared to d+Au control.
- Initial state enhancement ("Cronin effect") in d+Au is suppressed by final state effect in Au+Au.
- □ Notice difference between π^0 and h^++h^- (more later).

Cronin Effect (R_{AA} >1) : h_ch vs. π^0

- <u>Different behavior between p^0 and charged hadrons at $p_T = 1.5 5.0 \text{ GeV/c!}$ </u>
- d+Au data suggests the flavor dependent Cronin effect.

RHIC headline news... August 2003

BNL Press Release, June 2003:

Lack of high p_T hadron suppression in d+Au strongly suggests that the large suppression in Au+Au is a final state effect of the produced matter (QGP?!)

Jet Correlations: 2-Particle Correlations

Parton exiting on the periphery of the collision zone should survive while partner parton propagating through the collision zone is more likely to be absorbed if Jet-Quenching is the correct theory.

Far-side Jet is suppressed in Central Au+Au : Further indication of suppression by produced medium.

Two Particle Azimuthal Distribution

- Azimuthal distribution similar in p+p and d+Au
- Strong suppression of the far-side jet in central Au+Au

Summary of high-pt Suppression

- There is a massive suppression of high-pt hadron yield in Central AuAu collisions.
- No high-pt suppression in dAu collisions is observed and the initial state effect such as gluon condensation (CGC) can not explain the above suppression.
- The high-pt suppression in Central AuAu is consistent with the final state effect; partonic energy-loss (Jet Quenching) in produced matter (QGP?).
- □ Far-side Jet is suppressed in Central AuAu : Further indication of suppression by produced medium.

The RHIC Upgrade Program

Resent long range RHIC planning exercise at BNL

five year beam use proposals and decadal plans from all experiments

Twenty year planning study for the RHIC facility

Introduction: executive summary of plans for RHIC future Schedule, projected luminosity development, detector upgrades

Details of "near and medium term" detector upgrades Particle identification for jet tomography (PHENIX, STAR) Dalitz pair rejection for electron pair continuum (PHENIX) Precision vertex tracking (PHENIX, STAR) Enhanced forward instrumentation (PHENIX)

Description of the second structure of the second s

Summary

Long Term RHIC Operation and Upgrade Plans

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Physics Beyond Reach of Current RHIC Program

- Comprehensive study of QCD at high T with heavy ion, p-nucleus, and pp high p_T phenomena (identified particle, p_T >20 GeV/c and γ -jet) electron pair continuum (low masses to Drell-Yan) heavy flavor production (c- and b-physics) charmonium spectroscopy (J/ ψ , ψ ', χ_c and Y(1s),Y(2s),Y(3s))
- Exploration of the nucleon structure in nuclei

A-, p_T -, x-dependence of the parton structure of nuclei gluon saturation and the color glass condensate at low x

Requires not only upgrade of RHIC luminosity But also of the experiments Corresponding plans developed over the last 2 years

RHIC Au-Au Luminosity Development

Full Au-Au Luminosity by 2013

High p_T Phenomena

Jet quenching: one of the most interesting discoveries at RHIC

PHENIX High p_T Particle Identification

Significant contribution from open charm

Need Dalitz rejection & accurate charm measurement \rightarrow PHENIX

PHENIX Dalitz Rejection with a HBD

Physics from Precise Charm Measurements in

Au-Au

These measurements are not possible or very limited without micro vertex tracking

Need secondary vertex resolution $< 50 \ \mu m$ Beauty and high p_T charm will require high luminosity

PHENIX Barrel VTX Detector Proposal

PHENIX Silicon Strips Detectors

Possible Contributions (PHENIX)

- Silicon Vertex Detector (VTX): vertexing with 50 μm of resolution for heavy quark and lower mass e⁺e⁻ measurements Still R&D stage, seek construction funds FY05 through FY07
- Endcap Vertex Tracker (silicon pixel) and Nosecone EM Calorimeter (W-silicon): γ, γ-jet, W, pizero, eta Staged implementation 2005++
- Hadron Blind Detector (HBD): Dalitz rejection to remove electron backgrounds

Still R&D stage, earliest implementation by 2006

Data analysis and production

In 2004, PHENIX produced about 300TB of raw data plus a couple of times of reconstructed data and analysis files.

A typical Heavy Ion experiment produces too much data each year and needs manpower and computing resources outside of RHIC/LHC.

Such efforts can be of more interest for theorists also.

Current Analysis Status in Yonsei

- □ We already have been analyzing the followings "locally": RUN2(PP) : single muon RUN3(dAu) : single muon RUN4(PP) : single muon as well as j/ψ
- Additionally, our group just have started official data reproduction for muon portion of RUN3(dAu) after installing every PHENIX software into our local cluster.
- Currently, our local linux cluster have 20 CPU's and 20 TB of storage and still expanding hardware resources every year. Soon (this month) we will have gigabit network connection also. Not many groups in PHENIX have such resources and experiences related to the analysis.

Possible Contributions (ALICE)

- Personally, I think ALICE is a good experiment for us to work together as long as we can obtain the appropriate fund.
- If Korean group is interested in Aerogel detector in ALICE, we can get "any" level of support from Tsukuba group.
- If not many good hardware activities are left in ALICE, I think analysis and computing activities would be a good place to consider because it is not too early for people to prepare for the ALICE data analysis by generating simulation data and developing the analysis software.
- To be familiar with ALICE computing and communicate with ALICE software group in CERN, people may have to visit CERN for some extended period once we deicide this. Also, we need money to build good local computing facilities.

More on High P_{T} Suppression

I would like to pick the most famous result for the rest of my talk. The following are topics related to the High P_T Suppression.

- > Event Characterization in PHENIX
- > Collision centrality, N_participants, N_collisions
- > High p_T hadron suppression in Au+Au
- > High p_T hadron suppression in d+Au (control exp.)
- Suppression of far-side jet in central Au+Au

Event characterization

AA collisions are not all the same, centrality (or impact parameter b) can be determined by measuring multiplicity (or transverse energy) near collision point combined with the number of free neutrons into beam directions.

Npart: Number of nucleons which suffered at least one inelastic nucleon-nucleon collision

Ncoll: Number of inelastic nucleon-nucleon collisions

Multiplicity (BBC)

Knowing the centrality using multiplicity of charged particles (BBC) and, number of free neutrons (ZDC), we can determine Npart and Ncoll from Glauber calculations; Phys. Rev. 100 (1955) 242.

Collision Centrality Determination

AA as a superposition of pp

Probability for a "soft" collision is large (~99.5%). If it happens, the nucleon is "wounded" and insensitive to additional collisions as it needs some time (~1fm/c) to produce particles, thus yields of soft particles scale from pp to AA as the number of participants(Npart).

Probability for a "hard" collision for any two nucleons is small, thus yields of hard particles should scale with the number of binary nucleon-nucleon collisions(*Ncoll*).

