The Compressed Baryonic Matter (CBM) experiment at the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt/Germany

The future Facility for Antiproton an Ion Research (FAIR)

Research programmes at FAIR

Rare isotope beams; nuclear structure and nuclear astrophysics nuclear structure far off stability nucleosynthesis in stars and supernovae

Beams of antiprotons: hadron physics quark-confinement potential search for gluonic matter and hybrids hypernuclei

high-energy nucleus-nucleus collisions: compressed baryonic matter baryonic matter at highest densities (neutron stars) phase transitions and critical endpoint in-medium properties of hadrons

pulsed heavy ion beams: plasma physics matter at high pressure, densities, and temperature fundamentals of nuclear fusion

atomic physics and applied research highly charged atoms stopped antiprotons (→ antihydrogen) radiobiology

accelerator physics high intensive heavy ion beams dynamical vacuum rapidly cycling superconducting magnets high energy electron cooling

Birth and dead of stars

Onion shell structure before explosion

M < ≈8M_☉ red giant white dwarf

The origin of elements

The origin of elements

number of neutrons ——

FAIR: intensive rare isotope beams

Exploring the path of nucleosynthesis with FAIR

Physics with high energy antiprotons

Charmonium (\overline{cc}) spectroskopy: precision measurements of mass, width, and decay channels of charmonium states (\rightarrow quark confinement)

Search for gluonic excitations: Charmed hybrids, glueballs in the mass region of charmonium (3 - 5 GeV/c)

Search for in-medium modifications of hadron properties Signal for onset of chiral symmetry restoration ?

Precision γ-spectroskopy of single and double hyper nuclei Information on nuclear structure and on hyperon-nucleon and hyperon-hyperon interaction.

Antiproton-Proton-Annihilation in Darmstadt

Plasma physics with heavy ion beams

Neon beam at 300 A MeV penetrating an Ar Kristall

The phase diagram of atomic matter

States of strongly interacting matter

Strongly interacting matter in neutron stars

"Strangeness" of dense matter? In-medium properties of hadrons? Compressibility of nuclear matter? Deconfinement at high baryon densities?

The evolution of matter in the universe

The phase diagram of strongly interacting matter

SPS, RHIC, LHC: high temperature, low baryon density FAIR: moderate temperature, high baryon density

Mapping the QCD phase diagram with heavy-ion collisions

U+U 23 GeV/A

t=-17.14 fm/c

UrQMD Frankfurt/M

Diagnostische Sonden

CBM physics topics and observables

➤ In-medium modifications of hadrons
♦ onset of chiral symmetry restoration at high ρ_B measure: $\rho, \omega, \phi \rightarrow e^+e^-$ open charm (D mesons)

Strangeness in matter \Rightarrow production and propagation of strange particles measure: K, Λ , Σ , Ξ , Ω

> Indications for deconfinement at high ρ_B \Rightarrow production and propagation of charm measure: J/ψ , D

Critical point
Sevent-by-event fluctuations

Looking into the fireball ...

... using penetrating probes:

short-lived vector mesons decaying into electron-positron pairs

Invariant mass of electron-positron pairs from Pb+Au at 40 AGeV

CERES Collaboration: D.Adamova et al., Phys. Rev. Lett. 91 (2003) 042301

Ratio Signal/Background: 1/6

Hadronic decay cocktail:

particle ratios taken from thermal model for Pb-Pb
 rapidity and pt distributions from systematics in Pb-Pb

Enhancement: measured pairs/decay cocktail: 5.0 +- 1.3

Strangeness/pion ratios versus beam energy

Meson production in central Au+Au collisions

J/ψ measurement requires high beam intensities and lepton identification

central collisions 25 AGeV Au+Au 158 AGeV Pb+Pb

J/ ψ multiplicity	1.5·10⁻⁵	1·10 ⁻³
beam intensity	1.10 ⁹ /s	2⋅10 ⁷ /s
interactions	1·10 ⁷ /s (1%)	2⋅10 ⁶ /s (10%)
central collisions	1.10 ⁶ /s	2·10 ⁵ /s
J/ψ rate	15/s	200/s
6% J/ $\psi \rightarrow e^+e^- (\mu^+\mu^-)$	0.9/s	12/s
spill fraction	0.8	0.25
acceptance	0.25	≈ 0.1
J/ψ measured	0.17/s	≈ 0.3/s
	≈ 1·10 ⁵ /week	≈ 1.8·10⁵/week

D-meson measurement requires vertex resolution

Some hadronic decay modes

- D[±] (cτ = 317 μm): D⁺ → K⁰π⁺ (2.9±0.26%) D⁺ → K⁻π⁺π⁺ (9±0.6%)
- $\begin{array}{l} \mathsf{D}^{0} \mbox{ (c}\tau = 124.4 \ \mu \mbox{m}) \mbox{:} \\ \mathsf{D}^{0} \rightarrow \mbox{ K}^{\text{-}}\pi^{\text{+}} \ \mbox{(3.9 \pm 0.09\%)} \\ \mathsf{D}^{0} \rightarrow \mbox{ K}^{\text{-}}\pi^{\text{+}} \ \pi^{\text{+}} \ \pi^{\text{-}} \ \mbox{(7.6 \pm 0.4\%)} \end{array}$

Measure displaced vertex with resolution of $\,\approx\,50\,\,\mu m$!

- Radiation hard Silicon (pixel/strip) Tracking System in a magnetic dipole field
- Electron detectors: RICH & TRD & ECAL: pion suppression better 10⁴
- Hadron identification: TOF-RPC
- > Measurement of photons, π^0 , η , and muons: electromagn. calorimeter (ECAL)
- > High speed data acquisition and trigger system

Experimental challenges

Central Au+Au collision at 25 AGeV: URQMD + GEANT4

160 p 400 π⁻ 400 π⁺ 44 K⁺ 13 K⁻

- 10⁷ Au+Au reactions/sec
 (beam intensities up to 10⁹ ions/sec, 1 % interaction target)
- > determination of (displaced) vertices with high resolution (< 50 μ m)
- identification of electrons and hadrons

CBM Collaboration : 41 institutions, > 300 Members

<u>Croatia</u>: RBI, Zagreb

<u>China:</u> Wuhan Univ.

<u>Cyprus:</u> Nikosia Univ.

<u>Czech Republic:</u> CAS, Rez Techn. Univ. Prague

<u>France:</u> IReS Strasbourg

<u>Hungaria:</u> KFKI Budapest Eötvös Univ. Budapest

Korea:

Korea Univ. Seoul Pusan National Univ.

<u>Norway:</u> Univ. Bergen

<u>Germany:</u>

Univ. Heidelberg, Phys. Inst. Univ. HD, Kirchhoff Inst. Univ. Frankfurt Univ. Kaiserslautern Univ. Mannheim Univ. Marburg Univ. Münster FZ Rossendorf GSI Darmstadt

Poland:

Krakow Univ. Warsaw Univ. Silesia Univ. Katowice

<u>Portugal</u>: LIP Coimbra

<u>Romania</u>: NIPNE Bucharest

<u>Russia:</u>

CKBM, St. Petersburg **IHEP** Protvino INR Troitzk ITEP Moscow KRI, St. Petersburg Kurchatov Inst., Moscow LHE, JINR Dubna LPP, JINR Dubna LIT, JINR Dubna MEPHI Moscow Obninsk State Univ. PNPI Gatchina SINP, Moscow State Univ. St. Petersburg Polytec. U.

Spain:

Santiago de Compostela Univ.

<u>Ukraine:</u> Shevshenko Univ., Kiev

The FAIR member states (March 2005)

Funding profile

Finance Plan Accumulated

