

Our primary goal in the original plan

- What the machine can provide ?
- Single Spin Physics with large Nucleus
- Double Spin Physics with small Nucleus
- > Summary (How significant the outcome will be ?)

Spin Physics at RHIC

RHIC = polarized parton collider

	 Spin Structure of Nucleon 1/2=(1/2)ΔΣ+ΔG+L_q+L_g ΔG: gluon polarization Δq: Anti-quark polarization 			$gq \rightarrow \gamma q$ direct γ $gg \rightarrow b\bar{b}$ gluon fusion $u\bar{u} \rightarrow \gamma^*$ Drell Yan $u\bar{d} \rightarrow W$			
		 New Structures 	•NEW TOO	L to study hadronic			
•Test of pQCD		• h_1 : transversity	processes				
•Use asymmetries			•W,Z @	500GeV			
sensitive ONLY t	0			flavor sensitive studies on			
the higher orders (A_N)		the		e structure functions			
at high P _T etc.)			•cc/bb				
		J	 Production mechanism 				
	?QCI	D triumph?	•Spin in the fragmentation				
or ?beyond ?							

Polarized beam acceleration

Polarized Ions in RHIC

 $\begin{array}{ll} BL(\pi) = 10.48 \ A/Z \ / \ (\mu \ A/(2ZS) - 1) < 6Tm \\ & Magnetic & Present \\ & Moment & Snake \\ & Anomaly & Power \end{array}$

	Α	Z	S	μ	G	BL(180°)
р	1	1	1/2	2.793	1.793	5.845
d	2	1	2/2	0.857	-0.143	-146.985
³ H	3	1	1/2	2.979	7.937	3.961
3He	3	2	1/2	-2.127	-4.191	-3.751
7Li	7	3	3/2	3.256	1.532	15.957
9Be	9	4	3/2	2.450	0.838	28.155
170	17	8	5/2	-1.893	-1.805	-12.341
19F	19	9	1/2	2.627	4.547	4.866
205TI	205	81	1/2	1.700	3.302	8.031
119Sn	119	50	1/2	-1.100	-3.618	-6.894

Deuteron and Others ?

- If Pol.d can be achieved, Single Snake in RHIC ($E \le 100 \text{ GeV}$) Most of Ions (spin $\ne 0$) can be accelerated $\rightarrow all IP's$ have same polarization without depolarization Dential C = 100.53 GeV: $G\gamma = 192 = 6 \times 32$ $\rightarrow all IP's$ have same polarization For snake axis at -52° $\rightarrow longitudinal polarization$ $\rightarrow 52°$
- Partial Snake (Solenoid) can work to kill the resonances (twice stronger than AGS snake)
- Single Snake for Spin manupilation ?
- Spin Flip ?

28-29/Oct/2000

Luminosity & Energy

	Goal	Achieved	Goal	Achieved	
Ions	in RHIC	in RHIC	in Source	in Source	
Au	1*109	1*109	_	_	← 2*10 ¹¹ N/bunch
Р	2 *1011	1*10 ¹¹	9*10 ¹¹	6*10^11	
	P=70%	P=20%	P>80%	P=72%	
2D-	_	_	_	$1*10^{13}$	
				P=80%	
3He++	_	_	_	$10^{10} \sim 10^{11}$	ſ. ~ſ
				P=70~80%	² pA ² pp

Working Assumptions

 $\mathcal{L}_{\mathbf{pA}} \sim \mathcal{L}_{\mathbf{pp}}$ $500 \text{GeV pp} \rightarrow 200 \text{GeV pA}$ \rightarrow 333GeV p³He $650 \text{GeV pp} \rightarrow 260 \text{GeV pA}$ Asymmetric(important to have W) \rightarrow 325+230(530) p³He \rightarrow 325+130(410)/pA AA is not "Best-Buy" due to "dilution" ${}^{3}\vec{H} = "\vec{p}"$ with 1/3 Pol. ${}^{3}\vec{H}e="in";$ with 1/3 Pol.

Our Surprises (Past)

- Gluons' momentum fraction
- Iso spin Structure of Sea
- Spin Fraction of Quarks
- EMC effect !?

Future ? (QCD perfect?)

EMC effect

28-29/Oct/2000

Hideto En'yo, Kyoto University (RHIC pA workshop)

EMC effect is seen any nucleus

28-29/Oct/2000

EMC effect, Not Fundamental?

Hideto En'yo, Kyoto University (RHIC pA workshop)

EMC effect, Not definitive answer

28-29/Oct/2000

Weak Boson Detection at PHENIX @500GeV

- W production is
 - Flavor sensitive
 - helicity fixed (V-A)

Kinematics (realized by N.Saito)

• power of the polarized collider with Muon Endcaps

Yield in 1-RHIC year at 500GeV

LHC⁻⁻ pA (reachable in RHIC⁺⁺) for Flavor Sensitive EMC effect

•
$$W^{+} = \overline{d}_{A}(x_{A})u_{p}(x_{p}) + \overline{d}_{p}(x_{p})u_{A}(x_{A})$$

• $W^{-} = d_{A}(x_{A})\overline{u}_{p}(x_{p}) + d_{p}(x_{p})\overline{u}_{A}(x_{A})$
EMC Effect with flavor
• $R(W^{+}_{A}/W^{+}_{p}) = \overline{d}_{A}(x_{A})/\overline{d}_{p}(x_{p*}) \quad (x_{p} >>0)$
 $u_{A}(x_{A})/u_{p}(x_{p*}) \quad (x_{A} >>0)$
• $R(W^{-}_{A}/W^{-}_{p}) = d_{A}(x_{A})/d_{p}(x_{p*}) \quad (x_{p} >>0)$
 $\overline{u}_{A}(x_{A})/\overline{u}_{p}(x_{p*}) \quad (x_{A} >>0)$
• $A_{L}(W^{+}_{A}) = \Delta d_{A}(x_{A})/d_{A} (x_{A}) \quad (x_{p} >>0)$
 $\Delta u_{A}(x_{A})/u_{A} (x_{A}) \quad (x_{p} >>0)$
 $\Delta u_{A}(x_{A})/u_{A} (x_{A}) \quad (x_{p} >>0)$
• $A_{L}(W^{-}_{A}) = \Delta d_{A}(x_{A})/d_{A} (x_{A}) \quad (x_{p} >>0)$
 $\Delta \overline{u}_{A}(x_{A})/\overline{u}_{A} (x_{A}) \quad (x_{p} >>0)$

Quark Structure Function in A

Q2 evolution Neglected

28-29/Oct/2000

Why not $\Delta G(A)$ In RHIC @200GeV

- must be interesting (the other side of EMC effect)
- All the ΔG channel can be applied, but x determination is crucial. STAR γ +Jet or PHENIX + Jet detection upgrade will be suitable for q+g channel
- Channel like $g+g \rightarrow b\overline{b}$ is feasible & interesting, but x is not well determined in open bb channel.

– No real measurements so far ?

• Not easy to get $\Delta G(A)/G(A)$ with large Nucleus

A_{LL} required. ¹⁹F can be tried. ¹⁹F is a pure proton hole state of ²⁰Ne(N=Z=10). \rightarrow polarized structure function of proton hole. But dilution is large (1/19)

With light Nuclei: ³*H*, ³*He*, *d*

• A_{LL} A_{TT} possible

- EMC effect exist.
 - Almost under control
- ³He/³H: mirror nuclei

Fig. 1. The ratio of the F_2 structure functions of $^3{\rm He}$ and $^3{\rm H}$ to that of the deuteron (at $1~{\rm GeV}^2).$

28-29/Oct/2000

Nuclear Effect to g₁ is not large (3He) - model calculations -

28-29/Oct/2000

But in detail there may be ...

So....

- We can safely repeat the same measurements in p+"n" as p+p.
 - Note that the effective luminosity is 1/3 lower (dilution)
- We believe Isospin Symmetry
 - -u in p = d in n
 - -d in p = u in n
 - -g in p = g in n, Δg in $p = \Delta g$ in n (RHIC specialty).
- With 3H we can study " \vec{p} " in nuclear matter, but the effect may not be large.
- <u>Diagnostics type measurements</u> (but always <u>SURPRIZE can happen</u>)

Flavor Structure of Nucleon

p+3He / p+3H for sea quark

 $F_2^{He}(x)-F_2^{H}(x)$

0.05

TAL

Small

effect

nuclear

Valenc

0.6

x

8.0

- Gottfried sum
 - $I_{G} = \int dx (F_{2}^{p} F_{2}^{n})$ = 1/3 + 2/3 \int dx (u^{p} - d^{p}) = 0.235 (exp.)
- For mirror nucleus
- $I_G = \int dx (F_2^{p3He} F_2^{3H})$ = $1/3 + 2/3 \int dx (u^p - d^p)$
- Cancel nuclear effects
- Easy Spin handling $\frac{\sigma (p^{3}He) - \sigma (p^{3}H)}{\sigma (p^{3}He) + \sigma (p^{3}H)} = \frac{1(4u-d)(u-d)}{3(4u+d)(u+d)}$

$$\frac{A_{LL}{}^{p3He} \sigma (p^{3}He) - A_{LL}{}^{p3H} \sigma (p^{3}H)}{\sigma (p^{3}He) + \sigma (p^{3}H)} = \frac{1(4u-d)(\Delta u - \Delta d)}{3(4u+d)(u+d)}$$

p+d

- $D\uparrow=p\uparrow+n\uparrow(spin 1)$
 - $A_{LL} = \Delta q^d$ helicity
 - $A_{TT} = \Delta_T q^d$ transversity
 - $A_{UQ} = \delta q^d$ tensor
- As a "n" beam vs ³He
 - d is less attractive since A_{LL}^{pd} arise also from "p"
 - d is more attractive since Nuclear effect is better known
 - d is less attractive from a view point of spin handling
- $\Box \Delta \overline{u} \simeq \Delta \overline{d}$ physics

-
$$R_{pd} = \Delta \sigma_{pd} / 2\Delta \sigma_{pp}$$
 in D.Y. (Kumano et al.)
= $1/2(1 + \Delta \overline{d} / \Delta \overline{u})$

p+d

28-29/Oct/2000

Summary

- Two categories are feasible in polarized pA physics
 - Single spin pA
 - Double spin p(d, 3H, 3He,19F)
- Reachable in RHIC++, pA @ >500 GeV can provide unique measurements which can address FLAVOR sensitive EMC effect (LHC?).
 - A kind of measurements we have to do it at least once.
- G(A)/G(p) can be addressed in RHIC. With 19F $\Delta G(A)/G(A)$ can be measured (with 1/19 dilution).
- With 3He, polarized p + polarized "n" can be studied. If Isospin Symmetry holds, this is a kind of diagnostics measurements. (very important, but less interesting)
- $\Delta \overline{u} = \Delta \overline{d}$, $\overline{u} = \overline{d}$ can be studied with 3He,3H,d Drell-Yan, complementary to pp $\rightarrow W$
- Clearly we need more study on this matter.
 - $-A_N$ type measurements (single spin pA) should also be considered
 - Higher order QCD, can be a lot different in A

28-29/Oct/2000

Spin manipulation is collision geometry change in AA

The biggest UPGRADE issue in Spin Community is

NEW DETECTOR FOR SPIN

or not

28-29/Oct/2000